Skip to main content

Lung Lesion Identification Using Geometrical Feature and Optical Flow Method from Computed Tomography Scan Images

  • Chapter
  • First Online:
Intelligent Multimedia Signal Processing for Smart Ecosystems

Abstract

Lung lesion identification is essential to an early lung cancer diagnosis. Detecting lung cancer early may aid physicians in treating patients. This chapter presents a geometric feature and optical flow technique for diagnosing lung lesions using computed tomography images. According to prior research, automating lung segmentation is incredibly challenging since fluctuations in pulmonary inflation combined with an elastic chest wall can result in a great deal of volume and margin variability. In addition, the attributes used to describe a lung lesion emphasize image aspects such as geometry, appearance, texture, and others. In this study, lung lesions in computed tomography images are segmented using an image processing technique that uses image segmentation algorithms. The optical flow approach has been designed to work with various computed tomography scan slices that could contain lesions. Collected data, image segmentation, optical flow, and performance evaluation are among the stages of the recommended method that call for image processing techniques. The Advanced Medical and Dental Institute, Universiti Sains Malaysia database was used to gather the computed tomography scan images. According to the study, lung slices with lesions have a standard deviation of 0% and 2.0% for the optical flow method, while slices without lesions have a standard deviation between 2.1% and 9.2%. These results can aid radiologists in more accurately diagnosing lung cancer by helping them immediately identify slices with lesions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chalasani P, Rajesh S (2020) Lung CT image classification using deep neural networks for lung cancer detection. Int J Eng Adv Technol 9(3):3998–4002. https://doi.org/10.35940/ijeat.c6409.029320

    Article  Google Scholar 

  2. Bhatia S, Sinha Y, Goel L (2019) Lung cancer detection: a deep learning approach. Adv Intell Syst Comput 817:699–705. https://doi.org/10.1007/978-981-13-1595-4_55

    Article  Google Scholar 

  3. Travis WD et al (2015) The 2015 World Health Organization classification of lung tumors: impact of genetic, clinical and radiologic advances since the 2004 classification. J Thorac Oncol 10(9):1243–1260. https://doi.org/10.1097/JTO.0000000000000630

    Article  Google Scholar 

  4. Vas M, Dessai A (2018) Lung cancer detection system using lung CT image processing. In: 2017 International conference on computing, communication, control and automation, ICCUBEA 2017. IEEE, pp 1–5. https://doi.org/10.1109/ICCUBEA.2017.8463851

    Chapter  Google Scholar 

  5. Heidinger BH et al (2017) Lung adenocarcinoma manifesting as pure ground-glass nodules: correlating CT size, volume, density, and roundness with histopathologic invasion and size. J Thorac Oncol 12(8):1288–1298. https://doi.org/10.1016/j.jtho.2017.05.017

    Article  Google Scholar 

  6. Shaziya H, Shyamala K, Zaheer R (2018) Automatic lung segmentation on thoracic CT scans using U-Net convolutional network. In: Proceedings of the 2018 IEEE international conference on communication and signal processing, ICCSP 2018, pp 643–647. https://doi.org/10.1109/ICCSP.2018.8524484

    Chapter  Google Scholar 

  7. Shewaye TN, Mekonnen AA (2016) Benign-malignant lung nodule classification with geometric and appearance histogram features. arXiv:1605.08350

    Google Scholar 

  8. Alom MZ, Hasan M, Yakopcic C, Taha TM, Asari VK (2018) Recurrent residual convolutional neural network based on U-Net (R2U-Net) for medical image segmentation. arXiv:1802.06955

    Google Scholar 

  9. Namitha S, Preethi R, Vinitha M, Kalaichelvi T, Hemalatha S, Subedha V (2017) Proposal on detection of lung cancer on reduced images using foggy K-means clustering algorithm. Int J Sci Res Comput Sci Eng Inf Technol 2(2):296–301

    Google Scholar 

  10. Tun KMM, Khaing AS (2014) Feature extraction and classification of lung cancer nodule using image processing techniques. Int J Eng Res Technol 3(3):2204–2210

    Google Scholar 

  11. Rani KV, Joseph Jawhar S (2018) Emerging trends in lung cancer detection scheme: a review. Int J Res Anal Rev 5(3):530–542

    Google Scholar 

  12. Makaju S, Prasad PWC, Alsadoon A, Singh AK, Elchouemi A (2018) Lung cancer detection using CT scan images. Procedia Comput Sci 125:107–114. https://doi.org/10.1016/j.procs.2017.12.016

    Article  Google Scholar 

  13. Riti YF, Nugroho HA, Wibirama S, Windarta B, Choridah L (2016) Feature extraction for lesion margin characteristic classification from CT Scan lungs image. In: Proceedings – 2016 1st international conference on information technology, information systems and electrical engineering, ICITISEE 2016. IEEE. https://doi.org/10.1109/ICITISEE.2016.7803047

    Chapter  Google Scholar 

  14. Asmayani Khalib AAM (2018) Malaysian study on cancer survival (MySCan), vol 4. National Cancer Institute, Health Education Division

    Google Scholar 

  15. Roy TS, Sirohi N, Patle A (2015) Classification of lung image and nodule detection using fuzzy inference system. In: International conference on computing, communication & automation, ICCCA 2015. IEEE, pp 1204–1207. https://doi.org/10.1109/CCAA.2015.7148560

    Chapter  Google Scholar 

  16. Ignatious S, Joseph R (2015) Computer aided lung cancer detection system. In: Global conference on communication technologies, GCCT 2015. IEEE, pp 555–558. https://doi.org/10.1109/GCCT.2015.7342723

    Chapter  Google Scholar 

  17. Moreno S, Bonfante M, Zurek E, Juan HS (2019) Study of medical image processing techniques applied to lung cancer. In: 14th Iberian conference on information systems and technologies, CISTI 2019. IEEE, pp 1–6. https://doi.org/10.23919/CISTI.2019.8760888

    Chapter  Google Scholar 

  18. Pratap GP, Chauhan RP (2017) Detection of lung cancer cells using image processing techniques. In: 1st IEEE international conference on power electronics, intelligent control and energy systems, ICPEICES 2016. IEEE, pp 1–6. https://doi.org/10.1109/ICPEICES.2016.7853347

    Chapter  Google Scholar 

  19. Kotwal AA, Walter LC (2020) Cancer screening among older adults: a geriatrician’s perspective on breast, cervical, colon, prostate, and lung cancer screening. Curr Oncol Rep 22(11):108. https://doi.org/10.1007/S11912-020-00968-X

    Article  Google Scholar 

  20. Bhalerao RY, Jani HP, Gaitonde RK, Raut V (2019) A novel approach for detection of lung cancer using digital image processing and convolution neural networks. In: 2019 5th International conference on advanced computing & communication systems, ICACCS 2019. IEEE, pp 577–583. https://doi.org/10.1109/ICACCS.2019.8728348

    Chapter  Google Scholar 

  21. Dhalia Sweetlin J, Nehemiah HK, Kannan A (2018) Computer aided diagnosis of pulmonary hamartoma from CT scan images using ant colony optimization based feature selection. Alex Eng J 57(3):1557–1567. https://doi.org/10.1016/j.aej.2017.04.014

    Article  Google Scholar 

  22. Vijayan A (2017) Classification of lung tumor from CT images using computer aided diagnosis scheme. Int J Sci Technol Eng 3(9):589–593

    Google Scholar 

  23. Abdullah MF et al (2019) A comparative study of image segmentation technique applied for lung cancer detection. In: Proceedings – 9th IEEE international conference on control system, computing and engineering, ICCSCE 2019. IEEE, pp 72–77. https://doi.org/10.1109/ICCSCE47578.2019.9068574

    Chapter  Google Scholar 

  24. Netto SMB, Silva AC, Nunes RA, Gattass M (2012) Automatic segmentation of lung nodules with growing neural gas and support vector machine. Comput Biol Med 42(11):1110–1121. https://doi.org/10.1016/j.compbiomed.2012.09.003

    Article  Google Scholar 

  25. Cascio D, Magro R, Fauci F, Iacomi M, Raso G (2012) Automatic detection of lung nodules in CT datasets based on stable 3D mass-spring models. Comput Biol Med 42(11):1098–1109. https://doi.org/10.1016/j.compbiomed.2012.09.002

    Article  Google Scholar 

  26. Keshani M, Azimifar Z, Tajeripour F, Boostani R (2013) Lung nodule segmentation and recognition using SVM classifier and active contour modeling: a complete intelligent system. Comput Biol Med 43(4):287–300. https://doi.org/10.1016/j.compbiomed.2012.12.004

    Article  Google Scholar 

  27. Sindhu Priya S, Ramamurthy B (2018) Lung cancer detection using image processing techniques. Res J Pharm Technol 11(5):2045–2049. https://doi.org/10.5958/0974-360X.2018.00379.7

    Article  Google Scholar 

  28. Rendon-Gonzalez E, Ponomaryov V (2016) Automatic lung nodule segmentation and classification in CT images based on SVM. In: 9th International Kharkiv symposium on physics and engineering of microwaves, millimeter and submillimeter waves, MSMW 2016. IEEE, pp 1–4. https://doi.org/10.1109/MSMW.2016.7537995

    Chapter  Google Scholar 

  29. Pu J, Zheng B, Leader JK, Wang XH, Gur D (2008) An automated CT based lung nodule detection scheme using geometric analysis of signed distance field. Med Phys 35(8):3453–3461. https://doi.org/10.1118/1.2948349

    Article  Google Scholar 

  30. Messay T, Hardie RC, Rogers SK (2010) A new computationally efficient CAD system for pulmonary nodule detection in CT imagery. Med Image Anal 14(3):390–406. https://doi.org/10.1016/j.media.2010.02.004

    Article  Google Scholar 

  31. Chunran Y, Yuanvuan W, Yi G (2019) Automatic detection and segmentation of lung nodule on CT images. In: Proceedings – 2018 11th international congress on image and signal processing, biomedical engineering and informatics, CISP-BMEI 2018. IEEE, pp 2–6. https://doi.org/10.1109/CISP-BMEI.2018.8633101

    Chapter  Google Scholar 

  32. Alam J, Alam S, Hossan A (2018) Multi-stage lung cancer detection and prediction using multi-class SVM classifie. In: International conference on computer, communication, chemical, material and electronic engineering, IC4ME2 2018. IEEE, pp 1–4. https://doi.org/10.1109/IC4ME2.2018.8465593

    Chapter  Google Scholar 

  33. Khehrah N, Farid MS, Bilal S, Khan MH (2020) Lung nodule detection in CT images using statistical and shape-based features. J Imaging 6(2):6. https://doi.org/10.3390/jimaging6020006

    Article  Google Scholar 

  34. Pandian R, Ravi Kumar DNS, Kumar RR (2020) Development of algorithm for identification of maligant growth in cancer using artificial neural network. Int J Electr Comput Eng 10(6):5709–5713. https://doi.org/10.11591/ijece.v10i6.pp5709-5713

    Article  Google Scholar 

  35. Farahani FV, Ahmadi A, Zarandi MHF (2018) Hybrid intelligent approach for diagnosis of the lung nodule from CT images using spatial kernelized fuzzy C-means and ensemble learning. Math Comput Simul 149:48–68. https://doi.org/10.1016/j.matcom.2018.02.001

    Article  MathSciNet  MATH  Google Scholar 

  36. Miah MBA, Yousuf MA (2015) Detection of lung cancer from CT image using image processing and neural network. In: 2nd International conference on electrical engineering and information communication technology, iCEEiCT 2015. IEEE, pp 21–23. https://doi.org/10.1109/ICEEICT.2015.7307530

    Chapter  Google Scholar 

  37. Alakwaa W, Nassef M, Badr A (2017) Lung cancer detection and classification with 3D convolutional neural network (3D-CNN). Int J Adv Comput Sci Appl 8(8):409–417. https://doi.org/10.14569/ijacsa.2017.080853

    Article  Google Scholar 

  38. Pattnaik A, Kanodia S, Chowdhury R, Mohanty S (2019) Predicting tuberculosis related lung deformities from CT scan images using 3D CNN. CEUR Workshop Proc 2380:9–12

    Google Scholar 

  39. Jakimovski G, Davcev D (2019) Using double convolution neural network for lung cancer stage detection. Appl Sci 9(3):427. https://doi.org/10.3390/app9030427

    Article  Google Scholar 

  40. Afzal I, Parah SA, Hurrah NN, Song OY (2020) Secure patient data transmission on resource constrained platform. Multimed Tools Appl:1–26. https://doi.org/10.1007/s11042-020-09139-3

  41. Ouksili Z, Batatia H (2010) 4D CT image reconstruction based on interpolated optical flow fields. In: Proceedings – 2010 IEEE international conference on image processing, ICIP. IEEE, pp 633–636. https://doi.org/10.1109/ICIP.2010.5650059

    Chapter  Google Scholar 

  42. Ehrhardt J et al (2007) An optical flow based method for improved reconstruction of 4D CT data sets acquired during free breathing. Med Phys 34(2):711–721. https://doi.org/10.1118/1.2431245

    Article  Google Scholar 

  43. Dougherty L, Asmuth JC, Gefter WB (2003) Alignment of CT lung volumes with an optical flow method. Acad Radiol 10(3):249–254. https://doi.org/10.1016/S1076-6332(03)80098-3

    Article  Google Scholar 

  44. Noor NM et al (2015) Automatic lung segmentation using control feedback system: morphology and texture paradigm. J Med Syst 39(3):22. https://doi.org/10.1007/s10916-015-0214-6

    Article  Google Scholar 

  45. Chithra AS, Renjen Roy RU (2018) Otsu’s adaptive thresholding based segmentation for detection of lung nodules in CT image. In: Proceedings of the 2nd international conference on trends in electronics and informatics, ICOEI 2018. IEEE, pp 1303–1307. https://doi.org/10.1109/ICOEI.2018.8553694

    Chapter  Google Scholar 

  46. Ligthart ST et al (2013) Circulating tumor cells count and morphological features in breast, colorectal and prostate cancer. PLoS One 8(6):1–11. https://doi.org/10.1371/journal.pone.0067148

    Article  Google Scholar 

  47. Patil SA, Udupi VR, Kane CD, Wasif AI, Desai JV, Jadhav AN (2009) Geometrical and texture features estimation of lung cancer and TB images using chest X-ray database. In: Proceedings of the 2nd international conference on biomedical and pharmaceutical engineering, ICBPE 2009. IEEE, pp 1–7. https://doi.org/10.1109/ICBPE.2009.5384113

    Chapter  Google Scholar 

  48. Suji RJ, Bhadouria SS, Dhar J, Godfrey WW (2020) Optical flow methods for lung nodule segmentation on LIDC-IDRI images. J Digit Imaging 33(5):1306–1324. https://doi.org/10.1007/s10278-020-00346-w

    Article  Google Scholar 

  49. Raudies F (2013) Optic flow. Scholarpedia 8(7):1–30. https://doi.org/10.4249/scholarpedia.30724

    Article  Google Scholar 

  50. King AP, Eckersley RJ (2019) Descriptive statistics I: univariate statistics. In: Statistics for biomedical engineers and scientists. Academic Press, pp 1–21. https://doi.org/10.1016/b978-0-08-102939-8.00010-4

    Chapter  MATH  Google Scholar 

  51. Baratloo A, Hosseini M, Negida A, El Ashal G (2015) Part 1: Simple definition and calculation of accuracy, sensitivity and specificity. Emergency 3:48–49

    Google Scholar 

  52. Marzuki NNSM, Isa IS, Karim NKA, Shuaib IL, Soh ZHC, Sulaiman SN (2020) Demarcation of lung lobes in CT scan image for lung cancer detection using watershed segmentation. In: Proceedings of the 2020 12th international conference on computer and automation engineering, ICCAE 2020. ACM, pp 70–74

    Google Scholar 

  53. Parah S, Sheikh J, Loan N, Bhat GM (2018) Utilizing neighborhood coefficient correlation: a new image watermarking technique robust to singular and hybrid attacks. Multidim Syst Sign Process 29:1095–1117

    Article  MathSciNet  MATH  Google Scholar 

  54. Kamili A et al (2021) DWFCAT: dual watermarking framework for industrial image authentication and tamper localization. IEEE Trans Industr Inform 17(7):5108–5117. https://doi.org/10.1109/TII.2020.3028612

    Article  Google Scholar 

  55. Dey N et al (2017) Realization of a new robust and secure watermarking technique using DC coefficient modification in pixel domain and chaotic encryption. J Glob Inf Manag 25(4):80–102

    Article  Google Scholar 

  56. Ahad F et al (2015) On the realization of robust watermarking system for medical images. In: 2015 Annual IEEE India conference (INDICON), New Delhi, India. IEEE, pp 1–5. https://doi.org/10.1109/INDICON.2015.7443363

    Chapter  Google Scholar 

  57. Sarosh P, Parah S, Bhat GM, Khan M (2021) A security management framework for big data in smart healthcare. Big Data Res 25:100225

    Article  Google Scholar 

  58. Hurrah NN et al (2020) Embedding in medical images: an efficient scheme for authentication and tamper localization. Multimed Tools Appl 79:21441–21470

    Article  Google Scholar 

  59. Parah SA et al (2014) A secure and efficient spatial domain data hiding technique based on pixel adjustment. Am J Eng Technol Res 14(2):33

    Google Scholar 

  60. Parah SA et al (2012) On the realization of a secure, high capacity data embedding technique using joint top-down and down-top embedding approach. Comput Sci Eng 49:10141–10146

    Google Scholar 

Download references

Acknowledgement

This research work was financially supported by the Ministry of Higher Education Grant Scheme (FRGS) “A new Motion-based Optical flow Cancer Detection method for Lung Nodule Segmentation on Lung CT-Scan Images” (Ref: FRGS/1/2021/TK0/UITM/02/58) and ethics from Universiti Sains Malaysia (USM/JEPeM/19040231). The authors would like to express their gratitude to the Machine Learning Research Group (MLRG) members, Integrative Pharmacogenomics Institute (iPROMISE), and Centre for Electrical Engineering Studies, Universiti Teknologi MARA, Cawangan Pulau Pinang for their assistance and guidance during the fieldwork. Finally, the authors thank Universiti Teknologi MARA, Cawangan Pulau Pinang, for their immense administrative and financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Khusairi Osman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Abdullah, M.F., Sulaiman, S.N., Osman, M.K., Karim, N.K.A., Setumin, S., Ani, A.I.C. (2023). Lung Lesion Identification Using Geometrical Feature and Optical Flow Method from Computed Tomography Scan Images. In: Parah, S.A., Hurrah, N.N., Khan, E. (eds) Intelligent Multimedia Signal Processing for Smart Ecosystems. Springer, Cham. https://doi.org/10.1007/978-3-031-34873-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-34873-0_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-34872-3

  • Online ISBN: 978-3-031-34873-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics