Skip to main content

CNN-SVM with Data Augmentation for Robust Blur Detection of Digital Breast Tomosynthesis Images

  • Chapter
  • First Online:
Intelligent Multimedia Signal Processing for Smart Ecosystems

Abstract

Digital breast tomosynthesis (DBT) is a method that extends digital mammography by capturing pictures of the breast from various angles of the x-ray source. DBT’s angular sampling range is severely limited due to hardware constraints, resulting in severely limited angular artefacts such as blurring and low contrast effects in the reconstructed images. Unwanted artefacts like blurry artefacts can substantially obscure the cancer site, particularly in exceptionally thick fibro glandular breast tissue, and reduce diagnostic accuracy. Due to the blurry artefact problem, it is essential to develop methods for analyzing the blur distortion of DBT-obtained images for diagnostic reasons. This chapter describes a hybrid convolutional neural network-support vector machine (CNN-SVM) strategy extracting robust hierarchical features from images using CNN before passing the images to an SVM classifier for classifier boosting to categorize DBT images into two classes: blur or non-blur images. To make the prediction invariance of image scaling and rotation more robust, a variety of data augmentation strategies are examined. The suggested tool was evaluated using the metrics of overall accuracy, recall, precision and processing time. The findings demonstrate that the combined CNN and SVM model outperforms standard feature models with an accuracy of 0.97 and an area under the curve (AUC) of the receiver operating characteristic (ROC) of 0.9998, as well as numerous classical deep CNN models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kamona N, Loew M (2020) Automatic detection of simulated motion blur in mammograms. Med Phys 47(4):1786–1795. https://doi.org/10.1002/mp.14069

    Article  Google Scholar 

  2. Helvie MA (2010) Digital mammography imaging: breast tomosynthesis and advanced applications. Radiol Clin North Am 48(5):917–929. https://doi.org/10.1016/j.rcl.2010.06.009

    Article  Google Scholar 

  3. Fan M et al (2020) Mass detection and segmentation in digital breast tomosynthesis using 3D-mask region-based convolutional neural network: a comparative analysis. Front Mol Biosci 7:1–15. https://doi.org/10.3389/fmolb.2020.599333

    Article  Google Scholar 

  4. Maldera A, De Marco P, Colombo PE, Origgi D, Torresin A (2017) Digital breast tomosynthesis: dose and image quality assessment. Phys Med 33:56–67. https://doi.org/10.1016/j.ejmp.2016.12.004

    Article  Google Scholar 

  5. Hogg P, Szczepura K, Kelly J, Taylor M (2012) Blurred digital mammography images. Radiography 18(1):55–56. https://doi.org/10.1016/j.radi.2011.11.008

    Article  Google Scholar 

  6. Huang R, Feng W, Fan M, Wan L, Sun J (2018) Multiscale blur detection by learning discriminative deep features. Neurocomputing 285:154–166. https://doi.org/10.1016/j.neucom.2018.01.041

    Article  Google Scholar 

  7. Chae EY, Kim HH, Jeong J-W, Chae SH, Lee S, Choi YW (2019) Decrease in interpretation time for both novice and experienced readers using a concurrent computer-aided detection system for digital breast tomosynthesis. Eur Radiol 29(5):2518–2525. https://doi.org/10.1007/s00330-018-5886-0

    Article  Google Scholar 

  8. Balleyguier C et al (2017) Improving digital breast tomosynthesis reading time: a pilot multi-reader, multi-case study using concurrent Computer-Aided Detection (CAD). Eur J Radiol 97:83–89. https://doi.org/10.1016/J.EJRAD.2017.10.014

    Article  Google Scholar 

  9. Benedikt RA, Boatsman JE, Swann CA, Kirkpatrick AD, Toledano AY (2018) Concurrent computer-aided detection improves reading time of digital breast tomosynthesis and maintains interpretation performance in a multireader multicase study. Am J Roentgenol 210(3):685–694. https://doi.org/10.2214/AJR.17.18185

    Article  Google Scholar 

  10. Kaur A, Rashid M, Bashir AK, Parah SA (2022) Detection of breast cancer masses in mammogram images with watershed segmentation and machine learning approach. In: Artificial intelligence for innovative healthcare informatics. Springer, Cham, pp 35–60. https://doi.org/10.1007/978-3-030-96569-3_2

    Chapter  Google Scholar 

  11. Ali U, Mahmood MT (2018) Analysis of blur measure operators for single image blur segmentation. Appl Sci 8(5):807. https://doi.org/10.3390/app8050807

    Article  Google Scholar 

  12. Koik BT, Ibrahim H (2013) A literature survey on blur detection algorithms for digital imaging. In: Proceedings – 1st international conference on artificial intelligence, modelling and simulation, AIMS 2013. IEEE, pp 272–277. https://doi.org/10.1109/AIMS.2013.50

    Chapter  Google Scholar 

  13. Pertuz S, Puig D, Garcia MA (2013) Analysis of focus measure operators for shape-from-focus. Pattern Recogn 46(5):1415–1432. https://doi.org/10.1016/j.patcog.2012.11.011

    Article  MATH  Google Scholar 

  14. Bansal R, Raj G, Choudhury T (2017) Blur image detection using Laplacian operator and Open-CV. In: Proceedings of the 5th international conference system modeling & advancement in research trends, SMART 2016. IEEE, pp 63–67. https://doi.org/10.1109/SYSMART.2016.7894491

    Chapter  Google Scholar 

  15. Krizhevsky A, Sutskever I, Hinton GE (2017) ImageNet classification with deep convolutional neural networks. Commun ACM 60(6):84–90. https://doi.org/10.1145/3065386

    Article  Google Scholar 

  16. Szandala T (2020) Convolutional neural network for blur images detection as an alternative for Laplacian method. In: 2020 IEEE symposium series on computational intelligence, SSCI 2020. IEEE, pp 2901–2904. https://doi.org/10.1109/SSCI47803.2020.9308594

    Chapter  Google Scholar 

  17. Samek W, Binder A, Montavon G, Lapuschkin S, Müller KR (2017) Evaluating the visualization of what a deep neural network has learned. IEEE Trans Neural Netw Learn Syst 28(11):2660–2673. https://doi.org/10.1109/TNNLS.2016.2599820

    Article  MathSciNet  Google Scholar 

  18. Simonyan K, Zisserman A (2015) Very deep convolutional networks for large-scale image recognition. arXiv:1409.1556v6. [Online]. Available: https://arxiv.org/abs/1409.1556v6. Accessed 11 Jan 2022

  19. He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: Proceedings of the IEEE Computer Society conference on computer vision and pattern recognition. IEEE, pp 770–778. https://doi.org/10.1109/CVPR.2016.90

    Chapter  Google Scholar 

  20. Sujlana PS, Mahesh M, Vedantham S, Harvey SC, Mullen LA, Woods RW (2019) Digital breast tomosynthesis: image acquisition principles and artifacts. Clin Imaging 55:188–195. https://doi.org/10.1016/j.clinimag.2018.07.013

    Article  Google Scholar 

  21. Parah SA, Sheikh JA, Loan NA, Ahad F, Bhat GM (2018) Utilizing neighborhood coefficient correlation: a new image watermarking technique robust to singular and hybrid attacks. Multidim Syst Sign Process 29:1095–1117

    Article  MathSciNet  MATH  Google Scholar 

  22. Parah SA, Sheikh JA, Bhat GM (2014) A secure and efficient spatial domain data hiding technique based on pixel adjustment. Am J Eng Technol Res 14(2):33

    Google Scholar 

  23. Kamili A, Hurrah NN, Parah SA, Bhat GM, Muhammad K (2021) DWFCAT: dual watermarking framework for industrial image authentication and tamper localization. IEEE Trans Industr Inform 17(7):5108–5117. https://doi.org/10.1109/TII.2020.3028612

    Article  Google Scholar 

  24. Parah SA, Sheikh JA, Dey N, Bhat GM (2017) Realization of a new robust and secure watermarking technique using DC coefficient modification in pixel domain and chaotic encryption. J Glob Inf Manag 25(4):80–102

    Article  Google Scholar 

  25. Bhat GM, Mustafa M, Parah SA, Ahmad J (2010) Field programmable gate array (FPGA) implementation of novel complex PN-code-generator-based data scrambler and descrambler. Maejo Int J Sci Technol 4(1):125–135

    Google Scholar 

  26. Bhat GM, Mustafa M, Ahmad S, Ahmad J (2009) VHDL modeling and simulation of data scrambler and descrambler for secure data communication. Indian J Sci Technol 2(10):41–43

    Article  Google Scholar 

  27. Hurrah NN, Parah SA, Sheikh JA (2020) Embedding in medical images: an efficient scheme for authentication and tamper localization. Multimed Tools Appl 79:21441–21470

    Article  Google Scholar 

  28. Zheng J et al (2021) 3D context-aware convolutional neural network for false positive reduction in clustered microcalcifications detection. IEEE J Biomed Health Inform 25(3):764–773. https://doi.org/10.1109/JBHI.2020.3003316

    Article  Google Scholar 

  29. Fan J, Wu L, Wen C (2020) Sharp processing of blur image based on generative adversarial network. In: ICARM 2020 – 2020 5th IEEE international conference on advanced robotics and mechatronics, vol 2. IEEE, pp 437–441. https://doi.org/10.1109/ICARM49381.2020.9195305

    Chapter  Google Scholar 

  30. Buda M et al (2020) Detection of masses and architectural distortions in digital breast tomosynthesis: a publicly available dataset of 5,060 patients and a deep learning baseline. arXiv:2011.07995:1–14

    Google Scholar 

  31. Bai J, Posner R, Wang T, Yang C, Nabavi S (2021) Applying deep learning in digital breast tomosynthesis for automatic breast cancer detection: a review. Med Image Anal 71:102049. https://doi.org/10.1016/j.media.2021.102049

    Article  Google Scholar 

  32. Gao M, Fessler JA, Chan H-P (2021) Deep convolutional neural network with adversarial training for denoising digital breast tomosynthesis images. IEEE Trans Med Imaging 40(7):1805–1816. https://doi.org/10.1109/tmi.2021.3066896

    Article  Google Scholar 

  33. Sahu P, Huang H, Zhao W, Qin H (2019) Using virtual digital breast tomosynthesis for de-noising of low-dose projection images. In: 2019 IEEE 16th international symposium on biomedical imaging (ISBI 2019). IEEE, pp 1647–1651. https://doi.org/10.1109/ISBI.2019.8759408

    Chapter  Google Scholar 

  34. Choi Y, Shim H, Baek J (2018) Image quality enhancement of digital breast tomosynthesis images by deblurring with deep residual convolutional neural network. In: 2018 IEEE nuclear science symposium and medical imaging conference proceedings, NSS/MIC 2018. IEEE, pp 31–33. https://doi.org/10.1109/NSSMIC.2018.8824402

    Chapter  Google Scholar 

  35. Wu J, Li Q, Liang S, Kuang SF (2020) Convolutional neural network with Squeeze and Excitation modules for image blind deblurring. In: 2020 Information Communication Technologies Conference, ICTC 2020. IEEE, pp 338–345. https://doi.org/10.1109/ICTC49638.2020.9123259

    Chapter  Google Scholar 

  36. Sermanet P, Eigen D, Zhang X, Mathieu M, Fergus R, LeCun Y (2014) Overfeat: integrated recognition, localization and detection using convolutional networks. arXiv:1312.6229v3:1–17

    Google Scholar 

  37. Szegedy C et al (2015) Going deeper with convolutions. In: Proceedings of the IEEE Computer Society conference on computer vision and pattern recognition. IEEE, pp 1–9. https://doi.org/10.1109/CVPR.2015.7298594

    Chapter  Google Scholar 

  38. Demirhan A, Toru M, Guler I (2015) Segmentation of tumor and edema along with healthy tissues of brain using wavelets and neural networks. IEEE J Biomed Health Inform 19(4):1451–1458. https://doi.org/10.1109/JBHI.2014.2360515

    Article  Google Scholar 

  39. Alkhaleefah M, Wu CC (2019) A hybrid CNN and RBF-based SVM approach for breast cancer classification in mammograms. In: Proceedings – 2018 IEEE international conference on systems, man, and cybernetics, SMC 2018. IEEE, pp 894–899. https://doi.org/10.1109/SMC.2018.00159

    Chapter  Google Scholar 

  40. Razavian AS, Azizpour H, Sullivan J, Carlsson S (2014) CNN features off-the-shelf: an astounding baseline for recognition. In: IEEE Computer Society conference on computer vision and pattern recognition workshops. IEEE, pp 512–519. https://doi.org/10.1109/CVPRW.2014.131

    Chapter  Google Scholar 

  41. Santos CA, Welfer D (2019) A novel hybrid SVM-CNN method for extracting characteristics and classifying cattle branding. Lat Am J Comput VI(1):9–16. [Online]. Available: https://lajc.epn.edu.ec/index.php/LAJC/article/view/157

    Google Scholar 

  42. Khairandish MO, Sharma M, Jain V, Chatterjee JM, Jhanjhi NZ (2021) A hybrid CNN-SVM threshold segmentation approach for tumor detection and classification of MRI brain images. IRBM 1:1–10. https://doi.org/10.1016/j.irbm.2021.06.003

    Article  Google Scholar 

  43. Xue DX, Zhang R, Feng H, Wang YL (2016) CNN-SVM for microvascular morphological type recognition with data augmentation. J Med Biol Eng 36(6):755–764. https://doi.org/10.1007/s40846-016-0182-4

    Article  Google Scholar 

  44. Santos M, Bastião L, Silva A, Rocha N (2016) DICOM metadata analysis for population characterization: a feasibility study. Procedia Comput Sci 100:355–361. https://doi.org/10.1016/j.procs.2016.09.169

    Article  Google Scholar 

  45. Perez L, Wang J (2017) The effectiveness of data augmentation in image classification using deep learning. arXiv:1712.04621:1–8. [Online]. Available: http://arxiv.org/abs/1712.04621

  46. Donahue J et al (2014) DeCAF: a deep convolutional activation feature for generic visual recognition. In: 31st International conference on machine learning, ICML 2014, vol 2, pp 988–996. https://doi.org/10.48550/arxiv.1310.1531

    Chapter  Google Scholar 

  47. Francis LM, Sreenath N (2019) Pre-processing techniques for detection of blurred images, vol 28. Springer, Singapore

    Google Scholar 

  48. Minh TN, Sinn M, Lam HT, Wistuba M (2018) Automated image data preprocessing with deep reinforcement learning. arXiv:1806.05886:1–9. [Online]. Available: http://arxiv.org/abs/1806.05886

  49. Ahad F, Parah SA, Sheikh JA, Bhat GM (2015) On the realization of robust watermarking system for medical images. In: 2015 Annual IEEE India conference (INDICON), New Delhi, India. IEEE, pp 1–5. https://doi.org/10.1109/INDICON.2015.7443363

    Chapter  Google Scholar 

  50. Sarosh P, Parah SA, Bhat GM, Heidari AA, Muhammad K (2021) Secret sharing-based personal health records management for the Internet of Health Things. Sustain Cities Soc 74:103129

    Article  Google Scholar 

  51. Parsa S, Parah SA, Bhat GM, Khan M (2021) A security management framework for big data in smart healthcare. Big Data Res 25:100225

    Article  Google Scholar 

  52. Aljuaid H, Parah SA (2021) Secure patient data transfer using information embedding and hyperchaos. Sensors 21(1):282

    Article  Google Scholar 

  53. Samala RK, Chan H-P, Hadjiiski LM, Helvie MA, Richter C, Cha K (2018) Evolutionary pruning of transfer learned deep convolutional neural network for breast cancer diagnosis in digital breast Tomosynthesis. Physiol Behav 176(5):139–148. https://doi.org/10.1088/1361-6560/aabb5b.Evolutionary

    Article  Google Scholar 

Download references

Acknowledgements

This research work is financially supported by the Ministry of Higher Education Grant Scheme (FRGS) “A New Cascaded Convolutional Neural Network Model for Deblurring and Contrast Enhancement of Extremely Dense Breast Tissue in Digital Breast Tomosynthesis Images” (Ref: FRGS/1/2021/TK0/UiTM/02/19). The Advanced Control System and Computing Research Group (ACSCRG), Advanced Rehabilitation Engineering in Diagnostic and Monitoring Research Group (AREDiM), Integrative Pharmacogenomics Institute (iPROMISE), and Centre for Electrical Engineering Studies, Universiti Teknologi MARA, Cawangan Pulau Pinang are among the groups for which the authors are grateful for their support and direction during the fieldwork. Finally, the authors thank Universiti Teknologi MARA, Cawangan Pulau Pinang, Malaysia, for their immense administrative and financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siti Noraini Sulaiman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Harron, N.A., Sulaiman, S.N., Osman, M.K., Karim, N.K.A., Isa, I.S. (2023). CNN-SVM with Data Augmentation for Robust Blur Detection of Digital Breast Tomosynthesis Images. In: Parah, S.A., Hurrah, N.N., Khan, E. (eds) Intelligent Multimedia Signal Processing for Smart Ecosystems. Springer, Cham. https://doi.org/10.1007/978-3-031-34873-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-34873-0_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-34872-3

  • Online ISBN: 978-3-031-34873-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics