Skip to main content

Supplemental Technologies for Freshwater Fish Conservation

  • Chapter
  • First Online:
Conservation Genetics in the Neotropics

Abstract

This chapter presents an overview of technologies for freshwater fish conservation, emphasizing the neotropical species. The reproductive success and recruitment of populations are discussed based on changes in habitat. How the decline in fish populations indirectly affects the food chain is discussed from the perspective of the ecological functions of each species. A critical analysis of fish stocking is presented, including special breeding techniques and stocking guidelines designed to be genetically favorable to breeding programs. New technologies that can improve the reproductive success of threatened species and minimize the impact of aquaculture on native fish species are reviewed. Some recommendations to mitigate harmful habitat changes for reproductive success, impacts of non-native species introduction, and a guideline for fish stocking are presented. Finally, limitations and perspectives of fish biotechnology are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abreu MR de, Arantes TB, Hermes-Silva S et al (2014) Oxytetracycline for chemical marking of piava juveniles Leporinus obtusidens: determining concentration and time of treatment. Bol Inst Pesca 40:451–457

    Google Scholar 

  • Adamov NS de M, Nascimento NF do, Maciel ECS et al (2017) Triploid Induction in the Yellowtail Tetra, Astyanax altiparanae, using temperature shock: tools for conservation and aquaculture. J World Aquac Soc 48:741–750

    Google Scholar 

  • Agostinho AA, Miranda LE, Bini LM et al (1999) Patterns of colonization in neotropical reservoirs, and prognoses on aging. In: Tundisi JG, Straskraba M (eds) Theoretical reservoir ecology and its applications. Backhuys Publishers, Leiden, pp 227–265

    Google Scholar 

  • Agostinho AA, Gomes LC, Suzuki HI et al (2003) Migratory fish from the upper Paraná River basin, Brazil. In: Carolsfeld J, Harvey B, Ross C et al (eds) Migratory fishes of South America: biology, fisheries and conservation status. IDRC, pp 19–99

    Google Scholar 

  • Agostinho AA, Gomes LC, Veríssimo S et al (2004) Flood regime, dam regulation and fish in the Upper Paraná River: effects on assemblage attributes, reproduction and recruitment. Rev Fish Biol Fish 14:11–19

    Google Scholar 

  • Agostinho AA, Gomes LC, Pelicice FM (2007) Ecologia e manejo de recursos pesqueiros em reservatórios do Brasil. Eduem, Maringá

    Google Scholar 

  • Agostinho AA, Pelicice FM, Gomes LC (2008) Dams and the fish fauna of the Neotropical region: impacts and management related to diversity and fisheries. Brazilian J Biol 68:1119–1132

    CAS  Google Scholar 

  • Agostinho AA, Pelicice FM, Gomes LC et al (2010) Reservoir fish stocking: when one plus one may be less than two. Nat Conserv 8(2):103–111

    Google Scholar 

  • Agostinho AA, Gomes LC, Santos NCL et al (2015) Impacts and management. Fish Res 173:26–36

    Google Scholar 

  • Ahammad MM, Bhattacharyya D, Jana BB (2002) The hatching of common carp (Cyprinus carpio L.) embryos in response to exposure to different concentrations of cryoprotectant at low temperatures. Cryobiology 44:114–121

    CAS  Google Scholar 

  • Allendorf FW, Phelps SR (1980) Loss of genetic variation in a hatchery stock of cutthroat trout. Trans Am Fish Soc 109:537–543

    Google Scholar 

  • Allendorf F, Ryman N, Utter F (1987) Genetics and fishery management: past, present and future in population genetics and fisheries management. Seattle/London, University of Washington Press

    Google Scholar 

  • Almeida FL (2013) Endocrinologia aplicada na reprodução de peixes. Rev Bras Reprod Anim 37:174–180

    Google Scholar 

  • Almeida RM, Shi Q, Gomes-selman JM et al (2019) Reducing greenhouse gas emissions of Amazon hydropower with strategic dam planning Rafael hydropower with strategic dam planning. Nat Commun 10:1–9

    Google Scholar 

  • Almeida FL, Skaftnesmo KO, Andersson E et al (2022) The Piwil1 N domain is required for germ cell survival in Atlantic salmon. Front Cell Dev Biol 10:977779

    Google Scholar 

  • Andrade FF, Lima AF, Assumpção L et al (2016) Characterization of the early development of Pseudoplatystoma reticulatum Eigenmann & Eigenmann, 1889 (Siluriformes: Pimelodidae) from the Paraguay River Basin. Neotrop Ichthyol 14(2):e150032

    Google Scholar 

  • Aprahamian MW, Baglinière JL, Sabatiè MR et al. (2003) Biology, status, and conservation of the anadromous Atlantic twaite shad Alosa fallax fallax. Am Fish Soc Symp 35:103–124

    Google Scholar 

  • Araki H, Schmid C (2010) Is hatchery stocking a help or harm? Evidence, limitations and future directions in ecological and genetic surveys. Aquaculture 308:S2–S11

    Google Scholar 

  • Arantes CC, Winemiller KO, Asher A et al (2019) Floodplain land cover affects biomass distribution of fish functional diversity in the Amazon River. Sci Rep 9:1–13

    CAS  Google Scholar 

  • Araújo FG, de Azevedo MCC, Guedes GHS et al (2022) Assessment of changes in the ichthyofauna in a tropical reservoir in south-eastern Brazil: consequences of global warming? Ecol Freshw Fish 31:45–59

    Google Scholar 

  • Atencio-García V, Zaniboni-Filho E, Pardo-Carrasco S, Arias-Castellanos A (2003) Influência da primeira alimentação na larvicultura e alevinagem do yamú Brycon siebenthalae (Characidae). Acta Sci – Anim Sci 25(1):61–72

    Google Scholar 

  • Ávila-Simas S de, Reynalte-Tataje DA, Zaniboni-Filho E (2014) Pools and rapids as spawning and nursery areas for fish in a river stretch without floodplains. Neotrop Ichthyol 12:611–622

    Google Scholar 

  • Avise JC (1994) Molecular markers, natural history and evolution. Chapman & Hall, New York

    Google Scholar 

  • Baloch AR, Franek R, Tichopád T et al (2019) Dnd1 knockout in sturgeons by CRISPR/Cas9 generates germ cell free host for surrogate production. Animals 9:1–14

    Google Scholar 

  • Barbarossa V, Bosmans J, Wanders N et al (2021) Threats of global warming to the world’s freshwater fishes. Nat Commun 12:1–10

    Google Scholar 

  • Barletta M, Jaureguizar AJ, Baigun C et al (2010) Fish and aquatic habitat conservation in South America: a continental overview with emphasis on neotropical systems. J Fish Biol 76:2118–2176

    CAS  Google Scholar 

  • Barletta M, Cussac VE, Agostinho AA et al (2015) Fisheries ecology in South American river basins. In: Craig JF (ed) Freshwater fisheries ecology. Wiley-Blackwell, Oxford, pp 311–348

    Google Scholar 

  • Bartley DM, Rana K, Immink AJ (2001) The use of inter-specific hybrid in aquaculture and fisheries. Rev Fish Biol Fish 10:325–337

    Google Scholar 

  • Bastos WR, Dórea JG, Bernardi JVE et al (2015) Mercury in fish of the Madeira River (temporal and spatial assessment), Brazilian Amazon. Environ Res 140:191–197

    CAS  Google Scholar 

  • Baumgartner MT, Piana PA, Baumgartner G et al (2020) Storage or run-of-river reservoirs: exploring the ecological effects of dam operation on stability and species interactions of fish assemblages. Environ Manag 65:220–231

    Google Scholar 

  • Belmont RAF, Dias JHP, Boccardo SS (2004) Estocagem como estratégia de conservação de espécies da ictiofauna nos reservatórios de Jupiá e Três Irmãos, bacia do alto Paraná. Semin. Bras. Meio Ambient. e Responsab. Soc. Set. Elétrico, Recife

    Google Scholar 

  • Bem J, Ribolli J, Röpke C et al (2021) A cascade of dams affects fish spatial distributions and functional groups of local assemblages in a subtropical river. Neotrop Ichthyol 19:e200133

    Google Scholar 

  • Benfey TJ, Sutterlin AM (1984) Triploidy induced by heat shock and hydrostatic pressure in landlocked Atlantic salmon (Salmo salar L.). Aquaculture 36:359–367

    Google Scholar 

  • Bermudez DA, Prada NR, Kossowski C (1979) Ensayo sobre la reproducción de cachama Colossoma macropomum (Cuvier, 1818) em cautiverio. Universidad Centro Occidental. Escuela de Agronomia. Barquisimeto, Venezuela

    Google Scholar 

  • Bertolini RM, Lopez LS, do Nascimento NF et al (2020) Strategies for aquaculture and conservation of Neotropical catfishes based on the production of triploid Pimelodus maculatus. Aquac Int 28:127–137

    CAS  Google Scholar 

  • Blanchet S, Páez DJ, Bernatchez L et al (2008) An integrated comparison of captive-bred and wild Atlantic salmon (Salmo salar): implications for supportive breeding programs. Biol Conserv 141:1989–1999

    Google Scholar 

  • Bozza AN, Hahn NS (2010) Uso de recursos alimentares por peixes imaturos e adultos de espécies piscívoras em uma planície de inundação neotropical. Biota Neotrop 10:217–226

    Google Scholar 

  • Braga-Silva A, Galetti PM (2016) Evidence of isolation by time in freshwater migratory fish Prochilodus costatus (Characiformes, Prochilodontidae). Hydrobiologia 765:159–167

    Google Scholar 

  • Brinster RL, Zimmermann JW (1994) Spermatogenesis following male germ-cell transplantation. Proc Natl Acad Sci 91:11298–11302

    CAS  PubMed Central  Google Scholar 

  • Cabrita E, Robles V, Chereguini O et al (2003) Effect of different cryoprotectants and vitrificant solutions on the hatching rate of turbot embryos (Scophthalmus maximus). Cryobiology 47(3):204–213

    CAS  Google Scholar 

  • Cal RM, Vidal S, Gómez C et al (2006) Growth and gonadal development in diploid and triploid turbot (Scophthalmus maximus). Aquaculture 251:99–108

    CAS  Google Scholar 

  • Caldas JS, da Silva AL, de Sousa LM et al (2021) Effects of hormonal treatment on induced spermiation and semen quality in the endangered Amazonian fish Hypancistrus zebra (Siluriformes, Loricariidae). Aquaculture 533:736140

    CAS  Google Scholar 

  • Campton DE (2004) Sperm competition in Salmon Hatcheries: the need to institutionalize genetically benign spawning protocols. Trans Am Fish Soc 133:127789

    Google Scholar 

  • Carolsfeld J (1989) Reproductive physiology & induced breeding of fish as related to culture of Colossoma. In: Hernandez A (ed) Cultiv. Colossoma (SUDEPE – Colciências – CIID), Canada, pp 37–73

    Google Scholar 

  • Carolsfeld J, Harvey B, Ross C, Baer A (2003) Migratory fishes of South America. IDRC

    Google Scholar 

  • Castello L (2008) Lateral migration of Arapaima gigas in floodplains of the Amazon. Ecol Freshw Fish 17:38–46

    Google Scholar 

  • Centofante L, Bertollo LAC, Moreira-Filho O (2001) Comparative cytogenetics among sympatric species of Characidium (Pisces, Characiformes). Diversity analysis with the description of a ZW sex chromosome system and natural triploidy. Caryologia 54:253–260

    Google Scholar 

  • Chandra G, Fopp-Bayat D (2021) Trends in aquaculture and conservation of sturgeons: a review of molecular and cytogenetic tools. Rev Aquac 13:119–137

    Google Scholar 

  • Chaves MF, Torelli J, Targino CH, Crispim MC (2009) Dinâmica reprodutiva e estrutura populacional de Hoplias aff. malabaricus (Bloch, 1794) (Characiformes, Erythrinidae), em açude da Bacia do Rio Taperoá. Paraíba Biotemas 22:85–89

    Google Scholar 

  • Chehade C, Cassel M, Borella MI (2015) Induced reproduction in a migratory teleost species by water level drawdown. Neotrop Ichthyol 13:205–212

    Google Scholar 

  • Chistiakov D, Hellemans B, Volckaert F (2006) Microsatellites and their genomic distribution, evolution, function, and applications: a review with special reference to fish genetics. Aquaculture 255:1–29

    CAS  Google Scholar 

  • Ciruna B, Weidinger G, Knaut H et al (2002) Production of maternal-zygotic mutant zebrafish by germ-line replacement. Proc Natl Acad Sci 99:14919–14924

    CAS  PubMed Central  Google Scholar 

  • Coleman RA, Gauffre B, Pavlova A et al (2018) Artificial barriers prevent genetic recovery of small isolated populations of a low-mobility freshwater fish. Heredity 120:515–532

    CAS  PubMed Central  Google Scholar 

  • Correa SB, Winemiller KO, López-fernández H (2007) Evolutionary perspectives on seed consumption and dispersal by fishes. Bioscience 57:748–756

    Google Scholar 

  • Coser AML, Godinho HP, Ribeiro D (1984) Cryogenic preservation of spermatozoa from Prochilodus scrofa and Salminus brasiliensis. Aquaculture 37:387–390

    Google Scholar 

  • Coser AML, Godinho HP, Torquato VC (1987) Criopreservação do sêmen do peixe piau Leporinus silvestrii (Boulanger, 1902). Arq Bras Med Vet Zootec 39:37–42

    Google Scholar 

  • Cowx IG (1999) An appraisal of stocking strategies in the light of developing country constraints. Fish Manag Ecol 6(1):21–34

    Google Scholar 

  • Cowx IG (2002) Management and ecology of lake and reservoir fisheries. University of Hull, Oxford

    Google Scholar 

  • Cucherousset J, Olden JD (2011) Ecological impacts of non-native freshwater fishes. Fisheries 36:215–230

    Google Scholar 

  • Das S (2014) Biotechnological exploitation of marine animals. In: Verma AS, Singh ABT-AB (eds) Animal biotechnology models in discovery translation. Academic, San Diego, pp 541–556

    Google Scholar 

  • Duchesne P, Bernatchez L (2002) An analytical investigation of the dynamics of inbreeding in multi-generation supportive breeding. Conserv Genet 3:47–60

    Google Scholar 

  • Dudgeon D, Arthington AH, Gessner MO, Kawabata ZI, Knowler DJ, Lévêque C et al (2006) Freshwater biodiversity: importance, threats, status and conservation challenges. Biol Rev Camb Philos Soc 81:163–182

    Google Scholar 

  • Dunham RA (2004) Aquaculture and fisheries biotechnology: genetic approaches. CABI, Cambridge

    Google Scholar 

  • FAO (2010) The state of world fisheries and aquaculture – 2010 (SOFIA). FAO, ROMA

    Google Scholar 

  • FAO (2015) Food and Agriculture Organization of the United Nations. FAO’s Global Information System on Water and Agriculture

    Google Scholar 

  • Farlora R, Hattori-Ihara S, Takeuchi Y et al (2014) Intraperitoneal germ cell transplantation in the Nile Tilapia Oreochromis niloticus. Mar Biotechnol 16:309–320

    CAS  Google Scholar 

  • Fatira E, Havelka M, Labbé C, Depincé A, Pšenička M, Saito T (2019) A newly developed cloning technique in sturgeons; an important step towards recovering endangered species. Sci Rep 9(1):1–11

    CAS  Google Scholar 

  • Favé MJ, Duchesne P, Turgeon J (2008) Inbreeding dynamics in reintroduced, age-structured populations of highly fecund species. Conserv Genet 9:39–48

    Google Scholar 

  • Fernandes CC (1997) Lateral migration of fishes in Amazon floodplains. Ecol Freshw Fish 6:36–44

    Google Scholar 

  • Ferreira Filho VP, Guerra TP, Costa RR et al (2014) Ecomorphological patterns with diet of Plagioscion squamosissimus (Perciformes, Scianidae) in permanent reservoir in northeastern Brazil. Iheringia Ser Zool 104:134–142

    Google Scholar 

  • Ferreira DG, Souza-Shibatta L, Shibatta OA, Sofia SH, Carlsson J, Dias JHP et al (2017) Genetic structure and diversity of migratory freshwater fish in a fragmented Neotropical river system. Rev Fish Biol Fish 27:209–231

    Google Scholar 

  • Fiumera AC, Parker PG, Fuerst PA (2000) Effective population size and maintenance of genetic diversity in captive-bred populations of a lake victoria cichlid. Conserv Biol 14:886–892

    Google Scholar 

  • Fiumera AC, Porter BA, Looney G (2004) Maximizing offspring production while maintaining genetic diversity in supplemental breeding programs of highly fecund managed species. Conserv Biol 18:94–101

    Google Scholar 

  • Ford MJ (2002) Selection in captivity during supportive breeding may reduce fitness in the wild. Conserv Biol 16:815–825

    Google Scholar 

  • Ford JS, Myers RA (2008) A global assessment of salmon aquaculture impacts on wild salmonids. PLoS Biol 6:e33

    PubMed Central  Google Scholar 

  • Fornari DC, Ribeiro RP, Pedro D et al (2010) Freezing injuries in the embryos of Piaractus mesopotamicus. Zygote 19(4):345–350

    Google Scholar 

  • Francescon A, Libertini A, Bertotto D et al (2004) Shock timing in mitogynogenesis and tetraploidization of the European sea bass Dicentrarchus labrax. Aquaculture 236:201–209

    Google Scholar 

  • Franěk R, Tichopád T, Fučíková M, Steinbach C, Pšenička M (2019) Production and use of triploid zebrafish for surrogate reproduction. Theriogenology 140:33–43

    Google Scholar 

  • Franěk R, Kašpar V, Shah MA et al (2021) Production of common carp donor-derived offspring from goldfish surrogate broodstock. Aquaculture 534:736252

    Google Scholar 

  • Frankham R (1995) Effective population size/adult population size ratios in wildlife: a review. Genet Res 66:95–107

    Google Scholar 

  • Frankham R (2008) Genetic adaptation to captivity in species conservation programs. Mol Ecol 17:325–333

    Google Scholar 

  • Frankham R (2009) Genetic considerations in reintroduction programmes for top-order, terrestrial predators. In: Haywar MW, Somers MJ (eds) Reintroduction of top-order predators. Blackwell, pp 371–387

    Google Scholar 

  • Frankham R, Bradshaw CJA, Brook BW (2014) Genetics in conservation management: revised recommendations for the 50/500 rules, Red List criteria and population viability analyses. Biol Conserv 170:56–63

    Google Scholar 

  • Fraser DJ (2008) How well can captive breeding programs conserve biodiversity? A review of salmonids. Evol Appl 1:535–586

    PubMed Central  Google Scholar 

  • Fraser DJ, Weir LK, Bernatchez L (2011) Extent and scale of local adaptation in salmonid fishes: review and meta-analysis. Heredity 106:404–420

    CAS  PubMed Central  Google Scholar 

  • Fujihara R, Katayama N, Sadaie S et al (2022) Production of germ cell-less Rainbow Trout by dead end gene knockout and their use as recipients for germ cell transplantation. Mar Biotechnol 24:417–429

    CAS  Google Scholar 

  • Garcia De Leaniz C, Fleming IA, Einum S et al (2007) A critical review of adaptive genetic variation in Atlantic salmon: implications for conservation. Biol Rev 82:173–211

    CAS  Google Scholar 

  • Garcia S, Amaral Júnior H, Yasuy GS et al (2017) Tetraploidia em Rhamdia quelen (Quoy e Gaimard, 1824) por choque térmico duplo (Quente e Frio). Bol Inst Pesca 43:257–265

    Google Scholar 

  • Gasiunas G, Barrangou R, Horvath P et al (2012) Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. PNAS 109(39):E2579–E2586

    CAS  PubMed Central  Google Scholar 

  • Gilk SE, Wang I, Hoover CL et al (2004) Outbreeding depression in hybrids between spatially separated pink salmon. Environ Biol Fish 69:287–297

    Google Scholar 

  • Gillet C, Vauchez C, Haffray P (2001) Triploidy induced by pressure shock in Arctic charr (Salvelinus alpinus): growth, survival and maturation until the third year. Aquat Living Resour 14:327–334

    Google Scholar 

  • Gisbert E, Moreira C, Castro-Ruiz D et al (2014) Histological development of the digestive system of the Amazonian pimelodid catfish Pseudoplatystoma punctifer. Animal 8:1765–1776

    CAS  Google Scholar 

  • Gisbert E, Luz RK, Fernández I et al (2022) Development, nutrition, and rearing practices of relevant catfish species (Siluriformes) at early stages. Rev Aquac 14:73–105

    Google Scholar 

  • Godinho AL, Fonseca MT, Araújo LM (1994) The ecology of predator fish introductions: the case of Rio Doce valley lakes. SEGRAC, Belo Horizonte, pp 77–83

    Google Scholar 

  • Gogola TM, Daga VS, da Silva PRL et al (2010) Spatial and temporal distribution patterns of ichthyoplankton in a region affected by water regulation by dams. Neotrop Ichthyol 8:341–349

    Google Scholar 

  • Gogola TM, Piana PA, da Silva PRL et al (2022) Fish reproductive activity reveals temporal variations predominating spatial heterogeneity in maintaining high functional diversity of a Neotropical reservoir. Ecol Freshw Fish 31:154–163

    Google Scholar 

  • Gomes LE de O, Correa LB, Sá F et al (2017) The impacts of the Samarco mine tailing spill on the Rio Doce estuary, Eastern Brazil. Mar Pollut Bull 120:28–36

    Google Scholar 

  • Gonçalves LU, França LA, Epifânio CM et al (2019) Ostracoda impairs growth and survival of Arapaima gigas larvae. Aquaculture 505:344–350

    Google Scholar 

  • Goodman D (2005) Selection equilibrium for hatchery and wild spawning fitness in integrated breeding programs. Can J Fish Aquat Sci 62:374–389

    Google Scholar 

  • Graf WL (2006) Downstream hydrologic and geomorphic effects of large dams on American rivers. Geomorphology 79(3–4):336–360

    Google Scholar 

  • Gratacap RL, Wargelius A, Edvardsen RB et al (2019) Potential of genome editing to improve aquaculture breeding and production. Trends Genet 35:672–684

    CAS  Google Scholar 

  • Guan M, Rawson DM, Zhang T (2008) Cryopreservation of zebrafish (Danio rerio) oocytes using improved controlled slow cooling protocols. Cryobiology 56:204–208

    CAS  Google Scholar 

  • Gurdon JB, Colman A (1999) The future of cloning. Nature 402:743–746

    CAS  Google Scholar 

  • Haffray P, Bruant JS, Facqueur JM et al (2005) Gonad development, growth, survival and quality traits in triploids of the protandrous hermaphrodyte gilthead seabream Sparus aurata (L.). Aquaculture 247:107–117

    CAS  Google Scholar 

  • Håkansson J, Jensen P (2005) Behavioural and morphological variation between captive populations of red junglefowl (Gallus gallus) – possible implications for conservation. Biol Conserv 122:431–439

    Google Scholar 

  • Hallerman E (2008) Application of risk analysis to genetic issues in aquaculture. In: Arthur JR, Subasinghe RP (eds) Understanding and applying risk analysis in aquaculture. FAO Fisher, pp 47–66

    Google Scholar 

  • Hamaratoǧlu F, Eroǧlu A, Toner M et al (2004) Cryopreservation of starfish oocytes. Cryobiology 50:38–47

    Google Scholar 

  • Harvey B, Carolsfeld J (1993) Induced breeding in tropical fish culture. International Development Research Centre

    Google Scholar 

  • Hashimoto DT, Senhorini JA, Foresti F et al (2012) Interspecific fish hybrids in Brazil: management of genetic resources for sustainable use. Rev Aquac 4:108–118

    Google Scholar 

  • Hashimoto DT, Prado FD do, Senhorini JA et al (2013) Detection of post-F1 fish hybrids in broodstock using molecular markers: approaches for genetic management in aquaculture. Aquac Res 44:876–884

    CAS  Google Scholar 

  • Hashimoto DT, Senhorini JA, Foresti F et al (2014) Genetic identification of F1 and post-F1 serrasalmid juvenile hybrids in Brazilian aquaculture. PLoS One 9:1–8

    Google Scholar 

  • Hayashi M, Ichida K, Sadaie S et al (2019) Establishment of novel monoclonal antibodies for identification of type A spermatogonia in teleosts. Biol Reprod 101:478–491

    Google Scholar 

  • Hermes-Silva S, Roza de Abreu M, Zaniboni-Filho E (2017) Two chemical marking procedures with Alizarin Red for piava Leporinus obtusidens (Valenciennes, 1837) juveniles. J Appl Ichthyol 33:130–132

    Google Scholar 

  • Hill MS, Zydlewski GB, Gale WL (2006) Comparisons between hatchery and wild steelhead trout (Oncorhynchus mykiss) smolts: physiology and habitat use. Can J Fish Aquat Sci 63:1627–1638

    CAS  Google Scholar 

  • Hoeinghaus DJ, Agostinho AA, Gomes LC et al (2009) Effects of river impoundment on ecosystem services of large tropical rivers: embodied energy and market value of artisanal fisheries. Conserv Biol 23:1222–1231

    Google Scholar 

  • Holt WV, Pickard AR, Prather RS (2004) Wildlife conservation and reproductive cloning. Reproduction 127:317–324

    CAS  Google Scholar 

  • Hou J, Fujimoto T, Saito T et al (2015) Generation of clonal zebrafish line by androgenesis without egg irradiation. Sci Rep 5(1):1–10

    Google Scholar 

  • Huergo GM, Zaniboni-Filho E (2006) Triploidy induction in Jundiá, Rhamdia quelen through hydrostatic pressure shock. J Appl Aquac 18:45–57

    Google Scholar 

  • Huergo GPCM, Zaniboni-Filho E, Baldisserotto B (2021) Gender manipulatiors and spawning aids. In: Baldisserotto B, Chong RSM (eds) Aquaculture pharmacology, 1st edn. Academic, London, pp 243–271

    Google Scholar 

  • Hulata G (2001) Genetic manipulations in aquaculture: a review of stock improvement by classical and modern technologies. Genetica 111:155–173

    CAS  Google Scholar 

  • Innes BH, Elliott NG (2006) Genetic diversity in a Tasmanian hatchery population of Atlantic salmon (Salmo salar L.) compared with its Canadian progenitor population. Aquac Res 37:563–569

    CAS  Google Scholar 

  • Jinek M, Chylinski K, Fonfara et al (2012) A programmable dual-RNA–guided DNA endonuclease in adaptive bacterial immunity. Science 337:816–822

    CAS  PubMed Central  Google Scholar 

  • Jomori RK, Carneiro DJ, Malheiros EB, Portella MC (2003) Growth and survival of pacu Piaractus mesopotamicus (Holmberg, 1887) juveniles reared in ponds or at different initial larviculture periods indoors. Aquaculture 221(1–4):277–287

    Google Scholar 

  • Jorgensen S, Tundisi JG, Tundisi TM (2013) Handbook of inland aquatic ecosystem management. CRC Press, Boca Raton

    Google Scholar 

  • Junk WJ, Bayley PB, Sparks RE (1989) The flood pulse concept in river-floodplain systems. In: Dodge DP (ed), Proceedings of the International Large River Symposium. Can Spec Publ Fish Aquat Sci 106:110–127

    Google Scholar 

  • Juanes F, Perez J, Garcia-Valquez E (2007) Reproductive strategies in small populations: using Atlantic salmon as a case study. J Fish Biol 16:468–475

    Google Scholar 

  • Kaufman L (1992) Catastrophic changes in species-rich freshwater ecosystems. The lessons of Lake Victoria. Bioscience 42:846–858

    Google Scholar 

  • Keefer CL (2008) Lessons learned from nuclear transfer (cloning). Theriogenology 69:48–54

    CAS  Google Scholar 

  • Khosla K, Kangas J, Liu Y et al (2020) Cryopreservation and laser nanowarming of zebrafish embryos followed by hatching and spawning. Avanc Bios 4(11):2000138

    CAS  Google Scholar 

  • Kincaid HL (1983) Inbreeding in fish populations used for aquaculture. Aquaculture 33:215–227

    Google Scholar 

  • Kirschbaum F (1984) Reproduction of weakly electric teleosts: just another example of convergent development? Environ Biol Fish 10:3–14

    Google Scholar 

  • Kise K, Yoshikawa H, Sato M et al (2012) Flow-cytometric isolation and enrichment of teleost type a spermatogonia based on light-scattering properties. Biol Reprod 86:1–12

    Google Scholar 

  • Kitchell JF, Schindler DE, Ogutu-Ohwayo R et al (1997) The Nile Perch in Lake Victoria: interactions between predation and fisheries. Ecol Appl 7:653–664

    Google Scholar 

  • Komen H, Thorgaard GH (2007) Androgenesis, gynogenesis and the production of clones in fishes: a review. Aquaculture 269:150–173

    Google Scholar 

  • Kraaijeveld-Smit FJL, Griffiths RA, Moore RD et al (2006) Captive breeding and the fitness of reintroduced species: a test of the responses to predators in a threatened amphibian. J Appl Ecol 43:360–365

    Google Scholar 

  • Lake PS, Palmer MA, Biro P et al (2000) Global change and the biodiversity of freshwater ecosystems: impacts on linkages between above-sediment and sediment biota. Bioscience 50:1099–1107

    Google Scholar 

  • Lanza RP, Cibelli JB, Blackwell C et al (2000) Extension of cell life-span and telomere length in animals cloned from senescent somatic cells. Science 288:665–669

    CAS  Google Scholar 

  • Latrubesse EM, Arima EY, Dunne T et al (2017) Damming the rivers of the Amazon basin. Nature 546(7658):363–369

    CAS  Google Scholar 

  • Leary RF, Allendorf FW, Knudsen KL (1985) Society for the study of evolution. Evolution (NY) 39:308–314

    Google Scholar 

  • Lee K-Y, Huang H, Ju B et al (2002) Cloned zebrafish by nuclear transfer from long-term-cultured cells. Nat Biotechnol 20:795–799

    CAS  Google Scholar 

  • Léger P, Bengston DA, Sorgeloos P et al (1987) The nutritional value of Artemia: a review. Artemia Res Its Appl 3:357–372

    Google Scholar 

  • Levin PS, Zabel RW, Williams JG (2001) The road to extinction is paved with good intentions: negative association of fish hatcheries with threatened salmon. Proc R Soc B Biol Sci 268:1153–1158

    CAS  Google Scholar 

  • Levy-Pereira N, Yasui GS, Evangelista MM et al (2020) In vivo phagocytosis and hematology in Astyanax altiparanae, a potential model for surrogate technology. Brazilian J Biol 80:336–344

    CAS  Google Scholar 

  • Lima FD (2003) Subfamily Bryconinae (Characins, tetras). In: Checklist of the freshwater fishes of South and Central America. EDIPUCRS, Porto Alegre, RS, pp 174–181

    Google Scholar 

  • Lima FT de, Reynalte-tataje DA, Zaniboni-filho E (2017) Effects of reservoirs water level variations on fish recruitment. Neotrop Ichthyol 15:1–10

    Google Scholar 

  • Linhart O, Rodina M, Flajshans M et al (2006) Studies on sperm of diploid and triploid tench, Tinca tinca (L.). Aquac Int 14:9–25

    Google Scholar 

  • Lobón-Cerviá J, Mazzoni R, Rezende CF (2016) Effects of riparian forest removal on the trophic dynamics of a Neotropical stream fish assemblage. J Fish Biol 89:50–64

    Google Scholar 

  • Lopera-Barrero NM, Vargas L, Nardez-Sirol R et al (2010) Genetic diversity and reproductive contribution of Brycon orbignyanus offspring in the semi-natural reproductive system, using microsatellites markers. Agrociencia 44:171–181

    Google Scholar 

  • Lopera-Barrero NM, Santos SCA, Castro PL et al (2019) Genetic diversity of Piracanjuba populations in fish stocking programs in the Tietê River, Brazil. Rev Colomb de Cien 32:139–149

    Google Scholar 

  • Lopes CA, Zaniboni-Filho E (2019) Mosaic environments shape the distribution of Neotropical freshwater ichthyoplankton. Ecol Freshw Fish 28:1–10

    Google Scholar 

  • Lowe-McConnell RH (1987) Ecological studies in tropical fish communities. Cambridge University Press, Cambridge

    Google Scholar 

  • Lujić J, Marinović Z, Bajec SS (2018) Interspecific germ cell transplantation: a new light in the conservation of valuable Balkan trout genetic resources? Fish Physiol Biochem 44:1487–1498

    Google Scholar 

  • Lynch M, O’Hely M (2001) Captive breeding and the genetic fitness of natural populations. Conserv Genet 2:363–378

    Google Scholar 

  • Machado CB, Braga-Silva A, Freitas PD et al (2022) Damming shapes genetic patterns and may affect the persistence of freshwater fish populations. Freshw Biol Biol 67:603–618

    Google Scholar 

  • Majhi SK, Hattori RS, Rahman SM, Suzuki T, Strüssmann CA (2009) Experimentally induced depletion of germ cells in sub-adult Patagonian pejerrey (Odontesthes hatcheri). Theriogenology 71(7):1162–1172

    Google Scholar 

  • Majhi SK, Hattori RS, Rahman SM, Strüssmann CA (2014) Surrogate production of eggs and sperm by intrapapillary transplantation of germ cells in cytoablated adult fish. PloS one 9(4):e95294

    Google Scholar 

  • Mai MG, Zaniboni Filho E (2005) The effect of storage age in external tanks in the larviculture performance of Salminus brasiliensis (Osteichthyes, Characidae). Acta Sci – Anim Sci 27(2):287–296

    Google Scholar 

  • Mastrochirico-Filho VA, Pazo F del, Hata ME et al (2019) Assessing genetic diversity for a pre-breeding program in Piaractus mesopotamicus by snps and ssrs. Genes 10:1–13

    Google Scholar 

  • Mastrochirico-Filho VA, Ariede RB, Freitas MV et al (2021) Development of a multi-species SNP array for serrasalmid fish Colossoma macropomum and Piaractus mesopotamicus. Sci Rep 11:1–11

    Google Scholar 

  • McGinnity P, Prodohl P, Ferguson A et al (2003) Fitness reduction and potential extinction of wild populations of Atlantic salmon, Salmo salar, as a result of interactions with escaped farm salmon. Proc R Soc B Biol Sci 270:2443–2450

    Google Scholar 

  • McPhee CP, Jones CM, Shanks SA (2004) Selection for increased weight at 9 months in redclaw crayfish (Cherax quadricarinatus). Aquaculture 237:131–140

    Google Scholar 

  • Milot E, Perrier C, Papillon L et al (2013) Reduced fitness of atlantic salmon released in the wild after one generation of captive breeding. Evol Appl 6:472–485

    Google Scholar 

  • Molony BW, Lenanton R, Jackson G et al (2003) Stock enhancement as a fisheries management tool. Rev Fish Biol Fish 13:409–432

    Google Scholar 

  • Motta NC, Egger RC, Monteiro KS et al (2022) Effects of melatonin supplementation on the quality of cryopreserved sperm in the neotropical fish Prochilodus lineatus. Theriogenology 179:14–21

    CAS  Google Scholar 

  • Mukai Y, Lim LS (2011) Larval rearing and feeding behavior of African Catfish, Clarias gariepinus under dark conditions. J Fish Aquat Sci 6:272–278

    Google Scholar 

  • Myers RA, Levin SA, Lande R et al (2004) Hatcheries and endangered Salmon. Science 303:3

    Google Scholar 

  • Nagoya H, Sato S, Ohta H (2010) Preservation of endangered salmonids using androgenesis. J Natl Taiwan Mus 14:71–78

    Google Scholar 

  • Nascimento NF do, Bertolini RM, Lopez LS et al (2021) Heat-induced triploids in Brycon amazonicus: a strategic fish species for aquaculture and conservation. Zygote 29(5):372–376

    Google Scholar 

  • Nascimento NF, Pereira-Santos M, Levy-Pereira N et al (2020a) High percentages of larval tetraploids in the yellowtail tetra Astyanax altiparanae induced by heat-shock: the first case in Neotropical characins. Aquaculture 520:734938

    Google Scholar 

  • Nascimento NF, Monzani PS, Pereira-Santos M et al (2020b) The first case of induced gynogenesis in Neotropical fishes using the yellowtail tetra (Astyanax altiparanae) as a model organism. Aquaculture 514:734432

    CAS  Google Scholar 

  • Neves PR, Ribeiro RP, Streit DP et al (2012) Injuries in pacu embryos (Piaractus mesopotamicus) after freezing and thawing. Zygote 22:25–31

    Google Scholar 

  • Nilsson C, Reidy CA, Dynesius M et al (2005) Fragmentation and flow regulation of the world’s large river systems. Science 308:405–408

    CAS  Google Scholar 

  • Ninhaus-Silveira A, Foresti F, Azevedo A et al (2009) Cryogenic preservation of embryos of Prochilodus lineatus (Valenciennes, 1836) (Characiformes; Prochilodontidae). Zygote 17:45–55

    CAS  Google Scholar 

  • Nunney L, Campbell KA (1993) Assessing minimum viable population size: demography meets population genetics. Trends Ecol Evol 8:234–239

    CAS  Google Scholar 

  • O’Connor JE, Duda JJ, Grant GE (2015) 1000 dams down and counting. Science 348:496–497

    Google Scholar 

  • O’Reilly P, Doyle R (2007) Live gene banking of endangered populations of Atlantic Salmon. In: Verspoor E, Stradmeyer L, Nielsen JL (eds) Atlantic Salmon Genetic Conservation Management. Wiley, pp 425–469

    Google Scholar 

  • Okutsu T, Suzuki K, Takeuchi Y et al (2006) Testicular germ cells can colonize sexually undifferentiated embryonic gonad and produce functional eggs in fish. PNAS 103:2725–2729

    CAS  PubMed Central  Google Scholar 

  • Okutsu T, Shikina S, Kanno M et al (2007) Production of trout offspring from Triploid Salmon parents. Science 317:1517

    CAS  Google Scholar 

  • Oliveira AMMS, Conte L, Cyrino JE (2004) Produção de characiformes autócones. In: Cyrino JEP, Urbinati EC, Fracalossi DM, Castagnolli N (eds) Tópicos especiais em Piscicultura de Água Doce Tropical Intensiva. TecArt, São Paulo, pp 217–238

    Google Scholar 

  • Oliveira EJ, Pádua JG, Zucchi MI et al (2006) Origin, evolution and genome distribution of microsatellites. Genet Mol Biol 29:294–307

    CAS  Google Scholar 

  • Oliveira DJ, Ashikaga FY, Foresti F et al (2017) Conservation status of the “Piracanjuba” Brycon orbignyanus (Valenciennes, 1850) (Characiformes, Bryconidae): basis for management programs. BioBrasil 7:18–33

    Google Scholar 

  • Oliveira FC, Kasai RYD, Fernandes CE et al (2022) Probiotic, prebiotic and synbiotics supplementation on growth performance and intestinal histomorphometry Pseudoplatystoma reticulatum larvae. J Appl Aquac 34:279–293

    Google Scholar 

  • Ortega H, Guerra H, Ramírez R (2007) The introduction of nonnative fishes into freshwater systems of Peru. In: Bert TM (ed) Ecological and genetic implications of aquaculture activities. Springer, Dordrecht, pp 247–278

    Google Scholar 

  • Palhares PC, Assis I de L, Machado GJ et al (2021) Sperm characteristics, peroxidation lipid and antioxidant enzyme activity changes in milt of Brycon orbignyanus cryopreserved with melatonin in different freezing curves. Theriogenology 176:18–25

    CAS  Google Scholar 

  • Pandian TJ, Kirankumar S (2003) Androgenesis and conservation of fishes. Curr Sci 85:917–931

    CAS  Google Scholar 

  • Pandit NP, Bhandari RK, Kobayashi Y (2015) High temperature-induced sterility in the female Nile tilapia, Oreochromis niloticus. Gen Comp Endocrinol 213:110–117

    CAS  Google Scholar 

  • Pelicice FM, Agostinho AA (2008) Fish-passage facilities as ecological traps in large neotropical rivers. Conserv Biol 22:180–188

    Google Scholar 

  • Pelicice FM, Agostinho AA (2009) Fish fauna destruction after the introduction of a non-native predator (Cichla kelberi) in a neotropical reservoir. Biol Invasions 11:1789–1801

    Google Scholar 

  • Pelicice FM, Vitule JRS, Lima Junior DP et al (2014) A serious new threat to Brazilian freshwater ecosystems: the naturalization of nonnative fish by decree. Conserv Lett 7(1):55–60

    Google Scholar 

  • Pelicice FM, Pompeu PS, Agostinho AA (2015) Large reservoirs as ecological barriers to downstream movements of neotropical migratory fish. Fish Fish 16:697–715

    Google Scholar 

  • Pelicice FM, Jean VMA, Mário RSV et al (2017) Neotropical freshwater fishes imperilled by unsustainable policies. Fish Fish 18(6):1119–1133

    Google Scholar 

  • Pereira dos Santos M, Yasui GS, Xavier PLP et al (2016) Morphology of gametes, post-fertilization events and the effect of temperature on the embryonic development of Astyanax altiparanae (Teleostei, Characidae). Zygote 24:795–807

    Google Scholar 

  • Pereira LHGG, Foresti F, Oliveira C et al (2009) Genetic structure of the migratory catfish Pseudoplatystoma corruscans (Siluriformes: Pimelodidae) suggests homing behaviour. Ecol Freshw Fish 18:215–225

    Google Scholar 

  • Pereira LS, Tencatt LFC, Dias RM (2017) Effects of long and short flooding years on the feeding ecology of piscivorous fish in floodplain river systems. Hydrobiologia 795:65–80

    Google Scholar 

  • Pereira TSB, Boscolo CNP, Moreira RG et al (2018) Leporinus elongatus induced spawning using carp pituitary extract or mammalian GnRH analogue combined with dopamine receptor antagonists. Anim Reprod 15:64–70

    PubMed Central  Google Scholar 

  • Peruzzi S, Chatain B, Saillant E et al (2004) Production of meiotic gynogenetic and triploid sea bass, Dicentrarchus labrax L. 1. Performances, maturation and carcass quality. Aquaculture 230:41–64

    Google Scholar 

  • Petrere Jr M, Agostinho AA, Okada EK, Júlio Jr HF (2002) Review of the fisheries in the Brazilian portion of the Paraná/Pantanal basin. Annu Rev Gt Lakes Fish Res 123–143

    Google Scholar 

  • Piferrer F, Benfey TJ, Donaldson EM (1994) Gonadal morphology of normal and sex-reversed triploid and gynogenetic diploid coho salmon (Oncorhynchus kisutch). J Fish Biol 45:541–553

    Google Scholar 

  • Piferrer F, Beaumont A, Falguière JC (2009) Polyploid fish and shellfish: production, biology and applications to aquaculture for performance improvement and genetic containment. Aquaculture 293:125–156

    Google Scholar 

  • Piorski NM, Sanches A, Carvalho-Costa LF et al (2008) Contribution of conservation genetics in assessing neotropical freshwater fish biodiversity. Braz J Biol 68:1039–1050

    CAS  Google Scholar 

  • Portella MC, Dabrowski K (2008) Diets, physiology, biochemistry and digestive tract development of freshwater fish larvae. In: Publishers ES (ed) Feeding and digestive functions of fishes. Science Publishers, Enfield, pp 227–279

    Google Scholar 

  • Porto-Foresti F, Hashimoto DT, Senhorini JA et al (2010) Hibridação em piscicultura: monitoramento e perspectivas. In: Baldisserotto B, Gomes LC (eds) Espécies Nativas para a Piscicultura no Brasil. Santa Maria, Editora UFSM, pp 589–606

    Google Scholar 

  • Poulos HM, Chernoff B (2017) Effects of dam removal on fish community interactions and stability in the Eightmile River System, Connecticut, USA. Environ Manag 59:249–263

    Google Scholar 

  • Povh JA, Ribeiro RP, Sirol RN et al (2008) Diversidade genética de pacu do Rio Paranapanema e do estoque de um programa de repovoamento. Pesqui Agropecu Bras 43:201–206

    Google Scholar 

  • Povh JA, Ribeiro RP, Lopera-Barrero NM et al (2011) Microsatellite analysis of pacu broodstocks used in the stocking program of Paranapanema River, Brazil. Sci Agric 68:308–313

    Google Scholar 

  • Prado FD do, Fernandez-Cebrián R, Hashimoto DT et al (2017) Hybridization and genetic introgression patterns between two South American catfish along their sympatric distribution range. Hydrobiologia 125:319–343

    Google Scholar 

  • Prado FD, Hashimoto DT, Foresti F (2012) Detection of hybrids and genetic introgression in wild stocks of two catfish species (Siluriformes: Pimelodidae). The impact of hatcheries in Brazil. Fish Res 125:300–305

    Google Scholar 

  • Price E (1999) Behavioural genetics and the process of animal domestication. Genet Behav Domest Anim 65:31–65

    Google Scholar 

  • Qin Z, Li Y, Su B et al (2016) Editing of the Luteinizing hormone gene to sterilize channel Catfish, Ictalurus punctatus, using a modified zinc finger nuclease technology with electroporation. Mar Biotechnol 18:255–263

    CAS  Google Scholar 

  • Quiñones RM, Grantham TE, Harvey BN et al (2015) Dam removal and anadromous salmonid (Oncorhynchus spp.) conservation in California. Rev Fish Biol Fish 25:195–215

    Google Scholar 

  • Rall WF (1993) Advances in the cryopreservation of embryos and prospects for application to the conservation of Salmonid Fishes. In: Cloud JG, Thorgaard GH (eds) Genetic conservation of salmonid fishes. Springer, Boston, pp 137–158

    Google Scholar 

  • Reynalte-Tataje DA, Nuñer APO, Nunes MC et al (2012) Spawning of migratory fish species between two reservoirs of the upper Uruguay river, Brazil. Neotrop Ichthyol 10:829–835

    Google Scholar 

  • Reynalte-Tataje DA, Lopes CA, Ávila-Simas S et al (2013) Artificial reproduction of neotropical fish: extrusion or natural spawning? Nat Sci 5:1–6

    Google Scholar 

  • Rhymer JM, Simberloff D (1996) Extinction by hybridization and introgression. Annu Rev Ecol Syst 27:83–109

    Google Scholar 

  • Ribolli J, Zaniboni-Filho E (2009) Individual contributions to pooled-milt fertilizations of silver catfish Rhamdia quelen. Neotrop Ichthyol 7:629–634

    Google Scholar 

  • Ribolli J, Hoeinghaus DJ, Johnson JA et al (2017) Isolation-by-time population structure in potamodromous Dourado Salminus brasiliensis in Southern Brazil. Conserv Genet 18:67–76

    Google Scholar 

  • Ribolli J, Zaniboni-Filho E, Machado CB, Carolina T et al (2021) Anthropogenic river fragmentation reduces long-term viability of the migratory fish Salminus brasiliensis (Characiformes: Bryconidae) populations. Neotrop Ichthyol 19:1–17

    Google Scholar 

  • Roques S, Berrebi P, Rochard E, Acolas ML (2018) Genetic monitoring for the successful re-stocking of a critically endangered diadromous fish with low diversity. Biol Conserv 221:91–102

    Google Scholar 

  • Rueda EC, Carriquiriborde P, Monzón AM et al (2013) Seasonal variation in genetic population structure of sabalo (Prochilodus lineatus) in the Lower Uruguay River. Genetica 141:401–407

    Google Scholar 

  • Ryman N, Ståhl G (1980) Genetic changes in hatchery stocks of Brown Trout (Salmo trutta). Can J Fish Aquat Sci 37:82–87

    Google Scholar 

  • Ryman N, Jorde PE, Laikre L (1995) Supportive breeding and variance effective population size. Conserv Biol 9:1619–1628

    Google Scholar 

  • Ryu JH, Xu L, Wong TT (2022a) Advantages, factors, obstacles, potential solutions, and recent advances of fish germ cell transplantation for aquaculture—a practical review. Animals 12(4):423

    PubMed Central  Google Scholar 

  • Ryu D, Kang BE, Park A et al (2022b) Machine learning-derived gut microbiome signature predicts fatty liver disease in the presence of insulin resistance. Scient Rep 12(1):21842

    Google Scholar 

  • Saber MH, Hallajian A (2014) Study of sex determination system in ship sturgeon, Acipenser nudiventris using meiotic gynogenesis. Aquac Int 22:273–279

    Google Scholar 

  • Saito T, Goto-Kazeto R, Arai K et al (2008) Xenogenesis in teleost fish through generation of germ-line chimeras by single primordial germ cell transplantation. Biol Reprod 78:159–166

    CAS  Google Scholar 

  • Saito T, Goto-Kazeto R, Fujimoto T (2010) Inter-species transplantation and migration of primordial germ cells in cyprinid fish. Int J Dev Biol 54:1481–1486

    Google Scholar 

  • Salonen A, Peuhkuri N (2006) The effect of captive breeding on aggressive behaviour of European grayling, Thymallus thymallus, in different contexts. Anim Behav 72:819–825

    Google Scholar 

  • Sato LS, Jorge PH, Mastrochirico-Filho VA et al (2020) Triploidy in tambaqui Colossoma macropomum identified by chromosomes of fish larvae. J Aquac Mar Biol 9:65–69

    Google Scholar 

  • Sawatari E, Shikina S, Takeuchi T et al (2007) A novel transforming growth factor-β superfamily member expressed in gonadal somatic cells enhances primordial germ cell and spermatogonial proliferation in rainbow trout (Oncorhynchus mykiss). Dev Biol 301:266–275

    CAS  Google Scholar 

  • Schork G, Zaniboni-Filho E (2017) Structure dynamics of a fish community over ten years of formation in the reservoir of the hydroelectric power plant in upper Uruguay River. Brazilian J Biol 77:710–723

    CAS  Google Scholar 

  • Schork G, Hermes-Silva S, Beux LF et al (2012) Diagnóstico da pesca artesanal na usina hidrelétrica de machadinho, alto Rio Uruguai – Brasil. Bol Inst Pesca 38:97–108

    Google Scholar 

  • Schork G, Hermes-Silva S, Zaniboni-Filho E (2013) Analysis of fishing activity in the Itá reservoir, Upper Uruguay River, in the period 2004–2009. Braz J Biol 73:559–571

    CAS  Google Scholar 

  • Seki S, Kusano K, Lee S et al (2017) Production of the medaka derived from vitrified whole testes by germ cell transplantation. Sci Rep 7:1–11

    CAS  Google Scholar 

  • Shinomiya A, Tanaka M, Kobayashi T et al (2000) The vasa-like gene, olvas, identifies the migration path of primordial germ cells during embryonic body formation stage in the medaka, Oryzias latipes. Develop Growth Differ 42:317–326

    CAS  Google Scholar 

  • Silva FSD de, Moreira RG, Orozco-Zapata CR et al (2007) Triploidy induction by cold shock in the South American catfish, Rhamdia quelen (Siluriformes) (Quoy & Gaimard, 1824). Aquaculture 272:110–114

    Google Scholar 

  • Silva M da, Matoso DA, Ludwig LAM et al (2011) Natural triploidy in Rhamdia quelen identified by cytogenetic monitoring in Iguaçu basin, southern Brazil. Environ Biol Fish 91:361–366

    Google Scholar 

  • Silva PA, Reynalte-Tataje DA, Evoy ZF (2012) Identification of fish nursery areas in a free tributary of an impoundment region, upper Uruguay River, Brazil. Neotrop Ichthyol 10:425–438

    Google Scholar 

  • Silva PS, Makrakis MC, Miranda LE et al (2015) Importance of reservoir tributaries to spawning of migratory fish in the Upper Paraná River. River Res Appl 31:313–322

    Google Scholar 

  • Silva MA, Costa GMJ, Lacerda SMSN et al (2016) Successful xenogeneic germ cell transplantation from jundia catfish (Rhamdia quelen) into adult nile tilapia (Oreochromis niloticus) testes. Gen Comp Endocrinol 230:48–56

    Google Scholar 

  • Sin AW (1974) Preliminary results on cryogenic preservation of sperm of silver carp (Hypophthalmichthys molitrix) and bighead carp (Aristichthys nobilis). Hong Kong Fish Bull 4:33–36

    Google Scholar 

  • Siqueira-Silva DH de, Santos Silva AP dos, Ninhaus-Silveira A et al (2015) Morphology of the urogenital papilla and its component ducts in Astyanax altiparanae Garutti & Britski, 2000 (Characiformes: Characidae). Neotrop Ichthyol 13:309–316

    Google Scholar 

  • Siqueira-Silva DH de, Santos Silva AP dos, Silva Costa R et al (2021) Preliminary study on testicular germ cell isolation and transplantation in an endangered endemic species Brycon orbignyanus (Characiformes: Characidae). Fish Physiol Biochem 47:767–776

    Google Scholar 

  • Siripattarapravat K, Busta A, Steibel JP et al (2009) Characterization and in vitro control of MPF activity in zebrafish eggs. Zebrafish 6:97–105

    CAS  Google Scholar 

  • Slanchev K, Stebler J, Cueva-Méndez G et al (2005) Development without germ cells: the role of the germ line in zebrafish sex differentiation. Proc Natl Acad Sci 102:4074–4079

    CAS  PubMed Central  Google Scholar 

  • Smith WS, Espindola ELG, Petrere M Jr, Rocha O (2003) Fishing modification due to dam, pollution and introduction fish species in the Tietê River, SP, Brazil, vol 60. WIT Transactions on Ecology and the Environment

    Google Scholar 

  • Snyder NFR, Derrickson SR, Beissinger SR et al (1996) Limitations of captive breeding in endangered species recovery. Conserv Biol 10:338–348

    Google Scholar 

  • Sonesson AK, Goddard ME, Meuwissen THE (2002) The use of frozen semen to minimize inbreeding in small populations. Genet Res 80:27–30

    Google Scholar 

  • Sønstebø JH, Borgstrøm R, Heun M (2007) Genetic structure of brown trout (Salmo trutta L.) from the Hardangervidda mountain plateau (Norway) analyzed by microsatellite DNA: a basis for conservation guidelines. Conserv Genet 8:33–44

    Google Scholar 

  • Souza CP de, Rodrigues-Filho CADS, Barbosa FAR et al (2021) Drastic reduction of the functional diversity of native ichthyofauna in a Neotropical lake following invasion by piscivorous fishes. Neotrop Ichthyol 19:1–18

    Google Scholar 

  • Souza Filho ED, Rocha PC, Comunello E et al (2004) Effects of the Porto Primavera Dam on physical environment of the downstream floodplain. The Upper Paraná River and its floodplain: physical aspects, ecology and conservation. Backhuys Publishers, Leiden, pp 55–74

    Google Scholar 

  • Streit DP Jr, Ribeiro RP, Moraes GV et al (2007) Sêmen de pacu (Piaractus mesopotamicus) submetido ao resfriamento ao longo do tempo com diferentes meios diluidores. Biociencias 13:178–187

    Google Scholar 

  • Takeuchi Y, Yoshizaki G, Takeuchi T (2001) Production of germ-line chimeras in rainbow trout by blastomere transplantation. Mol Reprod Dev 59:380–389

    CAS  Google Scholar 

  • Takeuchi Y, Yoshizaki G, Takeuchi T (2003) Generation of live fry from intraperitoneally transplanted primordial germ cells in rainbow trout. Biol Reprod 69:1142–1149

    CAS  Google Scholar 

  • Taranger GL, Carrillo M, Schulz RW et al (2010) Control of puberty in farmed fish. Gen Comp Endocrinol 165:483–515

    CAS  Google Scholar 

  • Tave D (1999) Inbreeding and brood stock management. Fisheries Technical Paper, Rome

    Google Scholar 

  • Taylor BW, Flecker AS, Hall RO Jr (2006) Loss of a harvested fish species disrupts carbon flow in a diverse tropical river. Science 313(5788):833–836

    CAS  Google Scholar 

  • Templeton AR (2001) Using phylogeographic analyses of gene trees to test species status and processes. Mol Ecol 10:779–791

    CAS  Google Scholar 

  • Tenhumberg B, Tyre AJ, Shea K, Possingham HP (2004) Linking wild and captive populations to maximize species persistence: optimal translocation strategies. Conserv Biol 18(5):1304–1314

    Google Scholar 

  • Theodorou K, Couvet D (2004) Introduction of captive breeders to the wild: harmful or beneficial? Conserv Genet 5:1–12

    Google Scholar 

  • Tiwary BK, Kirubagaran R, Ray AK (2004) The biology of triploid fish. Rev Fish Biol Fish 14:391–402

    Google Scholar 

  • Toledo-Filho S, Almeida-Toledo L, Foresti F et al (1992) Conservação genética de peixes em projetos de repovoamento de reservatórios. Cadernos de Ictiogenética

    Google Scholar 

  • Townsend CR (1996) Invasion biology and ecological impacts of brown trout Salmo trutta in New Zealand. Biol Conserv 78:13–22

    Google Scholar 

  • Tringali MD, Bert TM (1998) Risk to genetic effective population size should be an important consideration in fish stock-enhancement programs. Bull Mar Sci 62:641–659

    Google Scholar 

  • Tsai S, Lin C (2012) Advantages and applications of cryopreservation in fisheries science. Braz Arch Biol Technol 55:425–433

    Google Scholar 

  • Tsai S, Rawson DM, Zhang T (2009) Studies on chilling sensitivity of early stage zebrafish (Danio rerio) ovarian follicles. Cryobiology 58:279–286

    CAS  Google Scholar 

  • Valdez DM, Miyamoto A, Hara T (2005) Sensitivity to chilling of medaka (Oryzias latipes) embryos at various developmental stages. Theriogenology 64:112–122

    Google Scholar 

  • Vannote RL, Wayne Minshall G, Cummins KW (1980) The river continuum concept (Vannote et al. 1980). Can J Fish Aquat Sci 37:130–137

    Google Scholar 

  • Vega-Orellana OM, Fracalossi DM, Sugai JK (2006) Dourado (Salminus brasiliensis) larviculture: Weaning and ontogenetic development of digestive proteinases. Aquaculture 252(2–4):484–493

    Google Scholar 

  • Verdegem MCJ, Hilbrands AD, Boon JH (1997) Influence of salinity and dietary composition on blood parameter values of hybrid red tilapia, Oreochromis niloticus (Linnaeus) × O. mossambicus (Peters). Aquac Res 28:453–459

    Google Scholar 

  • Vila I, Pardo R, Scott S (2007) Freshwater fishes of the Altiplano. Aquat Ecosyst Heal Manag 10:201–211

    Google Scholar 

  • Vörösmarty CJ, McIntyre PB, Gessner MO et al (2010) Global threats to human water security and river biodiversity. Nature 467:555–561

    Google Scholar 

  • Wakamatsu Y, Ozato K (2002) Cloning of fish. In: Cibelli J, Lanza RP, Campbell KHS (eds) Principles of cloning. Academic, San Diego, p 287–II

    Google Scholar 

  • Wang J, Ryman N (2001) Genetic effects of multiple generations of supportive breeding. Conserv Biol 15:1619–1631

    Google Scholar 

  • Wargelius A, Leininger S, Skaftnesmo KO et al (2016) Dnd knockout ablates germ cells and demonstrates germ cell independent sex differentiation in Atlantic salmon. Sci Rep 6:1–8

    Google Scholar 

  • Wasko AP, Martins C, Oliveira C et al (2004) Genetic monitoring of the Amazonian fish matrinchã (Brycon cephalus) using RAPD markers: insights into supportive breeding and conservation programmes. J Appl Ichthyol 20:48–52

    CAS  Google Scholar 

  • Watson PF, Holt WV (2001) Cryobanking the genetic resource: wildlife conservation for the future? CRC Press

    Google Scholar 

  • WCD (2000) Dams and development: a new framework for decision-making: the report of the world commission on dams. Earthscan

    Google Scholar 

  • Weidinger G, Wolke U, Köprunner M (2002) Regulation of zebrafish primordial germ cell migration by attraction towards an intermediate target. Development 129:25–36

    Google Scholar 

  • Weingartner M, Zaniboni-Filho E, Ribolli J (2020) Biologia e cultivo do dourado In: Baldisserotto B (Org) Espécies nativas para piscicultura no Brasil. 3 ed. Santa Maria: Editora UFSM pp 201–228

    Google Scholar 

  • Whiteley AR, Fitzpatrick SW, Funk WC (2015) Genetic rescue to the rescue. Trends Ecol Evol 30:42–49

    Google Scholar 

  • Williams SE, Hoffman EA (2009) Minimizing genetic adaptation in captive breeding programs: a review. Biol Conserv 142:2388–2400

    Google Scholar 

  • Winemiller KO, McIntyre PB, Castello L et al (2016) Balancing hydropower and biodiversity in the Amazon, Congo, and Mekong. Science 351(6269):128–129

    CAS  Google Scholar 

  • Wong TT, Zohar Y (2015) Production of reproductively sterile fish: a mini-review of germ cell elimination technologies. Gen Comp Endocrinol 221:3–8

    CAS  Google Scholar 

  • Woynarovich E, Horváth L (1983) A propagação artificial de peixes de águas tropicais: manual de extensão. FAO/CODEVASF/CNPq

    Google Scholar 

  • Xu HY, Li MY, Gui JF (2010) Fish germ cells. Sci China Life Sci 53:435–446

    Google Scholar 

  • Yamaha E, Kazama-Wakabayashi M, Otani S et al (2001) Germ-line chimera by lower-part blastoderm transplantation between diploid goldfish and triploid crucian carp. Genetica 111:227–236

    CAS  Google Scholar 

  • Yano A, Suzuki K, Yoshizaki G (2008) Flow-cytometric isolation of testicular germ cells from rainbow trout (Oncorhynchus mykiss) carrying the green fluorescent protein gene driven by trout vasa regulatory regions. Biol Reprod 78:151–158

    CAS  Google Scholar 

  • Yasui GS, Senhorini JA, Shimoda E et al (2015) Improvement of gamete quality and its short-term storage: an approach for biotechnology in laboratory fish. Animal 9:464–470

    CAS  Google Scholar 

  • Yasui GS, Nakaghi LSO, Monzani PS et al (2020) Triploidization in the streaked prochilod Prochilodus lineatus inferred by flow cytometry, blood smears and karyological approaches. J Appl Ichthyol 36:339–344

    CAS  Google Scholar 

  • Ye H, Li CJ, Yue HM et al (2017) Establishment of intraperitoneal germ cell transplantation for critically endangered Chinese sturgeon Acipenser sinensis. Theriogenology 94:37–47

    Google Scholar 

  • Ye H, Takeuchi Y, Du H et al (2022) Spermatogonia from cryopreserved testes of critically endangered chinese sturgeon efficiently colonized and preferentially proliferated in the recipient gonads of yangtze sturgeon. Mar Biotechnol 24:136–150

    CAS  Google Scholar 

  • Yoshikawa H, Morishima K, Fujimoto T et al (2008) Ploidy manipulation using diploid sperm in the loach, Misgurnus anguillicaudatus: a review. J Appl Ichthyol 24:410–414

    Google Scholar 

  • Yoshizaki G, Lee S (2018) Production of live fish derived from frozen germ cells via germ cell transplantation endangered species cryopreservation of PGCs PGC isolation extinction regeneration. Stem Cell Res 29:103–110

    Google Scholar 

  • Yoshizaki G, Ichikawa M, Hayashi M et al (2010) Sexual plasticity of ovarian germ cells in rainbow trout. Development 137:1227–1230

    CAS  Google Scholar 

  • Yutaka T, Ryosuke Y, Goro Y (2020) Intraperitoneal germ cell transplantation technique in marine Teleosts. Reprod Aquat Anim 1:357–379

    Google Scholar 

  • Zaniboni-Filho E, Barbosa NDC (1996) Priming hormone administration to induce spawning of some Brazilian migratory fish. Rev Bras Biol 56:655–659

    Google Scholar 

  • Zaniboni-Filho E, Nuñer AP (2004) Fisiologia da reprodução e propagação artificial dos peixes. In: Cyrino JEP, Urbinati EC, Fracalossi DM et al (eds) Tópicos especiais em piscicultura de água doce tropical intensiva. TecArt, São Paulo, pp 45–73

    Google Scholar 

  • Zaniboni-Filho E, Schulz UH (2003) Migratory fishes of the Uruguay River. In: Migratory fishes of the South America: biology, social importance and conservation status. The World Bank, Washington, DC, pp 157–194

    Google Scholar 

  • Zaniboni-Filho E, Reynalte-Tataje D, Pires A (2008) Photoperiod influence on the cultivation of Steindachneridion scriptum (Pisces, Pimelodidae) Juvenile. Brazilian Arch Biol Technol 51:555–561

    Google Scholar 

  • Zaniboni-Filho E, Pedron JS, Ribolli J (2018) Reservoirs ecology opportunities and challenges for fish culture in Brazilian reservoirs: a review. Acta Limnol Bras 30:e302

    Google Scholar 

  • Zarfl C, Lumsdon AE, Tockner K (2015) A global boom in hydropower dam construction. Aquat Sci 77:161–170

    Google Scholar 

  • Zhang YZ, Zhang SC, Liu XZ et al (2003) Cryopreservation of flounder (Paralichthys olivaceus) sperm with a practical methodology. Theriogenology 60:989–996

    CAS  Google Scholar 

  • Ziober SR, Reynalte-Tataje DA, Zaniboni-Filho E (2015) The importance of a conservation unit in a subtropical basin for fish spawning and growth. Environ Biol Fish 98:725–737

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ribolli, J., Hashimoto, D.T., O’Sullivan, F.L.A., Zaniboni-Filho, E. (2023). Supplemental Technologies for Freshwater Fish Conservation. In: Galetti Jr., P.M. (eds) Conservation Genetics in the Neotropics. Springer, Cham. https://doi.org/10.1007/978-3-031-34854-9_12

Download citation

Publish with us

Policies and ethics