Skip to main content

Coarse-Grain Modelling Strategies

  • Chapter
  • First Online:
Computer Simulations in Molecular Biology

Part of the book series: Scientific Computation ((SCIENTCOMP))

  • 299 Accesses

Abstract

In this chapter, the computational coarse-grain modelling strategies are discussed. Besides, different coarse-grained models (CGMs) will be described.

The chapter aims to introduce the computational coarse-grain modelling strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • R. Alessandri, P.C.T. Souza, S. Thallmair, M.N. Melo, A.H. de Vries, S.J. Marrink, Pitfalls of the Martini model. J. Chem. Theory Comput. 15(10), 5448–5460 (2019)

    Article  Google Scholar 

  • R. Alessandri, J. Barnoud, A.S. Gertsen, I. Patmanidis, A.H. de Vries, P.C.T. Souza, S.J. Marrink, Martini 3 coarse-grained force field: small molecules. Adv. Theory Simul. 5, 2100391 (2022)

    Article  Google Scholar 

  • A. Atilgan, S. Durell, R. Jernigan, M. Demirel, O. Keskin, I. Bahar, Anisotropy of fluctuation dynamics of proteins with an elastic network model. Biophys. J . 80(1), 505–515 (2001)

    Article  Google Scholar 

  • I. Bahar, A.R. Atilgan, B. Erman, Direct evaluation of thermal fluctuations in protein using a single parameter harmonic potential. Folding Des. 2, 173–181 (1997)

    Article  Google Scholar 

  • N. Basdevant, D. Borgis, T. Ha-Duong, A coarse-grained protein-protein potential derived from an all-atom force field. J. Phys. Chem. B 111, 9390 (2007)

    Article  Google Scholar 

  • T. Bereau, M. Deserno, Generic coarse-grained model for protein folding and aggregation. J. Chem. Phys. 130, 235106 (2009)

    Article  ADS  Google Scholar 

  • H. Berman, K. Henrick, H. Nakamura, Announcing the worldwide Protein Data Bank. Nat. Struct. Mol. Biol. 10(12), 980 (2003)

    Article  Google Scholar 

  • C. Bouchiat, M.D. Wang, J.F. Allemand, T. Strick, S.M. Block, V. Croquette, Estimating the persistence length of a worm-like chain molecule from force-extension measurements. Biophys. J. 76, 409–413 (1999)

    Article  Google Scholar 

  • Z. Bryant, M.D. Stone, J. Gore, S.B. Smith, N.R. Cozzarelli, C. Bustamante, Structural transitions and elasticity from torque measurements on DNA. Nature 424, 338–341 (2003)

    Article  ADS  Google Scholar 

  • C. Bustamante, J.F. Marko, E.D. Siggia, S. Smith, Entropic elasticity of \(\lambda \)-phage DNA. Science 265, 1599–1600 (1994)

    Article  ADS  Google Scholar 

  • H.S. Chan, K.A. Dill, Polymer principles in protein structure and stability. Annu. Rev. Biophys. Biophys. Chem. 20(1), 447–490 (1991)

    Article  Google Scholar 

  • Y. Chebaro, S. Pasquali, P. Derreumaux, The coarse-grained OPEP force field for non-amyloid and amyloid proteins. J. Phys. Chem. B 116(30), 8741–8752 (2012)

    Article  Google Scholar 

  • N.Y. Chen, Z.Y. Su, C.Y. Mou, Effective potentials for folding proteins. Phys. Rev. Lett. 96, 078103 (2006)

    Article  ADS  Google Scholar 

  • M. Cheon, I. Chang, C.K. Hall, Extending the PRIME model for protein aggregation to all twenty amino acids. Proteins 78(14), 2950–2960 (2010)

    Article  Google Scholar 

  • C. Chipot, A. Pohorille (eds) Free energy calculations: Theory and Applications in Chemistry and Biology (Springer, 2007)

    Google Scholar 

  • C.D. Christ, A.E. Mark, W.F. van Gunsteren, Basic ingredients of free energy calculations: a review. J. Comput. Chem. 31(8), 1569–1582 (2010)

    Google Scholar 

  • D.H. de Jong, G. Singh, W.F.D. Bennett, C. Arnarez, T.A. Wassenaar, L.V. Schäfer, X. Periole, D.P. Tieleman, S.J. Marrink, Improved parameters for the martini coarse-grained protein force field. J. Chem. Theory Comput. 9, 687–697 (2013)

    Article  Google Scholar 

  • F. Ding, S.V. Buldyrev, N.V. Dokholyan, Folding Trp-cage to NMR resolution native structure using a coarse-grained protein model. Biophys. J . 88(1), 147–155 (2005)

    Article  Google Scholar 

  • K. Drukker, G. Wu, G.C. Schatz, Model simulations of DNA denaturation dynamics. J. Chem. Phys. 114, 579–590 (2001)

    Article  ADS  Google Scholar 

  • A. Emperador, O. Carrillo, M. Rueda, M. Orozco, Exploring the suitability of coarse-grained techniques for the representation of protein dynamics. Biophys. J . 95, 2127–2138 (2008)

    Article  Google Scholar 

  • E. Faraggi, P. Krupa, M.A. Mozolewska, A. Liwo, A. Kloczkowski, Reoptimized UNRES potential for protein model quality assessment. Genes 9, 601 (2018)

    Article  Google Scholar 

  • M. Fixman, J. Kovac, Modified gaussian model for rubber elasticity. 2 the wormlike chain. Macromolecules 15, 537–541 (1982)

    Google Scholar 

  • M. Fixman, J. Kovac, Polymer conformational statistics iii: Modified gaussian models of the stiff chains. J. Chem. Phys. 58, 1564–1568 (1973)

    Article  ADS  Google Scholar 

  • P.J. Flory, M. Gordon, N.G. McCrum, Statistical thermodynamics of random networks. Proc. R. Soc. Lond. Ser. A 351(1666), 351–380 (1976)

    Article  ADS  Google Scholar 

  • C. Guo, M.S. Cheung, H. Levine, D.A. Kessler, Mechanisms of co-operativity underlying sequence-independent \(\beta \)-sheet formation. J. Chem. Phys. 116, 4353–4365 (2002)

    Article  ADS  Google Scholar 

  • P.J. Hagerman, Flexibility of DNA. Ann. Rev. Biophys. Biophys. Chem. 17, 265–286 (1988)

    Article  Google Scholar 

  • T. Haliloglu, I. Bahar, B. Erman, Gaussian dynamics of folded proteins. Phys. Rev. Lett. 79(16), 3090 (1997)

    Article  ADS  Google Scholar 

  • R.D. Hills Jr., C.L. Brooks III., Insights from coarse-grained Gō models for protein folding and dynamics. Int. J. Mol. Sci. 10(3), 889–905 (2009)

    Article  Google Scholar 

  • K. Hinsen, Analysis of domain motions by approximate normal mode calculations. Proteins 33, 417–429 (1998)

    Article  Google Scholar 

  • A. Irbäck, F. Sjunnesson, S. Wallin, Hydrogen bonds, hydrophobicity forces and the character of the collapse transition. Proc. Natl. Acad. Sci. U.S.A. 97, 13614 (2000)

    Article  ADS  Google Scholar 

  • S. Izvekov, G.A. Voth, A multiscale coarse-graining method for biomolecular systems. J. Phys. Chem. B 109(7), 2469–73 (2005)

    Article  Google Scholar 

  • Z. Jarin, J. Newhouse, G.A. Voth, Coarse-grained force fields from the perspective of statistical mechanics: better understanding of the origins of a MARTINI hangover. J. Chem. Theory Comput. 17, 1170–1180 (2021)

    Article  Google Scholar 

  • J.A. Joseph, A. Reinhardt, A. Aguirre, P.Y. Chew, K.O. Russell, J.R. Espinosa, A. Garaizar, R.C. Guevara, Physics-driven coarse-grained model for biomolecular phase separation with near-quantitative accuracy. Nat. Comput. Sci. 1(11), 732–743 (2021)

    Article  Google Scholar 

  • H. Kamberaj, A theoretical model for the collective motion of proteins by means of principal component analysis. Cent. Eur. J. Phys. 9(1), 96–109 (2011)

    Google Scholar 

  • J.G. Kirkwood, Statistical mechanics of fluid mixtures. J. Chem. Phys. 3, 300 (1935)

    Article  ADS  MATH  Google Scholar 

  • T.A. Knotts, N. Rathore, D.C. Schwartz, J.J. de Pablo, A coarse grain model for DNA. J. Chem. Phys. 126(27), 084901 (2007)

    Article  ADS  Google Scholar 

  • P. Kynast, P. Derreumaux, B. Strodel, Evaluation of the coarse-grained OPEN force field for protein-protein docking. BMC Biophys. 9, 4 (2016)

    Article  Google Scholar 

  • L.D. Landau, E.M. Lifshitz (eds.), Course of Theoretical Physics, vol. 5, 3rd edn. (Pergamon Press, Oxford, 1980)

    Google Scholar 

  • M. Levitt, A simplified representation of protein conformations for rapid simulation of protein folding. J. Mol. Biol. 104(1), 59–107 (1976)

    Article  MathSciNet  Google Scholar 

  • M. Levitt, A. Warshel, Computer simulation of protein folding. Nature 253, 694–698 (1975)

    Article  ADS  Google Scholar 

  • A. Liwo, R. Kaźmierkiewicz, C. Czaplewski, M. Groth, S. Oldziej, R.J. Wawak, S. Rackovsky, M.R. Pincus, H.A. Scheraga, A united-residue force field for off-lattice protein-structure simulations. III. Origin of backbone hydrogen-bonding cooperativity in united-residue potentials. J. Comput. Chem. 19, 259–276 (1998)

    Google Scholar 

  • A. Liwo, S. Oldziej, M.R. Pincus, R.J. Wawak, S. Rackovsky, H.A. Scheraga, A united-residue force field for off-lattice protein-structure simulations. I. Functional forms and parameters of long-range side-chain interaction potentials from protein crystal data. J. Comput. Chem. 18(7), 849–873 (1997)

    Google Scholar 

  • A. Liwo, C. Czaplewski, J. Pillardy, H.A. Scheraga, Cumulant-based expressions for the multibody terms for the correlation between local and electrostatic interactions in the united-residue force field. J. Chem. Phys. 115, 2323 (2001)

    Article  ADS  Google Scholar 

  • A. Liwo, Y. He, H.A. Scheraga, Coarse-grained force-field: general folding theory. Phys. Chem. Chem. Phys. 13, 16890–16901 (2011)

    Article  Google Scholar 

  • A.A. Louis, Beware of density dependent pair potentials. J. Phys.: Condens. Matter 14, 9187 (2002)

    Google Scholar 

  • L. Lu, G.A. Voth, The multiscale coarse-graining method. VII. Free energy decomposition of coarse-grained effective potentials. J. Chem. Phys. 134, 224107 (2011)

    Google Scholar 

  • J.F. Marko, E.D. Siggia, Stretching DNA. Macromolecules 28, 8759–8770 (1995)

    Article  ADS  Google Scholar 

  • S.J. Marrink, A.H. de Vries, A.E. Mark, Coarse grained model for semiquantitative lipid simulations. J. Phys. Chem. B 108(2), 750–760 (2004)

    Article  Google Scholar 

  • S.J. Marrink, V. Corradi, P.C.T. Souza, H.I. Ingólfsson, D.P. Tieleman, M.S.P. Sansom, Computational modeling of realistic cell membranes. Chem. Rev. 119, 6184–6226 (2019)

    Article  Google Scholar 

  • Md I. Mahmood, A.B. Poma, K. Okazaki, Optimizing Gō-MARTINI Coarse-Grained Model for F-BAR Protein on Lipid Membrane. Front. Mol. Biosci. 8, 619381 (2021)

    Google Scholar 

  • B.M. Messer, M. Roca, Z.T. Chu, S. Vicatos, A.V. Kilshtain, A. Warshel, Multiscale simulations of protein landscapes: using coarse-grained models as reference potentials to full explicit models. Proteins 78(5), 1212–1227 (2010)

    Article  Google Scholar 

  • L. Monticelli, S.K. Kandasamy, X. Periole, R.G. Larson, D.P. Tieleman, S.J. Marrink, The MARTINI coarse-grained force field: extension to proteins. J. Chem. Theory Comput. 4, 819–834 (2008)

    Article  Google Scholar 

  • Y. Mu, Y.Q. Gao, Effects of hydrophobic and dipole-dipole interactions on the conformational transitions of a model polypeptide. J. Chem. Phys. 127(10), 105102 (2007)

    Article  ADS  Google Scholar 

  • H.D. Nguyen, C.K. Hall, Molecular dynamics simulations of spontaneous fabril formation by random-coil peptides. Proc. Natl. Acad. Sci. U.S.A. 101(46), 16180–16185 (2004)

    Article  ADS  Google Scholar 

  • W.G. Noid, Perspective: coarse-grained models for biomolecular systems. J. Chem. Phys. 139, 090901 (2013)

    Article  ADS  Google Scholar 

  • W.G. Noid, J.W. Chu, G.S. Ayton, V. Krishna, S. Izvekov, G.A. Voth, A. Das, H.C. Andersen, A rigorous bridge between atomistic and coarse-grained models. J. Chem. Phys. 128, 244114 (2008)

    Article  ADS  Google Scholar 

  • T. Odijk, Stiff chains and filaments under tension. Macromolecules 28(20), 7016–7018 (1995)

    Article  ADS  Google Scholar 

  • T.E. Ouldridge, A.A. Louis, J.P.K. Doye, DNA Nanotweezers studied with a coarse-grained model of DNA. Phys. Rev. Lett. 104, 178101 (2010)

    Article  ADS  Google Scholar 

  • J. Pfaendtner, D. Brabduardi, M. Parrinello, T.D. Pollard, G.A. Voth, Nucleotide-dependent conformational states of actin. Proc. Natl. Acad. Sci. U.S.A. 106, 12723–12728 (2009)

    Article  ADS  Google Scholar 

  • A. Rey, J. Skolnick, Comparison of lattice Monte Carlo dynamics and Brownian dynamics folding pathways of \(\alpha \)-helical harpins. Chem. Phys. 158(2–3), 199–219 (1991)

    Article  Google Scholar 

  • P. Rotkiewicz, J. Skolnick, Fast procedure for reconstruction of full-atom protein models from reduced representations. J. Comput. Chem. 29(9), 1460–1465 (2008)

    Article  Google Scholar 

  • M. Sales-Pardo, R. Guimerá, A.A. Moreira, J. Widow, L.A.N. Amaral, Mesoscopic modelling for nucleic acid chain dynamics. Phys. Rev. E 71, 051902 (2005)

    Article  ADS  Google Scholar 

  • E. Sambriski, D. Schwartz, J. de Pablo, A mesoscale model of DNA and its renaturation. Biophys. J. 96, 1675–1690 (2009)

    Article  ADS  Google Scholar 

  • M.G. Saunders, G.A. Voth, Coarse-graining of multiprotein ensemblies. Curr. Opin. Struct. Biol. 22(2), 144–150 (2012)

    Article  Google Scholar 

  • A. Savelyev, G.A. Papoian, Molecular renormalisation group coarse-graining of polymer chains: application to double-stranded DNA. Biophys. J. 96(10), 4044–4052 (2009)

    Article  ADS  Google Scholar 

  • A. Savelyev, G.A. Papoian, Chemically accurate coarse graining of double-stranded DNA. Proc. Natl. Acad. Sci. U.S.A. 107(47), 20340–5 (2010)

    Article  ADS  Google Scholar 

  • M. Sayar, B.C. Avşaroǧlu, A. Kabakçioǧlu, Twist-writhe partitioning in a coarse-grained DNA mini circle model. Phys. Rev. E 81, 041916 (2010)

    Article  ADS  Google Scholar 

  • J.A. Schellman, Flexibility of DNA. Biopolymers 13, 217–226 (1974)

    Article  Google Scholar 

  • F. Schmid, Toy amphiphiles on the computer: what can we learn from generic models? Macromol. Rapid Commun. 30, 741 (2009)

    Article  Google Scholar 

  • A.V. Sinitskiy, M.G. Saunders, G.A. Voth, Optimal number of coarse-grained sites in different components of large biomolecular complexes. J. Phys. Chem. B 116, 8363–8374 (2012)

    Article  Google Scholar 

  • S. Smith, L. Finzi, C. Bustamante, DNA molecules by using magnetic beads. Science 258, 1122–1126 (1992)

    Article  ADS  Google Scholar 

  • S. Smith, Y. Cui, C. Bustamante, Over-stretching B-DNA: the elastic response of individual double-stranded and single-stranded DNA molecules. Science 271, 795–799 (1996)

    Article  ADS  Google Scholar 

  • P.C.T. Souza, R. Alessandri, J. Barnoud, S. Thallmair, I. Faustino, F. Grünewald, I. Patmandis, H. Abdizadeh, B.M.H. Bruininks, T.A. Wassenaar, P.C. Kroon, J. Melcr, V. Nieto, V. Corradi, H.M. Khan, J. Domanski, M. Javanainen, H. Martinez-Seara, N. Reuter, R.R. Best, I. Vattulainen, L. Monticelli, X. Periole, D.P. Tieleman, A.H. de Vries, S.J. Marrink, Martini 3: a general purpose force field for coarse-grained molecular dynamics. Nat. Methods 18, 382–388 (2021)

    Article  Google Scholar 

  • F.W. Starr, F. Sciortino, Model of assembly and gelation of four-armed DNA dendrimers. J. Phys.: Condens. Matter 18, L347 (2006)

    Google Scholar 

  • M. Stepanova, Dynamics of essential collective motions in proteins: Theory. Phys. Rev. E 76(5), 051918 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  • F. Sterpone, S. Melchionna, P. Tuffery, S. Pasquali, N. Mousseau, T. Cragnolini, Y. Chebaro, J.F. Saint-Pierre, M. Kalimeri, A. Barducci, Y. Laurin, A. Tex, M. Baaden, P.H. Nguyen, P. Derreumaux, The OPEN coarse-grained protein model: from single molecules, amyloid formation, role of macromolecular crowding and hydrodynamics to RNA/DNA complexes. Chem. Soc. Rev. 43(13), 4871–4893 (2014)

    Article  Google Scholar 

  • F.H. Stillinger, H. Sakai, S. Torquato, Statistical mechanical models with effective potentials: definitions, applications, and thermodynamic consequences. J. Chem. Phys. 117, 288 (2002)

    Article  ADS  Google Scholar 

  • S. Takada, Z. Luthey-Schulten, P.G. Wolynes, Folding dynamics with nonadditive forces: a simulation study of a designed helical protein and a random heteropolymer. J. Chem. Phys. 110, 11616 (1999)

    Article  ADS  Google Scholar 

  • H. Taketomi, Y. Ueda, N. Go, Studies on protein folding, unfolding and fluctuations by computer simulations. I. The effect of specific amino acid sequence represented by specific inter-unit interactions. Int. J. Pept. Protein Res. 7, 445–459 (1975)

    Google Scholar 

  • S. Tanaka, H.A. Scheraga, Medium- and long-range interaction parameters between amino acids for predicting three-dimensional structures of proteins. Macromolecules 9(6), 945–950 (1976)

    Article  ADS  Google Scholar 

  • M.M. Tirion, Large amplitude elastic motions in proteins from a single-parameter. Atomic Anal. Phys. Rev. Lett. 77, 1905–1908 (1996)

    Article  ADS  Google Scholar 

  • V. Tozzini, Coarse grained models for proteins. Curr. Opin. Struc. Biol. 15, 144–150 (2005)

    Article  Google Scholar 

  • V. Tozzini, W. Rocchia, J.A. McCammon, Mapping all-atom models onto one-bead coarse grained models: general properties and applications to a minimal polypeptide model. J. Chem. Theory Comput. 2(3), 667–673 (2006)

    Article  Google Scholar 

  • F. Trovato, V. Tozzini, Supercooling and local denaturation of plasmids with a minimalist DNA model. J. Phys. Chem. B 112(42), 13197–200 (2008)

    Article  Google Scholar 

  • J.J. Uusitalo, H.I. Ingólesson, P. Akhshi, D.P. Tielman, S. Marrink, Martini coarse-grained force field: extension to DNA. J. Chem. Theory Comput. 11, 393–3945 (2015)

    Article  Google Scholar 

  • A.E. van Giessen, J.E. Straub, Monte Carlo simulations of polyalanine using a reduced model and statistics-based interaction potentials. J. Chem. Phys. 122, 024904 (2005)

    Article  ADS  Google Scholar 

  • A.V. Vologodskii, Exploring polymer dynamics with single DNA molecules. Macromolecules 27, 5623–5625 (1994)

    Article  ADS  Google Scholar 

  • G.A. Voth (ed.), Coarse-Graining of Condensed Phase and Biomolecular Systems (CRC Press, Boca Raton, FL, 2008)

    Google Scholar 

  • M.D. Wang, H. Yin, R. Landick, J. Gelles, S.M. Block, Stretching DNA with optical tweezers. Biophys. J . 72, 1335–1346 (1997)

    Article  Google Scholar 

  • M. Zacharias, Protein-protein docking with a reduced protein model accounting for side-chain flexibility. Protein Sci. 12, 1271 (2003)

    Article  Google Scholar 

  • J. Zhang, M. Muthukumar, Simulations of nucleation and elongation of amyloid fibrils. J. Chem. Phys. 130, 035102 (2009)

    Article  ADS  Google Scholar 

  • R. Zwanzig, Memory effects in irreversible thermodynamics. Phys. Rev. 124, 983 (1961)

    Article  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiqmet Kamberaj .

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kamberaj, H. (2023). Coarse-Grain Modelling Strategies. In: Computer Simulations in Molecular Biology. Scientific Computation. Springer, Cham. https://doi.org/10.1007/978-3-031-34839-6_7

Download citation

Publish with us

Policies and ethics