Skip to main content

Classical Molecular Dynamics Simulations of Biomolecules

  • Chapter
  • First Online:
Computer Simulations in Molecular Biology

Part of the book series: Scientific Computation ((SCIENTCOMP))

  • 287 Accesses

Abstract

Molecular dynamics simulations at atomic level have widely been used in studying macromolecular systems, such as protein, DNA and their complexes, mainly because the laws of classical statistical mechanics can largely govern the processes involved at the experimental conditions. Macromolecules, such as proteins, are characterised by dynamics with time scales ranging from nanoseconds to milliseconds. In this chapter, we discuss the molecular dynamics method as one of the most common computer simulation approach used to study molecular systems. In particular, we will present the equations of motion in the most relevant statistical ensembles used in the molecular dynamics simulations of molecular systems.

The chapter aims to introduce the classical molecular dynamics simulations of biomolecules in main statistical ensembles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    www.rcsb.org.

References

  • M.P. Allen, D.J. Tildesley, Computer Simulation of Liquids (Oxford University Press, 1989)

    Google Scholar 

  • H.C. Andersen, Molecular dynamics simulations at constant pressure and/or temperature. J. Chem. Phys. 72, 2384–2393 (1980)

    Article  ADS  Google Scholar 

  • H.J.C. Berendsen, J.P.M. Postma, W.F. van Gunsteren, A. DiNola, J.R. Haak, Molecular dynamics with coupling to an external bath. J. Chem. Phys. 81, 3684–3690 (1984)

    Article  ADS  Google Scholar 

  • B.R. Brooks, C.L. Brooks, A.D. MacKerell, L. Nilsson, R.J. Petrella, B. Roux, Y. Won, G. Archontis, C. Bartels, S. Boresch, A. Caflisch, L. Caves, Q. Cui, A.R. Dinner, M. Feig, S. Fischer, J. Gao, M. Hodoscek, W. Im, K. Kuczera, T. Lazaridis, J. Ma, V. Ovchinnikov, E. Paci, R.W. Pastor, C.B. Post, J.Z. Pu, M. Schaefer, B. Tidor, R.M. Venable, H.L. Woodcock, X. Wu, W. Yang, D.M. York, M. Karplus, Charmm: the bimolecular simulation program. J. Comput. Chem. 30(10), 1545–1614 (2009)

    Article  Google Scholar 

  • T. Cagin, B.M. Pettitt, Molecular dynamics with a variable number of molecules. Mol. Phys. 72, 169 (1991)

    Article  ADS  Google Scholar 

  • T. Cagin, B.M. Pettitt, Grand molecular dynamics: a method for open systems. Mol. Simul. 6, 5 (1991)

    Article  Google Scholar 

  • A.W. Duster, C. Hung Wang, H. Lin, Adaptive QM/MM for molecular dynamics simulations: 5. On the energy-conserved permuted adaptive-partitioning schemes. Molecules 23, 2170 (2018)

    Google Scholar 

  • M.J. Field, P.A. Bash, M. Karplus, A combined quantum mechanical and molecular mechanical potential for molecular dynamics simulations. J. Comput. Chem. 11, 700 (1990)

    Article  Google Scholar 

  • J. Gao, Potential of mean force for the isomerization of DMF in aqueous solution: a Monte Carlo QM/MM simulation study. J. Am. Chem. Soc. 115, 2930 (1993)

    Article  Google Scholar 

  • J. Gao, Hybrid quantum and molecular mechanical simulations an alternative avenue to solvent effects in organic chemistry. Acc. Chem. Res. 29, 298 (1996)

    Article  Google Scholar 

  • T.S. Hofer, S.P. de Visser, Editorial: quantum mechanical/molecular mechanical approaches for the investigation of chemical systems - recent developments and advanced applications. Front. Chem. 6, 357 (2018)

    Article  ADS  Google Scholar 

  • W.G. Hoover, Canonical dynamics: equilibrium phase-space distributions. Phys. Rev. A 31, 1695 (1985)

    Article  ADS  Google Scholar 

  • J. Ji, B.M. Pettitt, Phase transitions of water at constant excess chemical potential. An application of grand molecular dynamics. Mol. Phys. 82, 67–83 (1994)

    Google Scholar 

  • J. Ji, T. Cagin, B.M. Pettitt, Dynamic simulations of water at constant chemical potential. J. Chem. Phys. 96, 1333 (1992)

    Article  ADS  Google Scholar 

  • H. Kamberaj, Molecular Dynamics Simulations In Statistical Physics: Theory And Applications Computational Series. (Springer Nature, Switzerland, 2020)

    Book  Google Scholar 

  • M. Karplus, J.A. McCammon, Molecular dynamics simulations of biomolecules. Nat. Struct. Biol. 9(9), 646–652 (2002). With corrigenda in Nat. Struct. Biol. 9(10), 788 (2002)

    Google Scholar 

  • C. Lo, B.J. Palmer, Alternative Hamiltonian for molecular dynamics simulations in the grand canonical ensemble. J. Chem. Phys. 102, 925 (1995)

    Article  ADS  Google Scholar 

  • G.C. Lynch, B.M. Pettitt, Grand canonical ensemble molecular dynamics simulations: reformulation of extended system dynamics approaches. J. Chem. Phys. 107, 8594 (1997)

    Article  ADS  Google Scholar 

  • G.J. Martyna, D.J. Tobias, M.L. Klein, Constant pressure molecular dynamics algorithms. J. Chem. Phys. 101(5), 4177–4189 (1994)

    Article  ADS  Google Scholar 

  • G.J. Martyna, M.E. Tuckerman, D.J. Tobias, M.L. Klein, Explicit reversible integrators for extended systems dynamics. Mol. Phys. 87(5), 1117–1157 (1996)

    Article  ADS  Google Scholar 

  • S. Melchionna, G. Ciccotti, B.L. Holian, Hoover NPT dynamics for systems varying in shape and size. Mol. Phys. 78, 533–544 (1993)

    Article  ADS  Google Scholar 

  • S. Nosé, A molecular dynamics method for simulation in the canonical ensemble. Mol. Phys. 52, 255–268 (1984)

    Article  ADS  Google Scholar 

  • S. Nosé, A molecular dynamics method for simulation in the canonical ensemble. Mol. Phys. 52, 255 (1984)

    Article  ADS  Google Scholar 

  • S. Nosé, A unified formulation of the constant temperature molecular dynamics methods. J. Chem. Phys. 81, 511–519 (1984)

    Article  ADS  Google Scholar 

  • S. Nosé, Constant temperature molecular dynamics methods. Prog. Theor. Phys. Supp. 103, 1–46 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  • S. Nosé, M.L. Klein, Constant pressure molecular dynamics for molecular systems. Mol. Phys. 50, 1055–1076 (1983)

    Article  ADS  Google Scholar 

  • B.J. Palmer, C. Lo, Molecular dynamics implementation of the Gibbs-Ensemble calculation. J. Chem. Phys. 101, 10899–10907 (1994)

    Article  ADS  Google Scholar 

  • R.W. Pastor, Techniques and Applications of Langevin Dynamics Simulations In The Molecular Dynamics of Liquid Crystals. (Kluwer Academic, Dordrecht, The Netherlands, 1994)

    Book  Google Scholar 

  • S. Pezeshki, H. Lin, Molecular dynamics simulations of ion solvation by flexible-boundary QM/MM: on-the-fly partial charge transfer between QM and MM subsystems. J. Comp. Chem. 35, 1778–1788 (2014)

    Article  Google Scholar 

  • J.P. Ryckaert, G. Ciccotti, H.J.C. Berendsen, Numerical integration of the Cartesian equations of motion of a system with constraints: molecular dynamics of \(n\)-alkanes. J. Comput. Phys. 23, 327–341 (1977)

    Article  ADS  Google Scholar 

  • A. Warshel, Molecular dynamics simulations of biological reactions. Acc. Chem. Res. 35, 385 (2002)

    Article  Google Scholar 

  • A. Warshel, M. Levitt, Theoretical studies of enzymic reactions: dielectric, electrostatic and steric stabilization of the carbonium ion in the reaction of lysozyme. J. Mol. Biol. 103, 227–249 (1976)

    Article  Google Scholar 

  • S. Weerasinghe, B.M. Pettitt, Ideal chemical potential contribution in molecular dynamics simulations of the grand canonical ensemble. Mol. Phys. 82, 897 (1994)

    Article  ADS  Google Scholar 

  • K. Zare, V. Szebehely, Time transformations in the extended phase-space. Celest. Mech. 11, 469 (1975)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiqmet Kamberaj .

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kamberaj, H. (2023). Classical Molecular Dynamics Simulations of Biomolecules. In: Computer Simulations in Molecular Biology. Scientific Computation. Springer, Cham. https://doi.org/10.1007/978-3-031-34839-6_5

Download citation

Publish with us

Policies and ethics