Skip to main content

Standard Molecular Dynamics Simulations of Biological Systems

  • Chapter
  • First Online:
Computer Simulations in Molecular Biology

Part of the book series: Scientific Computation ((SCIENTCOMP))

  • 273 Accesses

Abstract

This chapter describes how to run standard MD simulations of a biological system in explicit solvent using different statistical ensembles and numerical integrators.

The chapter aims to show running standard molecular dynamics simulations of biological systems in explicit solvent.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • H.D.I. Abarbanel, M.B. Kennel, Local false nearest neighbors and dynamical dimensions from observed chaotic data. Phys. Rev. E 47(5), 3057–3068 (1993)

    Article  ADS  Google Scholar 

  • B.R. Brooks, C.L. Brooks, A.D. MacKerell, L. Nilsson, R.J. Petrella, B. Roux, Y. Won, G. Archontis, C. Bartels, S. Boresch, A. Caflisch, L. Caves, Q. Cui, A.R. Dinner, M. Feig, S. Fischer, J. Gao, M. Hodoscek, W. Im, K. Kuczera, T. Lazaridis, J. Ma, V. Ovchinnikov, E. Paci, R.W. Pastor, C.B. Post, J.Z. Pu, M. Schaefer, B. Tidor, R.M. Venable, H.L. Woodcock, X. Wu, W. Yang, D.M. York, M. Karplus, Charmm: the bimolecular simulation program. J. Comput. Chem. 30(10), 1545–1614 (2009)

    Article  Google Scholar 

  • C.J. Cellucci, A.M. Albano, P.E. Rapp, Comparative study of embedding methods. Phys. Rev. E 67, 066210–13 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  • J.D. Chodera, W.C. Swope, J.W. Pitera, C. Seok, K.A. Dill, Use of the weighted histogram analysis method for the analysis of simulated and parallel tempering simulations. J. Chem. Theory Comput. 3, 26–41 (2007)

    Article  Google Scholar 

  • D. Gencaga, K.H. Knuth, W.B. Rossow, A recipe for the estimation of information flow in a dynamical system. Entropy 17, 438–470 (2015)

    Article  ADS  Google Scholar 

  • P. Grassberger, Finite sample corrections to entropy and dimension estimates. Phys. Lett. A 128, 369–373 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  • P. Grassberger, I. Procaccia, Measuring the strangeness of strange attractors. Phys. D 189, 9 (1983)

    MathSciNet  MATH  Google Scholar 

  • T. Ichiye, M. Karplus, Collective motions in proteins: a covariance analysis of atomic fluctuations in molecular dynamics and normal modes simulations. Proteins 11(3), 205–217 (1991)

    Article  Google Scholar 

  • H. Kamberaj, A theoretical model for the collective motion of proteins by means of principal component analysis. Cent. Eur. J. Phys. 9(1), 96–109 (2011)

    Google Scholar 

  • H. Kamberaj, Molecular Dynamics Simulations in Statistical Physics: Theory and Applications Computational Series. (Springer Nature, Switzerland, 2020)

    Book  Google Scholar 

  • H. Kamberaj, A. van der Vaart, Extracting the causality of correlated motions from molecular dynamic simulations. Biophys. J . 97, 1747–1755 (2009)

    Article  Google Scholar 

  • M.B. Kennel, R. Brown, H.D.I. Abarbanel, Determining embedding dimension for phase-space reconstruction using a geometrical construction. Phys. Rev. A 45, 3403–3411 (1992)

    Article  ADS  Google Scholar 

  • G.J. Martyna, M.E. Tuckerman, D.J. Tobias, M.L. Klein, Explicit reversible integrators for extended systems dynamics. Mol. Phys. 87(5), 1117–1157 (1996)

    Article  ADS  Google Scholar 

  • D. Nebiu, H. Kamberaj, Symbolic information flow measurement (SIFM): a software for measurement of information flow using symbolic analysis. SoftwareX 11, 100470 (2020)

    Article  Google Scholar 

  • L. Noakes, The Takens embedding theorem. Int. J. Bifurc. Chaos Appl. Sci. Eng. 1, 867–872 (1991)

    Google Scholar 

  • N.H. Packard, J.P. Crutchfield, J.D. Farmer, R.S. Shaw, Geometry from a time series. Phys. Rev. Lett. 45(9), 712–716 (1980)

    Article  ADS  Google Scholar 

  • M. Prokopenko, J.T. Lizier, Transfer entropy and transient limits of computation. Sci. Rep. 4, 5394 (2014)

    Article  ADS  Google Scholar 

  • M. Prokopenko, J.T. Lizier, D.C. Price, On thermodynamic interpretation of transfer entropy. Entropy 15, 524–543 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  • J.P. Ryckaert, G. Ciccotti, H.J.C. Berendsen, Numerical integration of the Cartesian equations of motion of a system with constraints: molecular dynamics of \(n\)-alkanes. J. Comput. Phys. 23, 327–341 (1977)

    Article  ADS  Google Scholar 

  • T. Sauer, J.A. Yorke, M. Casdagli, Embedology. J. Stat. Phys. 65, 579–616 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • T.D. Schneider, Theory of molecular machines. II. Energy dissipation from molecular machines. J. Theor. Biol. 148, 125–137 (1991)

    Google Scholar 

  • T. Schreiber, Measuring information transfer. Phys. Rev. Lett. 85, 461–464 (2000)

    Article  ADS  Google Scholar 

  • M. Staniek, K. Lehnertz, Symbolic transfer entropy. Phys. Rev. Lett. 100, 158101 (2008)

    Article  ADS  Google Scholar 

  • F. Takens, Detecting Strange Attractors in Fluid Turbulence Dynamical Systems and Turbulence. (Springer, Berlin, 1981)

    MATH  Google Scholar 

  • M.C. Thomas, A.T. Joy, Elements of Information Theory (Wiley Inc, Hoboken, 2006)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiqmet Kamberaj .

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kamberaj, H. (2023). Standard Molecular Dynamics Simulations of Biological Systems. In: Computer Simulations in Molecular Biology. Scientific Computation. Springer, Cham. https://doi.org/10.1007/978-3-031-34839-6_12

Download citation

Publish with us

Policies and ethics