Skip to main content

Quantum Mechanics Computer Simulations

  • Chapter
  • First Online:
Computer Simulations in Molecular Biology

Part of the book series: Scientific Computation ((SCIENTCOMP))

  • 282 Accesses

Abstract

In this chapter, we introduce the quantum mechanics molecular models and quantum mechanics molecular dynamics simulations of molecules and biomolecular systems. Besides, the numerical aspects of the non-relativistic electronic structure of molecular systems will be discussed.

The chapter aims to introduce different quantum mechanics computer simulation methods and numerical molecular electronic calculations. In particular, the focus is on quantum mechanics models for molecular dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • P. Atkins, R. Friedman, Molecular Quantum Mechanics, 4th edn. (Oxford University Press, 2005)

    Google Scholar 

  • L. Bocquet, Nanofluidics coming of age. Nat. Mater. 19, 254–256 (2020)

    Article  ADS  Google Scholar 

  • M. Born, R. Oppenheimer, Zur Quantentheorie der Molekeln. Ann. Phys. 389, 457–484 (1927)

    Google Scholar 

  • O. Bünermann, H. Jiang, Y. Dorenkamp, A. Kandratsenka, S.M. Janke, D.J. Auerbach, A.M. Wodtke, Electron-hole pair excitation determines the mechanism of hydrogen atom adsorption. Science 350, 1346–1349 (2015)

    Article  ADS  Google Scholar 

  • R. Car, M. Parrinello, Unified approach for molecular dynamics and density-functional theory. Phys. Rev. Lett. 55, 2471–2474 (1985)

    Article  ADS  Google Scholar 

  • F. Ding, J.J. Goings, H. Liu, D.B. Lingerfelt, X. Li, Ab initio two-component Ehrenfest dynamics. J. Chem. Phys. 143, 114105 (2015)

    Article  ADS  Google Scholar 

  • W. Dou, J.E. Subotnik, Perspective: how to understand electronic friction. J. Chem. Phys. 148, 230901 (2018)

    Article  ADS  Google Scholar 

  • W. Dou, G. Miao, J.E. Subotnik, Born-Oppenheimer dynamics, electronic friction, and the inclusion of electron-electron interactions. Phys. Rev. Lett. 119, 046001–6 (2017)

    Article  ADS  Google Scholar 

  • S. Goedecker, Linear scaling electronic structure methods. Rev. Mod. Phys. 71, 1085–1123 (1999)

    Article  ADS  Google Scholar 

  • V. Gogonea, D. Suárex, A. van der Vaart, K.M. Merz, New developments in applying quantum mechanics to proteins. Curr. Opin. Struct. Biol. 11, 217–223 (2001)

    Article  Google Scholar 

  • O.V. Gritsenko, A. Rubio, L.C. Balbas, J.A. Alonso, Density approximation to the average Hartree-Fock exchange potential for atoms. Proc. Indian Acad. Sci. 106, 91–102 (1994)

    Article  Google Scholar 

  • O. Gunnarsson, B.I. Lundqvist, Exchange and correlation in atoms, molecules, and solids by spin-density-functional formalism. Phys. Rev. B 13:4274 (1976). With erratum in Ref. Gunnarsson and Lundqvist (1977)

    Google Scholar 

  • B. Hall, Quantum Theory for Mathematicians. Graduate Texts in Mathematics (Springer, 2013)

    Google Scholar 

  • M.K. Harbola, A. Banerjee, Many-electron problem in terms of the density: from Thomas-Fermi to modern density-functional theory. J. Theor. Comput. Chem. 2, 301–322 (2003)

    Article  Google Scholar 

  • W.J. Hehre, L. Radom, P.v.R. Schleyer, J.A. Pople, Ab Initio Molecular Orbital Theory (Wiley, New York, 1986)

    Google Scholar 

  • P. Hohenberg, W. Kohn, Inhomogeneous electron gas. Phys. Rev. 136, B864 (1964)

    Article  ADS  MathSciNet  Google Scholar 

  • Y. Huang, C.T. Rettner, D.J. Auerbach, A.M. Wodtke, Vibrational promotion of electron transfer. Science 290, 111–114 (2000)

    Article  ADS  Google Scholar 

  • R. Iftime, P. Minary, M.E. Tuckerman, Ab initio molecular dynamics: concepts, recent developments, and future trends. Proc. Natl. Acad. Sci. USA 102, 6654–6659 (2005)

    Article  ADS  Google Scholar 

  • F. Jensen, Introduction to Computational Chemistry (Wiley, Chichester, UK, 2017)

    Google Scholar 

  • H. Kamberaj, Molecular Dynamics Simulations in Statistical Physics: Theory and Applications. Computational Series (Springer Nature, Switzerland, 2020)

    Google Scholar 

  • K. Kitaura, K. Morokuma, A new energy decomposition scheme for molecular interactions within the Hartree-Fock approximation. Int. J. Quantum Chem. 10, 325–340 (1976)

    Article  Google Scholar 

  • W. Kohn, Nobel lecture: Electronic structure of matter-wave functions and density functionals. Rev. Mod. Phys. 71, 1253–1266 (1999)

    Article  ADS  Google Scholar 

  • W. Kohn, L.J. Sham, Self-consistent equations including exchange and correlation effects. Phys. Rev. 1133, A140 (1965)

    MathSciNet  Google Scholar 

  • A.R. Leach, Molecular Modelling, in Principles and Applications 2nd edn. (Prentice Hall, Pearson Education Limited, Edingburgh Gate, 2001)

    Google Scholar 

  • S. Lehtola, A review on non-relativistic, fully numerical electronic structure calculations on atoms and diatomic molecules. Int. J. Quantum Chem. 119, e25968-31 (2019)

    Article  Google Scholar 

  • T. Nakajima, T. Tsuneda, H. Nakano, K. Hirao, Recent advances in electronic structure theory. J. Theor. Comput. Chem. 1, 109–136 (2002)

    Article  Google Scholar 

  • E. Paquet, H.L. Viktor, Computational methods for ab initio molecular dynamics. Adv. Chem. 2018, 1–14 (2018)

    Google Scholar 

  • C. Raathaan, New developments in molecular orbital theory. Rev. Mod. Phys. 23, 69–89 (1951)

    Article  ADS  Google Scholar 

  • C.P. Race, D.R. Mason, A.P. Sutton, A new directional model for the electronic frictional forces in molecular dynamics simulations of radiation damage in metals. J. Nucl. Mat. 425, 33–40 (2012)

    Article  ADS  Google Scholar 

  • A. Reyes, F. Moncada, J. Charry, The any particle molecular orbital approach: a short review of the theory and applications. Int. J. Quantum Chem. 119, e25705-13 (2019)

    Article  Google Scholar 

  • K. Schwarz, P. Blaha, DFT calculations for real solids, in Handbook of Solid State Chemistry. Theoretical Description ed. by R. Dronkowski, S. Kikkawa, A. Stein, vol. 5 (Wiley, 2017)

    Google Scholar 

  • M. Whitby, L. Cagnon, M. Thanon, N. Quirke, Enhanced fluid flow though nanoscale carbon pipes. Nano Lett. 8, 2632–2637 (2008)

    Article  ADS  Google Scholar 

  • T. Ziegler, Approximate density functional theory as a practical tool in molecular energetics and dynamics. Chem. Rev. 91, 651–667 (1991)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiqmet Kamberaj .

1.1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (ESM 8,42,524 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kamberaj, H. (2023). Quantum Mechanics Computer Simulations. In: Computer Simulations in Molecular Biology. Scientific Computation. Springer, Cham. https://doi.org/10.1007/978-3-031-34839-6_1

Download citation

Publish with us

Policies and ethics