Skip to main content

Etiology and Pathogenesis of Clubfoot and Vertical Talus

  • Chapter
  • First Online:
Clubfoot and Vertical Talus

Abstract

Clubfoot and vertical talus are closely related congenital lower limb malformations. While there is evidence that environmental factors and prenatal drug exposures may contribute to their pathogenesis, genetic factors appear to play a significant role. Morphological analysis of tissues from clubfoot patients using a variety of invasive and noninvasive modalities, including muscle biopsy and magnetic resonance imaging, show a spectrum of muscle, vasculature, and nerve abnormalities that provide evidence against a singular etiology for clubfoot. Consistent with this, genes involved in early limb development, including PITX1, TBX4, and HOX genes, have now been implicated in some cases of familial clubfoot and vertical talus. Individuals with genetic abnormalities in these transcriptional regulators of early limb development are more likely to have treatment resistant clubfoot and clinical exam abnormalities such as the “drop-toe sign” or weakness with eversion that are hallmarks of treatment resistance. Unlike familial cases, most non-familial clubfoot and vertical talus cases are likely oligogenic or polygenic in origin and reflect complex inheritance patterns. Currently, routine genetic testing in patients with isolated clubfoot or vertical talus is likely to be low yield, even in familial cases. Further research is needed to identify additional pathophysiological mechanisms, particularly in regard to oligogenic combinations of rare genetic variants. Consideration of clinical exam findings and underlying morphological abnormalities, as well as the impact of gene variants when known, is essential for tailoring diagnostic and treatment plans to address the specific needs of individuals with clubfoot and vertical talus.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Smythe T, Kuper H, Macleod D, Foster A, Lavy C. Birth prevalence of congenital talipes equinovarus in low- and middle-income countries: a systematic review and meta-analysis. Trop Med Int Health. 2017;22(3):269–85. https://doi.org/10.1111/tmi.12833. Epub 2017 Jan 22. PMID: 28000394.

    Article  PubMed  Google Scholar 

  2. Carey M, Bower C, Mylvaganam A, Rouse I. Talipes equinovarus in Western Australia. Paediatr Perinat Epidemiol. 2003;17(2):187–94. https://doi.org/10.1046/j.1365-3016.2003.00477.x. PMID: 12675786.

    Article  PubMed  Google Scholar 

  3. Beals RK. Club foot in the Maori: a genetic study of 50 kindreds. N Z Med J. 1978;88(618):144–6. PMID: 280791.

    CAS  PubMed  Google Scholar 

  4. Reefhuis J, Honein MA. Maternal age and non-chromosomal birth defects, Atlanta--1968-2000: teenager or thirty-something, who is at risk? Birth Defects Res A Clin Mol Teratol 2004 ;70(9):572–9. https://doi.org/10.1002/bdra.20065. PMID: 15368555..

  5. Palma M, Cook T, Segura J, Pecho A, Morcuende JA. Descriptive epidemiology of clubfoot in Peru: a clinic-based study. Iowa Orthop J. 2013;33:167–71. PMID: 24027478; PMCID: PMC3748874.

    PubMed  PubMed Central  Google Scholar 

  6. Prakalapakorn SG, Rasmussen SA, Lambert SR, Honein MA, National Birth Defects Prevention Study. Assessment of risk factors for infantile cataracts using a case-control study: National Birth Defects Prevention Study, 2000-2004. Ophthalmology. 2010;117(8):1500–5. https://doi.org/10.1016/j.ophtha.2009.12.026. Epub 2010 Apr 3. PMID: 20363508; PMCID: PMC2994269.

    Article  PubMed  Google Scholar 

  7. Yazdy MM, Mitchell AA, Louik C, Werler MM. Use of selective serotonin-reuptake inhibitors during pregnancy and the risk of clubfoot. Epidemiology. 2014;25(6):859–65. https://doi.org/10.1097/EDE.0000000000000157. PMID: 25171134; PMCID: PMC4180776.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Slaney SF, Goodman FR, Eilers-Walsman BL, Hall BD, Williams DK, Young ID, Hayward RD, Jones BM, Christianson AL, Winter RM. Acromelic frontonasal dysostosis. Am J Med Genet. 1999;83(2):109–16. PMID: 10190481.

    Article  CAS  PubMed  Google Scholar 

  9. Nguyen MC, Nhi HM, Nam VQ, Thanh do V, Romitti P, Morcuende JA. Descriptive epidemiology of clubfoot in Vietnam: a clinic-based study. Iowa Orthop J. 2012;32:120–4. PMID: 23576932; PMCID: PMC3565392.

    PubMed  PubMed Central  Google Scholar 

  10. Lochmiller C, Johnston D, Scott A, Risman M, Hecht JT. Genetic epidemiology study of idiopathic talipes equinovarus. Am J Med Genet. 1998;79(2):90–6. PMID: 9741465.

    Article  CAS  PubMed  Google Scholar 

  11. Werler MM, Yazdy MM, Mitchell AA, Meyer RE, Druschel CM, Anderka M, Kasser JR, Mahan ST. Descriptive epidemiology of idiopathic clubfoot. Am J Med Genet A. 2013;161A(7):1569–78. https://doi.org/10.1002/ajmg.a.35955. Epub 2013 May 17. PMID: 23686911; PMCID: PMC3689855.

    Article  PubMed  Google Scholar 

  12. Ippolito E, Ponseti IV. Congenital club foot in the human fetus. A histological study. J Bone Joint Surg Am. 1980;62(1):8–22. PMID: 7351421.

    Article  CAS  PubMed  Google Scholar 

  13. Hersh A. The role of surgery in the treatment of club feet. 1967. Foot Ankle Int. 1995;16(11):672–81. https://doi.org/10.1177/107110079501601103. PMID: 8589806.

    Article  CAS  PubMed  Google Scholar 

  14. Sano H, Uhthoff HK, Jarvis JG, Mansingh A, Wenckebach GF. Pathogenesis of soft-tissue contracture in club foot. J Bone Joint Surg Br. 1998;80(4):641–4. https://doi.org/10.1302/0301-620x.80b4.8526. PMID: 9699828.

    Article  CAS  PubMed  Google Scholar 

  15. Suzuki M, Miyazaki Y, Miyake T, Kido H, Yamaguchi K, Kagawa H, Yanabu M, Nomura S, Fukuhara S. Uptake of fibrinogen by circulating platelets. Vox Sang. 1994;67(2):243. https://doi.org/10.1111/j.1423-0410.1994.tb01673.x. PMID: 7801625.

    Article  CAS  PubMed  Google Scholar 

  16. Ošt’ádal M, Eckhardt A, Herget J, Mikšík I, Dungl P, Chomiak J, Frydrychová M, Burian M. Proteomic analysis of the extracellular matrix in idiopathic pes equinovarus. Mol Cell Biochem. 2015;401(1–2):133–9. https://doi.org/10.1007/s11010-014-2300-3. Epub 2014 Dec 4. PMID: 25472880.

    Article  CAS  PubMed  Google Scholar 

  17. Herceg MB, Weiner DS, Agamanolis DP, Hawk D. Histologic and histochemical analysis of muscle specimens in idiopathic talipes equinovarus. J Pediatr Orthop. 2006;26(1):91–3. https://doi.org/10.1097/01.bpo.0000188994.90931.e8. PMID: 16439910.

    Article  PubMed  Google Scholar 

  18. Isaacs H, Handelsman JE, Badenhorst M, Pickering A. The muscles in club foot--a histological histochemical and electron microscopic study. J Bone Joint Surg Br. 1977;59-B:465–72.

    Article  CAS  PubMed  Google Scholar 

  19. Shaheen S, Mursal H, Rabih M, Johari A. Flexor digitorum accessorius longus muscle in resistant clubfoot patients: introduction of a new sign predicting its presence. J Pediatr Orthop B. 2015;24(2):143–6. https://doi.org/10.1097/BPB.0000000000000129. PMID: 25493703.

    Article  PubMed  Google Scholar 

  20. Dobbs MB, Walton T, Gordon JE, Schoenecker PL, Gurnett CA. Flexor digitorum accessorius longus muscle is associated with familial idiopathic clubfoot. J Pediatr Orthop. 2005;25(3):357–9. https://doi.org/10.1097/01.bpo.0000152908.08422.95. PMID: 15832155.

    Article  PubMed  Google Scholar 

  21. Edmonds EW, Frick SL. The drop toe sign: an indicator of neurologic impairment in congenital clubfoot. Clin Orthop Relat Res. 2009;467(5):1238–42. https://doi.org/10.1007/s11999-008-0690-9. Epub 2009 Jan 7. PMID: 19130157; PMCID: PMC2664423.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Dobbs MB, Gurnett CA. The 2017 ABJS Nicolas Andry Award: advancing personalized medicine for clubfoot through translational research. Clin Orthop Relat Res. 2017;475(6):1716–25. https://doi.org/10.1007/s11999-017-5290-0. Epub 2017 Feb 24. PMID: 28236079; PMCID: PMC5406347.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Matar HE, Garg NK. Congenital talipes equinovarus associated with hereditary congenital common peroneal nerve neuropathy: a literature review. J Pediatr Orthop B. 2016;25(2):108–11. https://doi.org/10.1097/BPB.0000000000000250. PMID: 26588839.

    Article  PubMed  Google Scholar 

  24. Hootnick DR, Levinsohn EM, Crider RJ, Packard DS Jr. Congenital arterial malformations associated with clubfoot: a report of two cases. Clin Orthop Relat Res. 1982;167:160–3.

    Article  Google Scholar 

  25. Munajat I, Yoysefi M, Nik Mahdi NM. Deficient dorsalis pedis flow in severe idiopathic clubfeet: does Ponseti casting affect the outcome? Foot (Edinb). 2017;32:30–4. https://doi.org/10.1016/j.foot.2017.05.003. Epub 2017 Jun 8. PMID: 28672132.

    Article  PubMed  Google Scholar 

  26. Dobbs MB, Gordon JE, Schoenecker PL. Absent posterior tibial artery associated with idiopathic clubfoot. A report of two cases. J Bone Joint Surg Am. 2004;86(3):599–602. https://doi.org/10.2106/00004623-200403000-00022. PMID: 14996890.

    Article  PubMed  Google Scholar 

  27. Kruse L, Gurnett CA, Hootnick D, Dobbs MB. Magnetic resonance angiography in clubfoot and vertical talus: a feasibility study. Clin Orthop Relat Res. 2009;467:1250–5. https://doi.org/10.1007/s11999-008-0673-x2664419.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Merrill LJ, Gurnett CA, Siegel M, Sonavane S, Dobbs MB. Vascular abnormalities correlate with decreased soft tissue volumes in idiopathic clubfoot. Clin Orthop Relat Res. 2011;469:1442–9. https://doi.org/10.1007/s11999-010-1657-1.

    Article  PubMed  Google Scholar 

  29. Porter RW. Congenital talipes equinovarus: I. Resolving and resistant deformities. J Bone Joint Surg Br. 1987;69(5):822–5. https://doi.org/10.1302/0301-620X.69B5.3680351. PMID: 3680351.

    Article  CAS  PubMed  Google Scholar 

  30. Ippolito E, Maio F, Mancini F, Bellini D, Orefice A. Leg muscle atrophy in idiopathic congenital clubfoot: is it primitive or acquired? J Child Orthop. 2009;3:171–8. https://doi.org/10.1007/s11832-009-0179-42686819.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Moon DK, Gurnett CA, Aferol H, Siegel MJ, Commean PK, Dobbs MB. Soft-tissue abnormalities associated with treatment-resistant and treatment-responsive clubfoot: findings of MRI analysis. J Bone Joint Surg Am. 2014;96:1249–56. https://doi.org/10.2106/JBJS.M.012574116564.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Wynne-Davies R. Genetic and environmental factors in the etiology of talipes equinovarus. Clin Orthop Relat Res. 1972;84:9–13. https://doi.org/10.1097/00003086-197205000-00003.

    Article  CAS  PubMed  Google Scholar 

  33. Cardy AH, Sharp L, Torrance N, Hennekam RC, Miedzybrodzka Z. Is there evidence for aetiologically distinct subgroups of idiopathic congenital talipes equinovarus? A case-only study and pedigree analysis. PLoS One. 2011;6(4):e17895. https://doi.org/10.1371/journal.pone.0017895. PMID: 21533128; PMCID: PMC3080359.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wang JH, Palmer RM, Chung CS. The role of major gene in clubfoot. Am J Hum Genet. 1988;42(5):772–6. PMID: 3358425; PMCID: PMC1715171.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Yang HY, Chung CS, Nemechek RW. A genetic analysis of clubfoot in Hawaii. Genet Epidemiol. 1987;4(4):299–306. https://doi.org/10.1002/gepi.1370040408. PMID: 3666436.

    Article  CAS  PubMed  Google Scholar 

  36. Rebbeck TR, Dietz FR, Murray JC, Buetow KH. A single-gene explanation for the probability of having idiopathic talipes equinovarus. Am J Hum Genet. 1993;53(5):1051–63. PMID: 8213831; PMCID: PMC1682321.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Kruse LM, Dobbs MB, Gurnett CA. Polygenic threshold model with sex dimorphism in clubfoot inheritance: the Carter effect. J Bone Joint Surg Am. 2008;90(12):2688–94. https://doi.org/10.2106/JBJS.G.01346. PMID: 19047715; PMCID: PMC2663333.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Gurnett CA, Alaee F, Kruse LM, Desruisseau DM, Hecht JT, Wise CA, Bowcock AM, Dobbs MB. Asymmetric lower-limb malformations in individuals with homeobox PITX1 gene mutation. Am J Hum Genet. 2008;83:616–22. https://doi.org/10.1016/j.ajhg.2008.10.0042668044.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Bamshad M, Van Heest AE, Pleasure D. Arthrogryposis: a review and update. J Bone Joint Surg Am. 2009;91(Suppl 4):40–6. https://doi.org/10.2106/JBJS.I.00281. PMID: 19571066; PMCID: PMC2698792.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Janecke AR, Li B, Boehm M, Krabichler B, Rohrbach M, Müller T, Fuchs I, Golas G, Katagiri Y, Ziegler SG, Gahl WA, Wilnai Y, Zoppi N, Geller HM, Giunta C, Slavotinek A, Steinmann B. The phenotype of the musculocontractural type of Ehlers-Danlos syndrome due to CHST14 mutations. Am J Med Genet A. 2016;170A(1):103–15. https://doi.org/10.1002/ajmg.a.37383. Epub 2015 Sep 16. PMID: 26373698; PMCID: PMC5115638.

    Article  CAS  PubMed  Google Scholar 

  41. Alvarado DM, Buchan JG, Frick SL, Herzenberg JE, Dobbs MB, Gurnett CA. Copy number analysis of 413 isolated talipes equinovarus patients suggests role for transcriptional regulators of early limb development. Eur J Hum Genet. 2013;21:373–80. https://doi.org/10.1038/ejhg.2012.177.

    Article  CAS  PubMed  Google Scholar 

  42. Paton RW, Fox AE, Foster A, Fehily M. Incidence and aetiology of talipes equino-varus with recent population changes. Acta Orthop Belg. 2010;76(1):86–9. PMID: 20306970.

    PubMed  Google Scholar 

  43. Alvarado DM, McCall K, Aferol H, Silva MJ, Garbow JR, Spees WM, Patel T, Siegel M, Dobbs MB, Gurnett CA. Pitx1 haploinsufficiency causes clubfoot in humans and a clubfoot-like phenotype in mice. Hum Mol Genet. 2011;20:3943–52. https://doi.org/10.1093/hmg/ddr3133177645.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Dobbs MB, Gurnett CA. Update on clubfoot: etiology and treatment. Clin Orthop Relat Res. 2009;467(5):1146–53. https://doi.org/10.1007/s11999-009-0734-9. Epub 2009 Feb 18. PMID: 19224303; PMCID: PMC2664438.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Weymouth KS, Blanton SH, Bamshad MJ, Beck AE, Alvarez C, Richards S, Gurnett CA, Dobbs MB, Barnes D, Mitchell LE, Hecht JT. Variants in genes that encode muscle contractile proteins influence risk for isolated clubfoot. Am J Med Genet A. 2011;155A(9):2170–9. https://doi.org/10.1002/ajmg.a.34167. Epub 2011 Aug 10. PMID: 21834041; PMCID: PMC3158831.

    Article  CAS  PubMed  Google Scholar 

  46. Weymouth KS, Blanton SH, Powell T, Patel CV, Savill SA, Hecht JT. Functional assessment of clubfoot associated HOXA9, TPM1, and TPM2 variants suggests a potential gene regulation mechanism. Clin Orthop Relat Res. 2016;474(7):1726–35. https://doi.org/10.1007/s11999-016-4788-1. Epub 2016 Mar 28. PMID: 27020427; PMCID: PMC4887369.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Liu YB, Zhao L, Ding J, Zhu J, Xie CL, Wu ZK, Yang X, Li H. Association between maternal age at conception and risk of idiopathic clubfoot. Acta Orthop. 2016;87(3):291–5. https://doi.org/10.3109/17453674.2016.1153359. Epub 2016 Feb 22. PMID: 26901038; PMCID: PMC4900088.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Lu J, Lian G, Lenkinski R, De Grand A, Vaid RR, Bryce T, Stasenko M, Boskey A, Walsh C, Sheen V. Filamin B mutations cause chondrocyte defects in skeletal development. Hum Mol Genet. 2007;16(14):1661–75. https://doi.org/10.1093/hmg/ddm114. Epub 2007 May 17. PMID: 17510210.

    Article  CAS  PubMed  Google Scholar 

  49. Lanctot C, Lamolet B, Drouin J. The bicoid-related homeoprotein Ptx1 defines the most anterior domain of the embryo and differentiates posterior from anterior lateral mesoderm. Development. 1997;124:2807–17.

    Article  CAS  PubMed  Google Scholar 

  50. Szeto DP, Ryan AK, O’Connell SM, Rosenfeld MG. P-OTX: a PIT-1-interacting homeodomain factor expressed during anterior pituitary gland development. Proc Natl Acad Sci U S A. 1996;93:7706–10. https://doi.org/10.1073/pnas.93.15.770638811.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. DeLaurier A, Schweitzer R, Logan M. Pitx1 determines the morphology of muscle, tendon, and bones of the hindlimb. Dev Biol. 2006;299(1):22–34. https://doi.org/10.1016/j.ydbio.2006.06.055. Epub 2006 Jul 14. PMID: 16989801.

    Article  CAS  PubMed  Google Scholar 

  52. Lango Allen H, Estrada K, Lettre G, Berndt SI, Weedon MN, Rivadeneira F, Willer CJ, Jackson AU, Vedantam S, Raychaudhuri S, Ferreira T, Wood AR, Weyant RJ, Segrè AV, Speliotes EK, Wheeler E, Soranzo N, Park JH, Yang J, Gudbjartsson D, Heard-Costa NL, Randall JC, Qi L, Vernon Smith A, Mägi R, Pastinen T, Liang L, Heid IM, Luan J, Thorleifsson G, Winkler TW, Goddard ME, Sin Lo K, Palmer C, Workalemahu T, Aulchenko YS, Johansson A, Zillikens MC, Feitosa MF, Esko T, Johnson T, Ketkar S, Kraft P, Mangino M, Prokopenko I, Absher D, Albrecht E, Ernst F, Glazer NL, Hayward C, Hottenga JJ, Jacobs KB, Knowles JW, Kutalik Z, Monda KL, Polasek O, Preuss M, Rayner NW, Robertson NR, Steinthorsdottir V, Tyrer JP, Voight BF, Wiklund F, Xu J, Zhao JH, Nyholt DR, Pellikka N, Perola M, Perry JR, Surakka I, Tammesoo ML, Altmaier EL, Amin N, Aspelund T, Bhangale T, Boucher G, Chasman DI, Chen C, Coin L, Cooper MN, Dixon AL, Gibson Q, Grundberg E, Hao K, Juhani Junttila M, Kaplan LM, Kettunen J, König IR, Kwan T, Lawrence RW, Levinson DF, Lorentzon M, McKnight B, Morris AP, Müller M, Suh Ngwa J, Purcell S, Rafelt S, Salem RM, Salvi E, Sanna S, Shi J, Sovio U, Thompson JR, Turchin MC, Vandenput L, Verlaan DJ, Vitart V, White CC, Ziegler A, Almgren P, Balmforth AJ, Campbell H, Citterio L, De Grandi A, Dominiczak A, Duan J, Elliott P, Elosua R, Eriksson JG, Freimer NB, Geus EJ, Glorioso N, Haiqing S, Hartikainen AL, Havulinna AS, Hicks AA, Hui J, Igl W, Illig T, Jula A, Kajantie E, Kilpeläinen TO, Koiranen M, Kolcic I, Koskinen S, Kovacs P, Laitinen J, Liu J, Lokki ML, Marusic A, Maschio A, Meitinger T, Mulas A, Paré G, Parker AN, Peden JF, Petersmann A, Pichler I, Pietiläinen KH, Pouta A, Ridderstråle M, Rotter JI, Sambrook JG, Sanders AR, Schmidt CO, Sinisalo J, Smit JH, Stringham HM, Bragi Walters G, Widen E, Wild SH, Willemsen G, Zagato L, Zgaga L, Zitting P, Alavere H, Farrall M, McArdle WL, Nelis M, Peters MJ, Ripatti S, van Meurs JB, Aben KK, Ardlie KG, Beckmann JS, Beilby JP, Bergman RN, Bergmann S, Collins FS, Cusi D, den Heijer M, Eiriksdottir G, Gejman PV, Hall AS, Hamsten A, Huikuri HV, Iribarren C, Kähönen M, Kaprio J, Kathiresan S, Kiemeney L, Kocher T, Launer LJ, Lehtimäki T, Melander O, Mosley TH Jr, Musk AW, Nieminen MS, O’Donnell CJ, Ohlsson C, Oostra B, Palmer LJ, Raitakari O, Ridker PM, Rioux JD, Rissanen A, Rivolta C, Schunkert H, Shuldiner AR, Siscovick DS, Stumvoll M, Tönjes A, Tuomilehto J, van Ommen GJ, Viikari J, Heath AC, Martin NG, Montgomery GW, Province MA, Kayser M, Arnold AM, Atwood LD, Boerwinkle E, Chanock SJ, Deloukas P, Gieger C, Grönberg H, Hall P, Hattersley AT, Hengstenberg C, Hoffman W, Lathrop GM, Salomaa V, Schreiber S, Uda M, Waterworth D, Wright AF, Assimes TL, Barroso I, Hofman A, Mohlke KL, Boomsma DI, Caulfield MJ, Cupples LA, Erdmann J, Fox CS, Gudnason V, Gyllensten U, Harris TB, Hayes RB, Jarvelin MR, Mooser V, Munroe PB, Ouwehand WH, Penninx BW, Pramstaller PP, Quertermous T, Rudan I, Samani NJ, Spector TD, Völzke H, Watkins H, Wilson JF, Groop LC, Haritunians T, Hu FB, Kaplan RC, Metspalu A, North KE, Schlessinger D, Wareham NJ, Hunter DJ, O’Connell JR, Strachan DP, Wichmann HE, Borecki IB, van Duijn CM, Schadt EE, Thorsteinsdottir U, Peltonen L, Uitterlinden AG, Visscher PM, Chatterjee N, Loos RJ, Boehnke M, McCarthy MI, Ingelsson E, Lindgren CM, Abecasis GR, Stefansson K, Frayling TM, Hirschhorn JN. Hundreds of variants clustered in genomic loci and biological pathways affect human height. Nature. 2010;467(7317):832–8. https://doi.org/10.1038/nature09410. Epub 2010 Sep 29. PMID: 20881960; PMCID: PMC2955183.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Marcil A, Dumontier E, Chamberland M, Camper SA, Drouin J. Pitx1 and Pitx2 are required for development of hindlimb buds. Development. 2003;130(1):45–55. https://doi.org/10.1242/dev.00192. PMID: 12441290.

    Article  CAS  PubMed  Google Scholar 

  54. Castori M, Rinaldi R, Cappellacci S, Grammatico P. Tibial developmental field defect is the most common lower limb malformation pattern in VACTERL association. Am J Med Genet A. 2008;146A(10):1259–66. https://doi.org/10.1002/ajmg.a.32288. PMID: 18386801.

    Article  PubMed  Google Scholar 

  55. Alvarado DM, Aferol H, McCall K, Huang JB, Techy M, Buchan J, Cady J, Gonzales PR, Dobbs MB, Gurnett CA. Familial isolated clubfoot is associated with recurrent chromosome 17q23.1q23.2 microduplications containing TBX4. Am J Hum Genet. 2010;87:154–60. https://doi.org/10.1016/j.ajhg.2010.06.0102896772.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Logan M, Tabin CJ. Role of Pitx1 upstream of Tbx4 in specification of hindlimb identity. Science. 1999;283:1736–9. https://doi.org/10.1126/science.283.5408.1736.

    Article  CAS  PubMed  Google Scholar 

  57. Margulies EH, Kardia SL, Innis JW. A comparative molecular analysis of developing mouse forelimbs and hindlimbs using serial analysis of gene expression (SAGE). Genome Res. 2001;11:1686–98. https://doi.org/10.1101/gr.192601311149.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Kerstjens-Frederikse WS, Bongers EM, Roofthooft MT, Leter EM, Douwes JM, Van Dijk A, Vonk-Noordegraaf A, Dijk-Bos KK, Hoefsloot LH, Hoendermis ES, Gille JJ, Sikkema-Raddatz B, Hofstra RM, Berger RM. TBX4 mutations (small patella syndrome) are associated with childhood-onset pulmonary arterial hypertension. J Med Genet. 2013;50(8):500–6. https://doi.org/10.1136/jmedgenet-2012-101152. Epub 2013 Apr 16. PMID: 23592887; PMCID: PMC3717587.

    Article  CAS  PubMed  Google Scholar 

  59. Bongers EM, Duijf PH, Beersum SE, Schoots J, Kampen A, Burckhardt A, Hamel BC, Losan F, Hoefsloot LH, Yntema HG, Knoers NV, Bokhoven H. Mutations in the human TBX4 gene cause small patella syndrome. Am J Hum Genet. 2004;74:1239–48. https://doi.org/10.1086/4213311182087.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Lu W, Bacino CA, Richards BS, Alvarez C, VanderMeer JE, Vella M, Ahituv N, Sikka N, Dietz FR, Blanton SH, Hecht JT. Studies of TBX4 and chromosome 17q23.1q23.2: an uncommon cause of nonsyndromic clubfoot. Am J Med Genet A. 2012;158A:1620–7. https://doi.org/10.1002/ajmg.a.354183381434.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Alvarado DM, McCall K, Hecht JT, Dobbs MB, Gurnett CA. Deletions of 5′ HOXC genes are associated with lower extremity malformations, including clubfoot and vertical talus. J Med Genet. 2016;53(4):250–5. https://doi.org/10.1136/jmedgenet-2015-103505. Epub 2016 Jan 4. PMID: 26729820; PMCID: PMC4955942.

    Article  CAS  PubMed  Google Scholar 

  62. Zhang TX, Haller G, Lin P, Alvarado DM, Hecht JT, Blanton SH, Stephens Richards B, Rice JP, Dobbs MB, Gurnett CA. Genome-wide association study identifies new disease loci for isolated clubfoot. J Med Genet. 2014;51:334–9. https://doi.org/10.1136/jmedgenet-2014-102303.

    Article  CAS  PubMed  Google Scholar 

  63. Shrimpton AE, Levinsohn EM, Yozawitz JM, Packard DS Jr, Cady RB, Middleton FA, Persico AM, Hootnick DR. A HOX gene mutation in a family with isolated congenital vertical talus and Charcot-Marie-tooth disease. Am J Hum Genet. 2004;75:92–6. https://doi.org/10.1086/4220151182012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Mortlock DP, Innis JW. Mutation of HOXA13 in hand-foot-genital syndrome. Nat Genet. 1997;15(2):179–80. https://doi.org/10.1038/ng0297-179. PMID: 9020844.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew B. Dobbs .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gurnett, C.A., Williams, M.L., Dobbs, M.B. (2023). Etiology and Pathogenesis of Clubfoot and Vertical Talus. In: Dobbs, M.B., Johari, A.N., Williams, M.L. (eds) Clubfoot and Vertical Talus. Springer, Cham. https://doi.org/10.1007/978-3-031-34788-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-34788-7_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-34786-3

  • Online ISBN: 978-3-031-34788-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics