Skip to main content

Rock Masses Characterization with Advanced Measurement Systems for Reliability-Based Design

  • Conference paper
  • First Online:
Geotechnical Engineering in the Digital and Technological Innovation Era (CNRIG 2023)

Abstract

The design processes involving rock engineering problems must take into account the rock mass discontinuous nature, that strongly affects the mechanical response of this medium to any perturbation. Stress-strain behaviour of rock masses is linked to both the mechanical characteristics of rock matrix and to the rock mass degree of fracturing. The characterization of rock masses requires approaches at different scales (microscale, laboratory, site and, sometimes, regional scale), each of which provides different information that can be very relevant from a design point of view. At the microscale, information regarding petrographic and mineralogical features can be acquired and analysed in relation to the mechanical behaviour of rock matrix and discontinuities studied with laboratory tests. At the site scale, information related to discontinuity geometry, such as orientation, persistence and spacing, can be acquired by different measuring methods. Rock masses, by their nature, are discontinuous, inhomogeneous, anisotropic materials and the parameters characterizing them show a natural randomness due to both aleatory variability and epistemic uncertainties. In order to reduce the epistemic uncertainties a representative and sound number of measurements must be collected, and, simultaneously, probabilistic analyses are required to represent the aleatory nature of each variable. This contribution deals with the application of survey advanced techniques useable at different scale with the aim to measure the parameters necessary for a sound characterization of a rock mass useful to apply of reliability-based design approaches in line with the reference standards for the geotechnical design.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Barton, N.: Quantitative description of rock masses for the design of NMT reinforcement. In: Choubey, V.D. (ed.) International Conference on Hydropower Development in Himalayas, 20–22 April, Shimla, India (1998)

    Google Scholar 

  • Bedi, A.: A proposed framework for characterising uncertainty and variability in rock mechanics and rock engineering, Ph.D. thesis, Imperial college, London (2013)

    Google Scholar 

  • Bedi, A., Harrison, J.P.: A comparison of Bayesian techniques and non-probabilistic models in rock engineering design. In: Rock Mechanics for Resources, Engineering and Environment, pp. 105–110 (2013)

    Google Scholar 

  • Belem, T., Homand-Etienne, F., Souley, M.: – Fractal analysis of shear joint roughness. Int. J. Rock Mech. Min. Sci. 34(3–4), 130 (1997)

    Google Scholar 

  • Bozorgzadeh, N., Escobar, M.D., Harrison, J.P.: Comprehensive statistical analysis of intact strength for reliability based design. Int. J. Rock Mech. Min. Sci. 106(2018), 347–387 (2018)

    Google Scholar 

  • Carriero, M.T., Ferrero, A.M., Migliazza, M.R., Umili, G.: Evaluation of progressive damage of discontinuity asperities due to shearing by means photogrammetric survey. In: IOP Conference Series Earth Environment Science, vol. 1124 p. 012053 (2022)

    Google Scholar 

  • Hudson, J.A., Harrison, J.P.: Engineering Rock Mechanics: An Introduction to the Principles. Elsevier, Oxford (1997)

    Google Scholar 

  • Ferrero, A.M., Migliazza, M.R., Pirulli, M., Umili, G.: Some open issues on rockfall hazard analysis in fractured rock mass: problems and prospects. Rock Mech. Rock Eng. 49, 3615–3629 (2016)

    Article  Google Scholar 

  • Ferrero, A.M., Migliazza, M.R., Umili, G.: Comparison of methods for discontinuity roughness evaluation. Rivista Italina di Geotecnica 3, 5–15 (2019)

    Google Scholar 

  • Kulatilake, P.H.S.W., Um, J.: Requirements for accurate quantification of self-affine roughness using the roughness-length method. Int. J. Rock Mech. Min. Sci. 34(3–4), 166.e1–66.e15 (1997)

    Article  Google Scholar 

  • Li, Y., Zhang, Y.: Quantitative estimation of joint roughness coefficient using statistical parameters. Int. J. Rock Mech. Min. Sci. 77, 27–35 (2015)

    Article  Google Scholar 

  • Mandelbrot, B.B.: – The Fractal Geometry of Nature. Freeman, San Francisco (1983)

    Book  Google Scholar 

  • Myers, N.O.: Characterization of surface roughness. Wear 5, 182–189 (1962)

    Article  Google Scholar 

  • Odling, N.E.: Natural fracture profiles, fractal dimension and joint roughness coefficients. Rock Mech. Rock Eng. 27(3), 135–153 (1994). https://doi.org/10.1007/BF01020307

    Article  Google Scholar 

  • Palmstrom A.: The weighted joint density method leads to improved characterization of jointing. In: International Conference on Recent Advances in Tunnelling Technology, New Delhi, India, p. 6 (1996)

    Google Scholar 

  • Roko, R.O., Daemenj, J.K., Myers, D.E.: Variogram characterization of joint surface morphology and asperity deformation during shearing. Int. J. Rock Mech. Min. Sci. 34(1), 71–84 (1997)

    Article  Google Scholar 

  • Tatone, B.S.A., Grasselli, G.: A new 2D discontinuity roughness parameter and its correlation with JRC. Int. J. Rock Mech. Min. Sci. 47(8), 1391–1400 (2010)

    Article  Google Scholar 

  • Tse, R., Cruden, D.M.: Estimating joint roughness coefficients. Int. J. Rock Mech. Min. Sci. Geomech. Abstracts 16, 303–307 (1979)

    Article  Google Scholar 

  • Umili, G., Bonetto, S., Mosca, P., Vagnon, F., Ferrero, A.M.: In situ block size distribution aimed at the choice of the design block for rockfall barriers design: a case study along Gardesana road. Geosciences 10, 223 (2020). https://doi.org/10.3390/geosciences10060223

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Rita Migliazza .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Migliazza, M.R. (2023). Rock Masses Characterization with Advanced Measurement Systems for Reliability-Based Design. In: Ferrari, A., Rosone, M., Ziccarelli, M., Gottardi, G. (eds) Geotechnical Engineering in the Digital and Technological Innovation Era. CNRIG 2023. Springer Series in Geomechanics and Geoengineering. Springer, Cham. https://doi.org/10.1007/978-3-031-34761-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-34761-0_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-34760-3

  • Online ISBN: 978-3-031-34761-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics