Skip to main content

An Innovative Holistic GIS-BIM and Artificial Intelligence Based Approach to Manage Mechanized Tunnelling: The Back-Analysis of the Budapest Metro Line4

  • Conference paper
  • First Online:
Geotechnical Engineering in the Digital and Technological Innovation Era (CNRIG 2023)

Abstract

The current and continuously increasing demand for urban mobility implies introducing new sustainable and alternative systems to road transport. Where economic viability is established, metro lines are one of the most effective and least impactful solutions if the characteristics of the subsoil are appropriately considered and the construction phases are planned in such a way as to limit the induced ground deformations and not compromise the existing building stock. The excavation of tunnels in loose soils inevitably causes movements in the topsoil resulting in a combination of sagging and hogging, which in an urban environment must be controlled and minimized to avoid damage to the existing structures and infrastructure. Through the back-analysis of the Budapest (Hungary) Metro Line4, in this work, we propose an innovative tool where the design process is based on a GIS-BIM interaction, and the executive phase takes advantage of artificial neural networks capable of adjusting the design choices to the monitoring evidence. The environmental and geotechnical aspects are managed through the GIS Platform; then, 3D subsoil and structural models are developed following the BIM approach. After, the artificial neural network’s architecture is first constructed via a trial-and-error process which leads to selecting the best combination of input variables that better correlate to the measured volume loss. Then, real-time analysis is performed, and the transient effect is considered to simulate the excavation advance. The obtained results denote significant effectiveness in predicting the ground deformation and, thus, damage induced at the surface by mechanized excavation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Cao, B.T., Obel, M., Freitag, S., Mark, P., Meschke, S.: Artificial neural network surrogate modelling for real-time predictions and control of building damage during mechanised tunnelling. Adv. Eng. Softw. 149, 102869 (2020)

    Article  Google Scholar 

  • Kim, C.J., Bae, G.J., Hong, S.W., Park, C.H., Moon, H.K., Shin, H.S.: Neural network based prediction of ground surface settlements due to tunneling. Comput. Geotech. 28, 517–547 (2001)

    Article  Google Scholar 

  • Kimura T., Mair R.J.: Centrifugal testing of model tunnels in soft clay. In: Proceedings of the 10th International Conference on Soil Mechanics and Foundation Engineering, Stockholm, vol. 1, pp. 319–322 (1981)

    Google Scholar 

  • Paolella, L., Salvatore, E., Spacagna, R.L., Modoni, G., Ochmanski, M.: Prediction of liquefaction damage with artificial neural networks. In: Proceedings of 7ICEGE (2019)

    Google Scholar 

  • Paolella, L., Baris, A., Modoni, G., Spacagna, R.L., Fabozzi, S.: Liquefaction damage assessment using Bayesian belief networks. In: Gottardi, G., Tonni, L. (eds.) Cone Penetration Testing 2022 (2022). www.taylorfrancis.com. ISBN 978-1-032-31259-0, CC BY-NC-ND 4.0 license

  • Peck, R.B.: Deep excavation and tunneling in soft ground. State of the art report. In: 7th International Conference on Soil Mechanics and Foundation Engineering, Mexico City, pp. 225–290 (1969)

    Google Scholar 

  • Ribacchi, R.: Recenti orientamenti nella progettazione statica delle gallerie. In: XVIII Convegno Nazionale di Geotecnica, Rimini (1993)

    Google Scholar 

  • Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning representations by back-propagating errors. Nature 323, 533–536 (1986)

    Article  MATH  Google Scholar 

  • Tang, Y., Xiao, S., Zhan, Y.: Predicting settlement along railway due to excavation using empirical method and neural networks. Soils Found. 59, 1037–1051 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luca Paolella .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Paolella, L., Ochmanski, M., Modoni, G. (2023). An Innovative Holistic GIS-BIM and Artificial Intelligence Based Approach to Manage Mechanized Tunnelling: The Back-Analysis of the Budapest Metro Line4. In: Ferrari, A., Rosone, M., Ziccarelli, M., Gottardi, G. (eds) Geotechnical Engineering in the Digital and Technological Innovation Era. CNRIG 2023. Springer Series in Geomechanics and Geoengineering. Springer, Cham. https://doi.org/10.1007/978-3-031-34761-0_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-34761-0_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-34760-3

  • Online ISBN: 978-3-031-34761-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics