Abstract
Artificial Intelligence (AI) is currently been embedded into various tools and devices supporting many of our daily activities and routines. Thence, it is not surprising that AI-driven applications are increasingly also found in the education sector. Such an integration, which is often referred to as AIEd, not only offers great new opportunities for learners, but may also trigger significant challenges for education providers. The work discussed in this paper aims to bring some light to this problem space by offering teachers’ perspectives on the topic. We report on a Delphi study with \(n=17\) university teachers, focusing on their experiences, their doubts and their future wishes concerning the use of AI in teaching and learning settings. Results from three rounds of questioning indicate that educators are generally open to the idea of integrating AI components into their pedagogical concepts, even if in specific application scenarios, such as student assessment, opposing perspectives exist. Results furthermore show that corresponding tool training and better (technical) support is required in order successfully manage this significant change our education landscape is currently undergoing.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Online: https://www.apple.com/de/siri/. [accessed: January 23th 2023].
- 2.
Online: https://openai.com/blog/chatgpt/. [accessed: January 23th 2023].
- 3.
Online: https://moodle.org/. [accessed: January 30th 2023].
- 4.
Online: https://www.sakailms.org/. [accessed: January 30th 2023].
- 5.
Online: https://tcexam.org/. [accessed: January 30th 2023].
- 6.
Online: https://www.mentimeter.com/. [accessed: January 30th 2023].
- 7.
Online: https://www.mural.co/. [accessed: January 30th 2023].
- 8.
Online: https://miro.com/. [accessed: January 30th 2023].
- 9.
Online: https://www.deepl.com/translator. [accessed: January 30th 2023].
- 10.
Online: https://translate.google.com/. [accessed: January 30th 2023].
- 11.
Online: https://www.grammarly.com/. [accessed: January 30th 2023].
- 12.
Online: https://www.researchrabbit.ai/. [accessed: January 30th 2023].
- 13.
Online: https://www.turnitin.com/. [accessed: January 30th 2023].
- 14.
Online: https://www.plagscan.com/en/. [accessed: January 30th 2023].
- 15.
Online: https://github.com/features/copilot. [accessed: January 30th 2023].
References
Adamopoulou, E., Moussiades, L.: An overview of chatbot technology. In: Maglogiannis, I., Iliadis, L., Pimenidis, E. (eds.) AIAI 2020. IAICT, vol. 584, pp. 373–383. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-49186-4_31
Anderson, J.R., Boyle, C.F., Reiser, B.J.: Intelligent tutoring systems. Science 228(4698), 456–462 (1985)
Azad, S., Chen, B., Fowler, M., West, M., Zilles, C.: Strategies for deploying unreliable AI graders in high-transparency high-stakes exams. In: Bittencourt, I.I., Cukurova, M., Muldner, K., Luckin, R., Millán, E. (eds.) AIED 2020. LNCS (LNAI), vol. 12163, pp. 16–28. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-52237-7_2
Baker, T., Smith, L., Anissa, N.: Educ-AI-tion rebooted? Exploring the future of artificial intelligence in schools and colleges (2019). Accessed 12 May 2020
Banerjee, A., Lamrani, I., Hossain, S., Paudyal, P., Gupta, S.K.S.: AI enabled tutor for accessible training. In: Bittencourt, I.I., Cukurova, M., Muldner, K., Luckin, R., Millán, E. (eds.) AIED 2020. LNCS (LNAI), vol. 12163, pp. 29–42. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-52237-7_3
Barrett, D., Heale, R.: What are Delphi studies? Evid. Based Nurs. 23(3), 68–69 (2020)
Bii, P., Too, J., Mukwa, C.: Teacher attitude towards use of chatbots in routine teaching. Univ. J. Educ. Res. 6(7), 1586–1597 (2018)
Cader, A.: The potential for the use of deep neural networks in e-Learning student evaluation with new data augmentation method. In: Bittencourt, I.I., Cukurova, M., Muldner, K., Luckin, R., Millán, E. (eds.) AIED 2020. LNCS (LNAI), vol. 12164, pp. 37–42. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-52240-7_7
Casamayor, A., Amandi, A., Campo, M.: Intelligent assistance for teachers in collaborative e-Learning environments. Comput. Educ. 53(4), 1147–1154 (2009)
Chaudhry, M.A., Kazim, E.: Artificial intelligence in education (AIEd): a high-level academic and industry note 2021. AI Ethics 2(1), 157–165 (2022)
Chen, L., Chen, P., Lin, Z.: Artificial intelligence in education: a review. IEEE Access 8, 75264–75278 (2020)
Cukurova, M., Kent, C., Luckin, R.: Artificial intelligence and multimodal data in the service of human decision-making: a case study in debate tutoring. Br. J. Educ. Technol. 50(6), 3032–3046 (2019)
Dalkey, N., Helmer, O.: An experimental application of the Delphi method to the use of experts. Manage. Sci. 9(3), 458–467 (1963)
Del Bonifro, F., Gabbrielli, M., Lisanti, G., Zingaro, S.P.: Student dropout prediction. In: Bittencourt, I.I., Cukurova, M., Muldner, K., Luckin, R., Millán, E. (eds.) AIED 2020. LNCS (LNAI), vol. 12163, pp. 129–140. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-52237-7_11
Delgado, H.O.K., de Azevedo Fay, A., Sebastiany, M.J., Silva, A.D.C.: Artificial intelligence adaptive learning tools. BELT-Br. Engl. Lang. Teach. J. 11(2), e38749–e38749 (2020)
Filighera, A., Steuer, T., Rensing, C.: Fooling automatic short answer grading systems. In: Bittencourt, I.I., Cukurova, M., Muldner, K., Luckin, R., Millán, E. (eds.) AIED 2020. LNCS (LNAI), vol. 12163, pp. 177–190. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-52237-7_15
Hayashi, Y., Nomura, T., Hirashima, T.: Prediction of group learning results from an aggregation of individual understanding with kit-build concept map. In: Bittencourt, I.I., Cukurova, M., Muldner, K., Luckin, R., Millán, E. (eds.) AIED 2020. LNCS (LNAI), vol. 12164, pp. 109–113. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-52240-7_20
Heiko, A.: Consensus measurement in Delphi studies: review and implications for future quality assurance. Technol. Forecast. Soc. Change 79(8), 1525–1536 (2012)
Helfferich, C.: Die qualität qualitativer daten: Manual für die durchführung qualitativer interviews, third., überarbeitete auflage (2009)
Hsu, C.C., Sandford, B.A.: The Delphi technique: making sense of consensus. Pract. Assess. Res. Eval. 12(1), 10 (2007)
Huang, G.Y., et al.: Neural multi-task learning for teacher question detection in online classrooms. In: Bittencourt, I.I., Cukurova, M., Muldner, K., Luckin, R., Millán, E. (eds.) AIED 2020. LNCS (LNAI), vol. 12163, pp. 269–281. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-52237-7_22
Huang, Y., Aleven, V., McLaughlin, E., Koedinger, K.: A general multi-method approach to design-loop adaptivity in intelligent tutoring systems. In: Bittencourt, I.I., Cukurova, M., Muldner, K., Luckin, R., Millán, E. (eds.) AIED 2020. LNCS (LNAI), vol. 12164, pp. 124–129. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-52240-7_23
Hwang, G.J., Xie, H., Wah, B.W., Gašević, D.: Vision, challenges, roles and research issues of artificial intelligence in education (2020)
Keeney, S., Hasson, F., McKenna, H.P.: A critical review of the Delphi technique as a research methodology for nursing. Int. J. Nurs. Stud. 38(2), 195–200 (2001)
Li, H., Wang, Z., Tang, J., Ding, W., Liu, Z.: Siamese neural networks for class activity detection. In: Bittencourt, I.I., Cukurova, M., Muldner, K., Luckin, R., Millán, E. (eds.) AIED 2020. LNCS (LNAI), vol. 12164, pp. 162–167. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-52240-7_30
Luckin, R., Holmes, W., Griffiths, M., Forcier, L.B.: Intelligence Unleashed: An Argument for AI in Education. Pearson Education, London (2016)
Mousavinasab, E., Zarifsanaiey, N., Kalhori, S.N.R., Rakhshan, M., Keikha, L., Saeedi, M.G.: Intelligent tutoring systems: a systematic review of characteristics, applications, and evaluation methods. Interact. Learn. Environ. 29(1), 142–163 (2021)
Mouta, A., Sánchez, E.T., Llorente, A.M.P.: Sense of agency in times of automation: a teachers’ professional development proposal on the ethical challenges of AI applied to education. In: Bittencourt, I.I., Cukurova, M., Muldner, K., Luckin, R., Millán, E. (eds.) AIED 2020. LNCS (LNAI), vol. 12164, pp. 405–408. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-52240-7_73
Ndukwe, I.G., Amadi, C.E., Nkomo, L.M., Daniel, B.K.: Automatic grading system using sentence-BERT network. In: Bittencourt, I.I., Cukurova, M., Muldner, K., Luckin, R., Millán, E. (eds.) AIED 2020. LNCS (LNAI), vol. 12164, pp. 224–227. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-52240-7_41
Okonkwo, C.W., Ade-Ibijola, A.: Chatbots applications in education: a systematic review. Comput. Educ.: Artif. Intell. 2, 100033 (2021)
Ouyang, F., Jiao, P.: Artificial intelligence in education: the three paradigms. Comput. Educ.: Artif. Intell. 2, 100020 (2021)
Paliwoda, S.J.: Predicting the future using Delphi. Manage. Decis. 21, 31–38 (1983)
Popenici, S.A.D., Kerr, S.: Exploring the impact of artificial intelligence on teaching and learning in higher education. Res. Pract. Technol. Enhanced Learn. 12(1), 1–13 (2017). https://doi.org/10.1186/s41039-017-0062-8
Skulmoski, G.J., Hartman, F.T., Krahn, J.: The Delphi method for graduate research. J. Inf. Technol. Educ.: Res. 6(1), 1–21 (2007)
Uto, M., Okano, M.: Robust neural automated essay scoring using item response theory. In: Bittencourt, I.I., Cukurova, M., Muldner, K., Luckin, R., Millán, E. (eds.) AIED 2020. LNCS (LNAI), vol. 12163, pp. 549–561. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-52237-7_44
Uto, M., Uchida, Y.: Automated short-answer grading using deep neural networks and item response theory. In: Bittencourt, I.I., Cukurova, M., Muldner, K., Luckin, R., Millán, E. (eds.) AIED 2020. LNCS (LNAI), vol. 12164, pp. 334–339. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-52240-7_61
Wollny, S., Schneider, J., Di Mitri, D., Weidlich, J., Rittberger, M., Drachsler, H.: Are we there yet?-A systematic literature review on chatbots in education. Front. Artif. Intell. 4, 654924 (2021)
Zawacki-Richter, O., Marín, V.I., Bond, M., Gouverneur, F.: Systematic review of research on artificial intelligence applications in higher education-where are the educators? Int. J. Educ. Technol. High. Educ. 16(1), 1–27 (2019)
Zhang, C., Lu, Y.: Study on artificial intelligence: the state of the art and future prospects. J. Ind. Inf. Integr. 23, 100224 (2021)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Tritscher, R., Röck, J., Schlögl, S. (2023). Educ-AI-ted – Investigating Educators’ Perspectives Concerning the Use of AI in University Teaching and Learning. In: Uden, L., Liberona, D. (eds) Learning Technology for Education Challenges. LTEC 2023. Communications in Computer and Information Science, vol 1830. Springer, Cham. https://doi.org/10.1007/978-3-031-34754-2_20
Download citation
DOI: https://doi.org/10.1007/978-3-031-34754-2_20
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-34753-5
Online ISBN: 978-3-031-34754-2
eBook Packages: Computer ScienceComputer Science (R0)