Skip to main content

On-Chip Nanoscale Light Sources

  • Chapter
  • First Online:
Advances in Near-Field Optics

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 244))

  • 408 Accesses

Abstract

As technology continues to require faster and more energy-efficient chip-scale communication, the carrier of information is evolving from electrons to photons. Following a similar downscaling trend in electronic integrated circuits, photonic devices are under a revolution of miniaturization. However, it has proven to be difficult to reduce the size of photonics without compromising effectiveness and speed. In this chapter, we review recent progress in nanophotonic devices, specifically, light sources. While there are many different materials and strategies considered in this research field, the advancements in photonics made possible by plasmonic, photonic crystal, and metamaterial-based devices will be highlighted in this review with a focus on three figures-of-merit: energy thresholds, scalability, and modulation speed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. G.E. Moore, Cramming more components onto integrated circuits, Reprinted from Electronics, volume 38, number 8, April 19, 1965, pp.114 ff. IEEE Solid-State Circuits Soc. Newsl. 11(3), 33–35 (2009). https://doi.org/10.1109/N-SSC.2006.4785860

    Article  Google Scholar 

  2. B. Romeira, A. Fiore, Physical limits of nanoLEDs and nanolasers for optical communications. Proc. IEEE 108(5), 735–748 (2020). https://doi.org/10.1109/JPROC.2019.2912293

    Article  Google Scholar 

  3. L. Thylén, S. He, L. Wosinski, D. Dai, The Moore’s Law for photonic integrated circuits. J. Zhejiang Univ. Sci. A 7(12), 1961–1967 (2006). https://doi.org/10.1631/JZUS.2006.A1961

    Article  MATH  Google Scholar 

  4. M. Smit, J. van der Tol, M. Hill, Moore’s law in photonics. Laser Photonics Rev. 6(1), 1–13 (2012). https://doi.org/10.1002/LPOR.201100001

    Article  Google Scholar 

  5. L.A. Coldren, S.W. Corzine, M.L. Mašanović, Diode Lasers and Photonic Integrated Circuits (Wiley, Hoboken, 2012). https://doi.org/10.1002/9781118148167

    Book  Google Scholar 

  6. (16) (PDF) RUBY LASER. https://www.researchgate.net/publication/360611681_RUBY_LASER. Accessed 6 Sept 2022

  7. A. Javan, W.R. Bennett, D.R. Herriott, Population inversion and continuous optical maser oscillation in a gas discharge containing a He-Ne mixture. Phys. Rev. Lett. 6(3), 106–110 (1961). https://doi.org/10.1103/PHYSREVLETT.6.106/FIGURE/1/THUMB

    Article  Google Scholar 

  8. A History of the Laser: 1960–2019 | Features | June 2019 | Photonics Spectra. https://www.photonics.com/Articles/A_History_of_the_Laser_1960_-_2019/a42279. Accessed 11 Oct 2022

  9. P. Moulton, Ti-doped sapphire: tunable solid-state laser. Optics News 8(6), 9–9 (1982). https://doi.org/10.1364/ON.8.6.000009

    Article  Google Scholar 

  10. Y. Arakawa, A. Yariv, Quantum well lasers – Gain, spectra, dynamics. IEEE J. Quantum Electron. 22(9), 1887–1899 (1986). https://doi.org/10.1109/JQE.1986.1073185

    Article  Google Scholar 

  11. D. Vandyshev, D.K. Okorokov, V. Yu, Lasing on a transition between quantum-well levels in a quantum dot. JETP Lett. 54(8), 441–444 (1991) [Online]. Available: https://www.researchgate.net/publication/253590034

    Google Scholar 

  12. A. Maslov, C.A. Ning, Size reduction of a semiconductor nanowire laser by using metal coating. Phys. Simul. Optoelectron. Devices XV 6468, 138–144 (2007). https://doi.org/10.1117/12.723786

    Article  Google Scholar 

  13. A.V. Maslov, C.Z. Ning, Metal-encased semiconductor nanowires as waveguides for ultrasmall lasers. Conf. Quant. Electr. Laser Sci. (QELS) Tech. Dig. Ser. (2007). https://doi.org/10.1109/QELS.2007.4431377

  14. B.L. Murillo-Borjas, X. Li, Q. Gu, High-speed nanoLEDs for chip-scale communication. Nano Commun. Netw. 30, 100376 (2021). https://doi.org/10.1016/J.NANCOM.2021.100376

    Article  Google Scholar 

  15. J.B. Khurgin, How to deal with the loss in plasmonics and metamaterials. Nat. Nanotechnol. 10(1), 2–6 (2015). https://doi.org/10.1038/nnano.2014.310

    Article  Google Scholar 

  16. E. Gaubas, E. Simoen, A. Haugi, Auger recombination in direct-gap semiconductors: Band-structure effects. J. Phys. C Solid State Phys. 16(21), 4159 (1983). https://doi.org/10.1088/0022-3719/16/21/017

    Article  Google Scholar 

  17. D.J. Fitzgerald, A.S. Grove, Surface recombination in semiconductors. Surf. Sci. 9(2), 347–369 (1968). https://doi.org/10.1016/0039-6028(68)90182-9

    Article  Google Scholar 

  18. J.-M. Gerard, B. Gayral, Strong purcell effect for InAs quantum boxes in three-dimensional solid-state microcavities. J. Lightwave Technol. 17(11) (2089, 1999) [Online]. Available: http://opg.optica.org/jlt/abstract.cfm?URI=jlt-17-11-2089

  19. E.M. Purcell, Spontaneous emission probabilities at radio frequencies, in Confined Electrons and Photons: New Physics and Applications, ed. by E. Burstein, C. Weisbuch, (Springer, Boston, 1995), p. 839. https://doi.org/10.1007/978-1-4615-1963-8_40

    Chapter  Google Scholar 

  20. S.I. Azzam et al., Ten years of spasers and plasmonic nanolasers. Light Sci. Appl. 9(1), 1–21 (2020). https://doi.org/10.1038/s41377-020-0319-7

    Article  Google Scholar 

  21. J.D. Joannopoulos, S.G. Johnson, J.N. Winn, R.D. Meade, Photonic Crystals: Molding the Flow of Light (Princeton University Press, Princeton, 2011). https://doi.org/10.2307/J.CTVCM4GZ9

    Book  MATH  Google Scholar 

  22. P. Shekhar, J. Atkinson, Z. Jacob, Hyperbolic metamaterials: Fundamentals and applications. Nano Converg. 1(1), 1–17 (2014). https://doi.org/10.1186/S40580-014-0014-6/FIGURES/7

    Article  Google Scholar 

  23. I.A. Kolmychek et al., Optical properties of hyperbolic metamaterials (brief review). JETP Lett. 114(11), 653–664 (2021). https://doi.org/10.1134/S0021364021230089/FIGURES/9

    Article  Google Scholar 

  24. D.A.B. Miller, Rationale and challenges for optical interconnects to electronic chips. Proc. IEEE 88(6), 728–749 (2000). https://doi.org/10.1109/5.867687

    Article  Google Scholar 

  25. J.J. Zayhowski, Limits imposed by spatial hole burning on the single-mode operation of standing-wave laser cavities. Opt. Lett. 15(8), 431–433 (1990). https://doi.org/10.1364/OL.15.000431

    Article  Google Scholar 

  26. C.H. Brito Cruz, J.P. Gordon, P.C. Becker, R.L. Fork, C.V. Shank, Dynamics of spectral hole burning. IEEE J. Quantum Electron. 24(2), 261–269 (1988). https://doi.org/10.1109/3.122

    Article  Google Scholar 

  27. X. Li, Q. Gu, Ultrafast shifted-core coaxial nano-emitter. Opt. Express 26(12), 15177–15185 (2018). https://doi.org/10.1364/OE.26.015177

    Article  Google Scholar 

  28. E.K. Lau, A. Lakhani, R.S. Tucker, M.C. Wu, Enhanced modulation bandwidth of nanocavity light emitting devices. Opt. Express 17(10), 7790–7799 (2009). https://doi.org/10.1364/OE.17.007790

    Article  Google Scholar 

  29. T.B. Hoang, G.M. Akselrod, C. Argyropoulos, J. Huang, D.R. Smith, M.H. Mikkelsen, Ultrafast spontaneous emission source using plasmonic nanoantennas. Nat. Commun. 6(1), 7788 (2015). https://doi.org/10.1038/ncomms8788

    Article  Google Scholar 

  30. N.M. Andrade, S. Hooten, S.A. Fortuna, K. Han, E. Yablonovitch, M.C. Wu, Inverse design optimization for efficient coupling of an electrically injected optical antenna-LED to a single-mode waveguide. Opt. Express 27(14), 19802–19814 (2019). https://doi.org/10.1364/OE.27.019802

    Article  Google Scholar 

  31. V. Dolores-Calzadilla et al., Waveguide-coupled nanopillar metal-cavity light-emitting diodes on silicon. Nat. Commun. 8(1), 14323 (2017). https://doi.org/10.1038/ncomms14323

    Article  Google Scholar 

  32. A. Kumar, P. Tyagi, R. Srivastava, D.S. Mehta, M.N. Kamalasanan, Energy transfer process between exciton and surface plasmon: Complete transition from Forster to surface energy transfer. Appl. Phys. Lett. 102(20), 203304 (2013). https://doi.org/10.1063/1.4806979

    Article  Google Scholar 

  33. K. Kolwas, A. Derkachova, Impact of the interband transitions in gold and silver on the dynamics of propagating and localized surface plasmons. Nanomaterials 10(7), 1411 (2020). https://doi.org/10.3390/NANO10071411

    Article  Google Scholar 

  34. H. Raether, Surface Plasmons on Smooth Surfaces (Springer, Berlin, 1988), pp. 4–39. https://doi.org/10.1007/BFB0048319

    Book  Google Scholar 

  35. C.Z. Ning, Spaser or plasmonic nanolaser?-Reminiscences of discussions and arguments with Mark Stockman. Nanophotonics 10(14), 3619–3622 (2021). https://doi.org/10.1515/NANOPH-2021-0291/MACHINEREADABLECITATION/RIS

    Article  Google Scholar 

  36. Q. Zhang et al., A room temperature low-threshold ultraviolet plasmonic nanolaser. Nat. Commun. 5(1), 1–9 (2014). https://doi.org/10.1038/ncomms5953

    Article  Google Scholar 

  37. H. Yu et al., Organic–inorganic perovskite plasmonic nanowire lasers with a low threshold and a good thermal stability. Nanoscale 8(47), 19536–19540 (2016). https://doi.org/10.1039/C6NR06891J

    Article  Google Scholar 

  38. A. Yang et al., Real-time tunable lasing from plasmonic nanocavity arrays. Nat. Commun. 6(1), 1–7 (2015). https://doi.org/10.1038/ncomms7939

    Article  Google Scholar 

  39. R.M. Ma, S. Ota, Y. Li, S. Yang, X. Zhang, Explosives detection in a lasing plasmon nanocavity. Nat. Nanotechnol. 9(8), 600–604 (2014). https://doi.org/10.1038/NNANO.2014.135

    Article  Google Scholar 

  40. Y.C. Chen, X. Fan, Biological lasers for biomedical applications. Adv. Optic. Mater. 7(17), 1900377 (2019). https://doi.org/10.1002/ADOM.201900377

    Article  Google Scholar 

  41. E.I. Galanzha et al., Spaser as a biological probe. Nat. Commun. 8(1), 1–7 (2017). https://doi.org/10.1038/ncomms15528

    Article  Google Scholar 

  42. S. Noda, Photonic crystal lasers – Ultimate nanolasers and broad-area coherent lasers [Invited]. JOSA B 27(11), B1–B8 (2010). https://doi.org/10.1364/JOSAB.27.0000B1

    Article  Google Scholar 

  43. K. Kounoike, M. Yamaguchi, M. Fujita, T. Asano, J. Nakanishi, S. Noda, Investigation of spontaneous emission from quantum dots embedded in two-dimensional photonic-crystal slab. Electron. Lett. 41(25), 57–58 (2005). https://doi.org/10.1049/EL:20053011

    Article  Google Scholar 

  44. M. Yamaguchi et al., Photon emission by nanocavity-enhanced quantum anti-Zeno effect in solid-state cavity quantum-electrodynamics. Opt. Express 16(22), 18067–18081 (2008). https://doi.org/10.1364/OE.16.018067

    Article  Google Scholar 

  45. M. Imada, A. Chutinan, S. Noda, M. Mochizuki, Multidirectionally distributed feedback photonic crystal lasers. Phys. Rev. B 65(19), 195306 (2002). https://doi.org/10.1103/PhysRevB.65.195306

    Article  Google Scholar 

  46. S. Noda, K. Kitamura, T. Okino, D. Yasuda, Y. Tanaka, Photonic-crystal surface-emitting lasers: Review and introduction of modulated-photonic crystals. IEEE J. Select. Topics Quant. Electr. 23(6) (2017). https://doi.org/10.1109/JSTQE.2017.2696883

  47. T. Sakaguchi, et al., Surface-Emitting Photonic-Crystal Laser with 35W Peak Power. Conference on Lasers and Electro-Optics/International Quantum Electronics Conference (2009), paper CTuH1, p. CTuH1 (2009). https://doi.org/10.1364/CLEO.2009.CTUH1

  48. High-Power Single-Lobed Surface-Emitting Photonic-Crystal Laser. https://opg.optica.org/abstract.cfm?uri=cleo-2006-CMKK1. Accessed 25 Aug 2022

  49. E. Kuramochi et al., Large-scale integration of wavelength-addressable all-optical memories on a photonic crystal chip. Nat. Photonics 8(6), 474–481 (2014). https://doi.org/10.1038/nphoton.2014.93

    Article  Google Scholar 

  50. T. Asano et al., Photonic crystal nanocavity with a Q factor exceeding eleven million. Opt. Express 25(3), 1769–1777 (2017). https://doi.org/10.1364/OE.25.001769

    Article  Google Scholar 

  51. (13) (PDF) Metamaterials and photonic crystals – potential applications for self-organized eutectic micro- and nanostructures. https://www.researchgate.net/publication/242726283_Metamaterials_and_photonic_crystals_-_potential_applications_for_self-organized_eutectic_micro-_and_nanostructures. Accessed 25 Aug 2022

  52. Y. Liu, X. Zhang, Metamaterials: A new frontier of science and technology. Chem. Soc. Rev. 40(5), 2494–2507 (2011). https://doi.org/10.1039/C0CS00184H

    Article  Google Scholar 

  53. D.R. Smith, J.B. Pendry, M.C.K. Wiltshire, Metamaterials and negative refractive index. Science (1979) 305(5685), 788–792 (2004). https://doi.org/10.1126/SCIENCE.1096796/ASSET/AE0DF28E-3FA8-42B0-9269-AFAD6619A0AD/ASSETS/GRAPHIC/ZSE0310427410004.JPEG

    Article  Google Scholar 

  54. A. Poddubny, I. Iorsh, P. Belov, Y. Kivshar, Hyperbolic metamaterials. Nat. Photonics 7(12), 948–957 (2013). https://doi.org/10.1038/nphoton.2013.243

    Article  Google Scholar 

  55. G. Palermo, K.V. Sreekanth, G. Strangi, Hyperbolic dispersion metamaterials and metasurfaces. EPJ Appl. Metamater. 7, 11 (2020). https://doi.org/10.1051/EPJAM/2020015

    Article  Google Scholar 

  56. Z. Li et al., Active perovskite hyperbolic metasurface. ACS Photonics 7(7), 1754–1761 (2020). https://doi.org/10.1021/ACSPHOTONICS.0C00391/ASSET/IMAGES/LARGE/PH0C00391_0004.JPEG

    Article  Google Scholar 

  57. A.N. Poddubny, P.A. Belov, P. Ginzburg, A.V. Zayats, Y.S. Kivshar, Microscopic model of Purcell enhancement in hyperbolic metamaterials. Phys. Rev. B. Condens. Matter. Mater. Phys. 86(3), 035148 (2012). https://doi.org/10.1103/PHYSREVB.86.035148/FIGURES/11/MEDIUM

    Article  Google Scholar 

  58. O. Kidwai, S.V. Zhukovsky, J.E. Sipe, Dipole radiation near hyperbolic metamaterials: Applicability of effective-medium approximation. Opt. Lett. 36(13), 2530–2532 (2011). https://doi.org/10.1364/OL.36.002530

    Article  Google Scholar 

  59. D. Lu, J.J. Kan, E.E. Fullerton, Z. Liu, Enhancing spontaneous emission rates of molecules using nanopatterned multilayer hyperbolic metamaterials. Nat. Nanotechnol. 9(1), 48–53 (2014). https://doi.org/10.1038/nnano.2013.276

    Article  Google Scholar 

  60. D. Lu et al., Nanostructuring multilayer hyperbolic metamaterials for ultrafast and bright green InGaN quantum wells. Adv. Mater. 30(15), 1706411 (2018). https://doi.org/10.1002/ADMA.201706411

    Article  Google Scholar 

  61. L. Ferrari, J.S.T. Smalley, Y. Fainman, Z. Liu, Hyperbolic metamaterials for dispersion-assisted directional light emission. Nanoscale 9(26), 9034–9048 (2017). https://doi.org/10.1039/C7NR00980A

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qing Gu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kokinda, J., Li, X., Gu, Q. (2023). On-Chip Nanoscale Light Sources. In: Gordon, R. (eds) Advances in Near-Field Optics. Springer Series in Optical Sciences, vol 244. Springer, Cham. https://doi.org/10.1007/978-3-031-34742-9_5

Download citation

Publish with us

Policies and ethics