Skip to main content

Quasinormal Mode Theories and Applications in Classical and Quantum Nanophotonics

  • Chapter
  • First Online:
Advances in Near-Field Optics

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 244))

  • 414 Accesses

Abstract

This chapter presents theories and applications of optical quasinormal modes (QNMs), which can be used to solve a wide range of cavity problems in classical and quantum nanophotonics. Special emphasis is placed on obtaining intuitive, few-mode analytical expressions for the electromagnetic Green functions which connect to important figures of merit in cavity optics such as Purcell’s formula. We give the basic background theory, starting from Maxwell’s equations and classical mode expansion techniques, as well as normal modes, QNMs, and regularized QNMs, followed by a description of quantized QNMs, which form the foundation for developing rigorous quantum optical descriptions in nanophotonics and non-Hermitian resonant systems. We then show various instructive examples ranging from simple 1D cavities, which have analytical solutions, to plasmonic dimer modes, to complicated hybrid modes formed by coupled metal-dielectric systems, and QNM coupled-mode theory for coupled resonators.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    An exception to this assumption will be made later when introducing a specific form for the mode normalization.

  2. 2.

    We define cavity or resonator as basically the same thing in this chapter, namely, a structure that allows resonant modes to form.

  3. 3.

    PML boundaries implement an absorbing/outgoing boundary condition numerically.

  4. 4.

    Some works also compute approximate modes from a plane wave solution, i.e., not source-free, but this is manifestly not a mode [37].

  5. 5.

    Note this is different to the wave vector solution for continuous modes, usually written with a subscript, e.g., \(\beta _k\) or \(\tilde \beta _\mu \) as discussed earlier.

  6. 6.

    Of course, we could also start with cavity 2 and add in cavity 1.

  7. 7.

    Though in practice, for high-Q resonators, the normalization is likely quite accurate for most problems [42].

References

  1. A. Yariv, Coupled-mode theory for guided-wave optics. IEEE J. Quant. Electron. 9(9), 919–933 (1973)

    Article  ADS  Google Scholar 

  2. H.A. Haus, W. Huang, Coupled-mode theory. Proc. IEEE 79(10), 1505–1518 (1991)

    Article  Google Scholar 

  3. W.-P. Huang, Coupled-mode theory for optical waveguides: an overview. J. Opt. Soc. Am. A 11(3), 963 (1994)

    Google Scholar 

  4. A.W. Snyder, Coupled-mode theory for optical fibers. J. Opt. Soc. Am. 62(11), 1267 (1972)

    Google Scholar 

  5. J. Love. A.W. Snyder, Optical Waveguide Theory, 2nd ed. (Chapman and Hall, Boca Raton, 1983)

    Google Scholar 

  6. S. Fan, W. Suh, J.D. Joannopoulos, Temporal coupled-mode theory for the Fano resonance in optical resonators. J. Opt. Soc. Am. A 20(3), 569 (2003)

    Google Scholar 

  7. A.F. Koenderink, On the use of Purcell factors for plasmon antennas. Opt. Lett. 35(24), 4208–4210 (2010)

    Article  ADS  Google Scholar 

  8. S. Franke, J. Ren, S. Hughes, Impact of mode regularization for quasinormal mode perturbation theories, e-print: arXiv:2204.03982 (2022)

    Google Scholar 

  9. J.E. Sipe, New Green-function formalism for surface optics. J. Opt. Soc. Am. B 4(4), 481 (1987)

    Google Scholar 

  10. K. Joulain, J.-P. Mulet, F. Marquier, R. Carminati, J.-J. Greffet, Surface electromagnetic waves thermally excited: radiative heat transfer, coherence properties and Casimir forces revisited in the near field. Surf. Sci. Rep. 57(3–4), 59–112 (2005)

    Article  ADS  Google Scholar 

  11. W.D. Newman, C.L. Cortes, Z. Jacob, Enhanced and directional single-photon emission in hyperbolic metamaterials. J. Opt. Soc. Am. B 30(4), 766 (2013)

    Google Scholar 

  12. M. Wubs, L.G. Suttorp, A. Lagendijk, Multiple-scattering approach to interatomic interactions and superradiance in inhomogeneous dielectrics. Phys. Rev. A 70(5), 053823 (2004)

    Google Scholar 

  13. H.T. Dung, L. Knöll, D.-G. Welsch, Three-dimensional quantization of the electromagnetic field in dispersive and absorbing inhomogeneous dielectrics. Phys. Rev. A 57, 3931–3942 (1998)

    Article  ADS  Google Scholar 

  14. S. Hughes, Coupled-cavity QED using planar photonic crystals. Phys. Rev. Lett. 98, 083603 (2007)

    Article  ADS  Google Scholar 

  15. G.S. Agarwal, Quantum electrodynamics in the presence of dielectrics and conductors. I. Electromagnetic-field response functions and black-body fluctuations in finite geometries. Phys. Rev. A 11, 230–242 (1975)

    Google Scholar 

  16. K. Sakoda, Optical Properties of Photonic Crystals (Springer Science & Business Media, Berlin, 2005)

    Book  Google Scholar 

  17. P. Anger, P. Bharadwaj, L. Novotny, Enhancement and quenching of single-molecule fluorescence. Phys. Rev. Lett. 96, 113002 (2006)

    Article  ADS  Google Scholar 

  18. K. Joulain, R. Carminati, J.-P. Mulet, J.-J. Greffet, Definition and measurement of the local density of electromagnetic states close to an interface. Phys. Rev. B 68, 245405 (2003)

    Article  ADS  Google Scholar 

  19. O.J.F. Martin, N.B. Piller, Electromagnetic scattering in polarizable backgrounds. Phys. Rev. E 58, 3909–3915 (1998)

    Article  ADS  Google Scholar 

  20. C.P. Van Vlack, Dyadic Green Functions and their Applications. PhD thesis, Queen’s University (2012)

    Google Scholar 

  21. R.-C. Ge, C. Van Vlack, P. Yao, J.F. Young, S. Hughes, Accessing quantum nanoplasmonics in a hybrid quantum dot˘metal nanosystem: Mollow triplet of a quantum dot near a metal nanoparticle. Phys. Rev. B 87, 205425 (2013)

    Article  ADS  Google Scholar 

  22. O.D. Miller, A.G. Polimeridis, M.T. Homer Reid, C.W. Hsu, B.G. DeLacy, J.D. Joannopoulos, M. Soljačić, S.G. Johnson, Fundamental limits to optical response in absorptive systems. Opt. Express 24(4), 3329 (2016)

    Google Scholar 

  23. S. Franke, S. Hughes, M.K. Dezfouli, P.T. Kristensen, K. Busch, A. Knorr, M. Richter, Quantization of quasinormal modes for open cavities and plasmonic cavity quantum electrodynamics. Phys. Rev. Lett. 122, 213901 (2019)

    Article  ADS  Google Scholar 

  24. S. Franke, J. Ren, S. Hughes, M. Richter, Fluctuation-dissipation theorem and fundamental photon commutation relations in lossy nanostructures using quasinormal modes. Phys. Rev. Res. 2, 033332 (2020)

    Article  Google Scholar 

  25. L. Novotny, B. Hecht, Principles of Nano-Optics (Cambridge University Press, Cambridge, 2006)

    Book  Google Scholar 

  26. L. Knöll, S. Scheel, D.-G. Welsch, QED in dispersing and absorbing media (2000), arXiv:quant-ph/0006121

    Google Scholar 

  27. C. Carlson, D. Dalacu, C. Gustin, S. Haffouz, X. Wu, J. Lapointe, R.L. Williams, P.J. Poole, S. Hughes, Theory and experiments of coherent photon coupling in semiconductor nanowire waveguides with quantum dot molecules. Phys. Rev. B 99, 085311 (2019)

    Article  ADS  Google Scholar 

  28. M. Patterson, S. Hughes, S. Combrié, N.-V.-Quynh Tran, A. De Rossi, R. Gabet, Y. Jaouën, Disorder-induced coherent scattering in slow-light photonic crystal waveguides. Phys. Rev. Lett. 102, 253903 (2009)

    Google Scholar 

  29. V.S.C. Manga Rao, S. Hughes, Single quantum-dot Purcell factor and \(\beta \) factor in a photonic crystal waveguide. Phys. Rev. B 75(20), 205437 (2007)

    Google Scholar 

  30. H.M.K. Wong, M.K. Dezfouli, L. Sun, S. Hughes, A.S. Helmy, Nanoscale plasmonic slot waveguides for enhanced Raman spectroscopy. Phys. Rev. B 98, 085124 (2018)

    Article  ADS  Google Scholar 

  31. R. Sammut, A.W. Snyder, Leaky modes on a dielectric waveguide: orthogonality and excitation. Appl. Opt. 15(4), 1040 (1976)

    Google Scholar 

  32. P. Yao, C. Van Vlack, A. Reza, M. Patterson, M.M. Dignam, S. Hughes, Ultrahigh purcell factors and lamb shifts in slow-light metamaterial waveguides. Phys. Rev. B 80, 195106 (2009)

    Article  ADS  Google Scholar 

  33. A. Reza, M.M. Dignam, S. Hughes, Can light be stopped in realistic metamaterials? Nature 455(7216), E10–E11 (2008)

    Article  ADS  Google Scholar 

  34. P.A. Martin, Multiple Scattering: Interaction of Time-Harmonic Waves with N Obstacles. Number 107 (Cambridge University Press, Cambridge, 2006)

    Google Scholar 

  35. P.T. Kristensen, R.-C. Ge, S. Hughes, Normalization of quasinormal modes in leaky optical cavities and plasmonic resonators. Phys. Rev. A 92(5), 053810 (2015)

    Google Scholar 

  36. P.T. Leung, S.Y. Liu, K. Young, Completeness and orthogonality of quasinormal modes in leaky optical cavities. Phys. Rev. A 49(4), 3057–3067 (1994)

    Article  ADS  Google Scholar 

  37. P.T. Kristensen, S. Hughes, Modes and mode volumes of leaky optical cavities and plasmonic nanoresonators. ACS Photonics 1(1), 2–10 (2014)

    Article  Google Scholar 

  38. E.A. Muljarov, W. Langbein, R. Zimmermann, Brillouin-Wigner perturbation theory in open electromagnetic systems. EPL (Europhys. Lett.) 92(5), 50010 (2010)

    Google Scholar 

  39. C. Sauvan, J.P. Hugonin, I.S. Maksymov, P. Lalanne, Theory of the spontaneous optical emission of nanosize photonic and plasmon resonators. Phys. Rev. Lett. 110, 237401 (2013)

    Article  ADS  Google Scholar 

  40. W. Yan, R. Faggiani, P. Lalanne, Rigorous modal analysis of plasmonic nanoresonators. Phys. Rev. B 97(20), 205422 (2018)

    Google Scholar 

  41. J.-P. Berenger, A perfectly matched layer for the absorption of electromagnetic waves. J. Comput. Phys. 114(2), 185–200 (1994)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  42. P.T. Kristensen, C. Van Vlack, S. Hughes, Generalized effective mode volume for leaky optical cavities. Opt. Lett. 37(10), 1649–1651 (2012)

    Article  ADS  Google Scholar 

  43. P.T. Kristensen, K. Herrmann, F. Intravaia, K. Busch, Modeling electromagnetic resonators using quasinormal modes. Adv. Opt. Photonics 12(3), 612 (2020)

    Google Scholar 

  44. B. Stout, R. Colom, N. Bonod, R.C. McPhedran, Spectral expansions of open and dispersive optical systems: Gaussian regularization and convergence. New J. Phys. 23(8), 083004 (2021)

    Google Scholar 

  45. K.M. Lee, P.T. Leung, K.M. Pang, Dyadic formulation of morphology-dependent resonances. I. Completeness relation. JOSA B 16(9), 1409–1417 (1999)

    MathSciNet  Google Scholar 

  46. B. Vial, F. Zolla, A. Nicolet, M. Commandré, Quasimodal expansion of electromagnetic fields in open two-dimensional structures. Phys. Rev. A 89, 023829 (2014)

    Article  ADS  Google Scholar 

  47. M.K. Dezfouli, R. Gordon, S. Hughes, Modal theory of modified spontaneous emission of a quantum emitter in a hybrid plasmonic photonic-crystal cavity system. Phys. Rev. A 95, 013846 (2017)

    Article  ADS  Google Scholar 

  48. J.R. de Lasson, P.T. Kristensen, J. Mørk, N. Gregersen, Semianalytical quasi-normal mode theory for the local density of states in coupled photonic crystal cavity–waveguide structures. Opt. Lett. 40(24), 5790 (2015)

    Google Scholar 

  49. M. Perrin, Eigen-energy effects and non-orthogonality in the quasi-normal mode expansion of Maxwell equations. Opt. Express 24(24), 27137–27151 (2016)

    Article  ADS  Google Scholar 

  50. Q. Bai, M. Perrin, C. Sauvan, J.-P. Hugonin, P. Lalanne, Efficient and intuitive method for the analysis of light scattering by a resonant nanostructure. Opt. Express 21(22), 27371–27382 (2013)

    Article  ADS  Google Scholar 

  51. A.-W. El-Sayed, S. Hughes, Quasinormal-mode theory of elastic Purcell factors and Fano resonances of optomechanical beams. Phys. Rev. Res. 2, 043290 (2020)

    Article  Google Scholar 

  52. J. Ren, S. Franke, S. Hughes, Quasinormal modes, local density of states, and classical purcell factors for coupled loss-gain resonators. Phys. Rev. X 11, 041020 (2021)

    Google Scholar 

  53. R.-C. Ge, P.T. Kristensen, J.F. Young, S. Hughes, Quasinormal mode approach to modelling light-emission and propagation in nanoplasmonics. New J. Phys. 16(11), 113048 (2014)

    Google Scholar 

  54. J. Ren, S. Franke, A. Knorr, M. Richter, S. Hughes, Near-field to far-field transformations of optical quasinormal modes and efficient calculation of quantized quasinormal modes for open cavities and plasmonic resonators. Phys. Rev. B 101(20), 205402 (2020)

    Google Scholar 

  55. M. Ismail Abdelrahman, B. Gralak, Completeness and divergence-free behavior of the quasi-normal modes using causality principle. OSA Continuum 1(2), 340–348 (2018)

    Article  Google Scholar 

  56. E.M. Purcell, Spontaneous emission probabilities at radio frequencies. Phys. Rev. 69, 681 (1946)

    Google Scholar 

  57. M.K. Schmidt, L.G. Helt, C.G. Poulton, M.J. Steel, Elastic Purcell effect. Phys. Rev. Lett. 121, 064301 (2018)

    Article  ADS  Google Scholar 

  58. R.-C. Ge, J.F. Young, S. Hughes, Quasi-normal mode approach to the local-field problem in quantum optics. Optica 2(3), 246 (2015)

    Google Scholar 

  59. K.G. Cognée, W. Yan, F. La China, D. Balestri, F. Intonti, M. Gurioli, A.F. Koenderink, P. Lalanne, Mapping complex mode volumes with cavity perturbation theory. Optica 6(3), 269–273 (2019)

    Article  ADS  Google Scholar 

  60. R.-C. Ge, S. Hughes, Quasinormal mode theory and modelling of electron energy loss spectroscopy for plasmonic nanostructures. J. Opt. 18(5), 054002 (2016)

    Google Scholar 

  61. R.-C. Ge, S. Hughes, Design of an efficient single photon source from a metallic nanorod dimer: A quasi-normal mode finite-difference time-domain approach. Opt. Lett. 39(14), 4235–4238 (2014)

    Article  ADS  Google Scholar 

  62. M.J. Barth, R.R. McLeod, R.W. Ziolkowski, A near and far-field projection algorithm for finite-difference time-domain codes. J. Electromagn. Waves Appl. 6(1–4), 5–18 (1992)

    Article  ADS  Google Scholar 

  63. W. Vogel, D.-G. Welsch, Quantum Optics (John Wiley & Sons, Hoboken, 2006)

    Book  MATH  Google Scholar 

  64. S. Scheel, L. Knöll, D.-G. Welsch, QED commutation relations for inhomogeneous kramers-kronig dielectrics. Phys. Rev. A 58(1), 700 (1998)

    Google Scholar 

  65. S. Franke, M. Richter, J. Ren, A. Knorr, S. Hughes, Quantized quasinormal-mode description of nonlinear cavity-QED effects from coupled resonators with a Fano-like resonance. Phys. Rev. Res. 2, 033456 (2020)

    Article  Google Scholar 

  66. S. Hughes, S. Franke, C. Gustin, M.K. Dezfouli, A. Knorr, M. Richter, Theory and limits of on-demand single-photon sources using plasmonic resonators: a quantized quasinormal mode approach. ACS Photonics 6(8), 2168–2180 (2019)

    Article  Google Scholar 

  67. J.I. Cirac, Interaction of a two-level atom with a cavity mode in the bad-cavity limit. Phys. Rev. A 46, 4354–4362 (1992)

    Article  ADS  Google Scholar 

  68. P.T. Kristensen, J.R. de Lasson, M. Heuck, N. Gregersen, J. Mørk, On the theory of coupled modes in optical cavity-waveguide structures. J. Lightwave Technol. 35(19), 4247–4259 (2017)

    Article  ADS  Google Scholar 

  69. B. Vial, Y. Hao, A coupling model for quasi-normal modes of photonic resonators. J. Opt. 18(11), 115004 (2016)

    Google Scholar 

  70. K.G. Cognée, Hybridization of open photonic resonators. PhD dissertation, University of Amsterdam (2020)

    Google Scholar 

  71. C. Tao, J. Zhu, Y. Zhong, H. Liu, Coupling theory of quasinormal modes for lossy and dispersive plasmonic nanoresonators. Phys. Rev. B 102(4), 045430 (2020)

    Google Scholar 

  72. M.-A. Miri, A. Alù, Exceptional points in optics and photonics. Science 363(6422), eaar7709 (2019)

    Google Scholar 

  73. A. Pick, B. Zhen, O.D. Miller, C.W. Hsu, F. Hernandez, A.W. Rodriguez, M. Soljačić, S.G. Johnson, General theory of spontaneous emission near exceptional points. Opt. Express 25(11), 12325 (2017)

    Google Scholar 

  74. H.-Z. Chen, T. Liu, H.-Y. Luan, R.-J. Liu, X.-Y. Wang, X.-F. Zhu, Y.-B. Li, Z.-M. Gu, S.-J. Liang, H. Gao, L. Lu, L. Ge, S. Zhang, J. Zhu, R.-M. Ma, Revealing the missing dimension at an exceptional point. Nat. Phys. 16(5), 571–578 (2020)

    Article  Google Scholar 

  75. J. Ren, S. Franke, S. Hughes, Connecting classical and quantum mode theories for coupled lossy cavity resonators using quasinormal modes. ACS Photonics 9(1), 138–155 (2022)

    Article  Google Scholar 

  76. P. Yao, S. Hughes, Macroscopic entanglement and violation of Bell’s inequalities between two spatially separated quantum dots in a planar photonic crystal system. Opt. Express 17(14), 11505–11514 (2009)

    Article  ADS  Google Scholar 

  77. G.S. Agarwal, Quantum Optics (Cambridge University Press, Cambridge, 2013)

    MATH  Google Scholar 

  78. H.M. Doeleman, E. Verhagen, A. Femius Koenderink, Antenna–cavity hybrids: matching polar opposites for Purcell enhancements at any linewidth. ACS Photonics 3(10), 1943–1951 (2016)

    Article  Google Scholar 

  79. A. Mazzei, S. Götzinger, L. de S. Menezes, G. Zumofen, O. Benson, V. Sandoghdar, Controlled coupling of counterpropagating whispering-gallery modes by a single rayleigh scatterer: a classical problem in a quantum optical light. Phys. Rev. Lett. 99(17), 173603 (2007)

    Google Scholar 

  80. I. Teraoka, S. Arnold, Resonance shifts of counterpropagating whispering-gallery modes: degenerate perturbation theory and application to resonator sensors with axial symmetry. J. Opt. Soc. Am. B 26(7), 1321 (2009)

    Google Scholar 

  81. K.G. Cognée, H.M. Doeleman, P. Lalanne, A.F. Koenderink, Cooperative interactions between nano-antennas in a high-Q cavity for unidirectional light sources. Light Sci. Appl. 8(1), 115 (2019)

    Google Scholar 

  82. D.P. Fussell, M.M. Dignam, Quasimode-projection approach to quantum-dot–photon interactions in photonic-crystal-slab coupled-cavity systems. Phys. Rev. A 77, 053805 (2008)

    Article  ADS  Google Scholar 

  83. C. Vendromin, M.M. Dignam, Nonlinear optical generation of entangled squeezed states in lossy nonorthogonal quasimodes: an analytic solution, e-print: arXiv:2210.06521 (2022)

    Google Scholar 

  84. S. Franke, J. Ren, M. Richter, A. Knorr, S. Hughes, Fermi’s golden rule for spontaneous emission in absorptive and amplifying media. Phys. Rev. Lett. 127, 013602 (2021)

    Article  MathSciNet  ADS  Google Scholar 

  85. S. Franke, J. Ren, S. Hughes, Quantized quasinormal-mode theory of coupled lossy and amplifying resonators. Phys. Rev. A 105, 023702 (2022)

    Article  MathSciNet  ADS  Google Scholar 

  86. J. Ren, S. Franke, S. Hughes, Quasinormal mode theory of chiral power flow from linearly polarized dipole emitters coupled to index-modulated microring resonators close to an exceptional point. ACS Photonics 9(4), 1315–1326 (2022)

    Article  Google Scholar 

  87. C. Carlson, R. Salzwedel, M. Selig, A. Knorr, S. Hughes, Strong coupling regime and hybrid quasinormal modes from a single plasmonic resonator coupled to a transition metal dichalcogenide monolayer. Phys. Rev. B 104, 125424 (2021)

    Article  ADS  Google Scholar 

  88. E.V. Denning, M. Wubs, N. Stenger, J. Mørk, P.T. Kristensen, Quantum theory of two-dimensional materials coupled to electromagnetic resonators. Phys. Rev. B 105, 085306 (2022)

    Article  ADS  Google Scholar 

  89. W. Salmon, C. Gustin, A. Settineri, O. Di Stefano, D. Zueco, S. Savasta, F. Nori, S. Hughes, Gauge-independent emission spectra and quantum correlations in the ultrastrong coupling regime of open system cavity-QED. Nanophotonics 11(8), 1573–1590 (2022)

    Article  Google Scholar 

  90. C. Gustin, S. Franke, S. Hughes, Gauge-invariant theory of truncated quantum light-matter interactions in arbitrary media. Phys. Rev. A 107, 013722 (2023)

    Article  MathSciNet  ADS  Google Scholar 

Download references

Acknowledgements

We acknowledge Queen’s University and the Natural Sciences and Engineering Research Council of Canada for the financial support and CMC Microsystems for the provision of COMSOL Multiphysics to facilitate this research. We also acknowledge support from the Alexander von Humboldt Foundation through a Humboldt Research Award. We thank Reuven Gordon, Philip Kristensen, Chris Gustin, Chelsea Carlson, Marten Richter, and Andreas Knorr for their useful comments and collaborations related to some of the work presented in this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen Hughes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ren, J., Franke, S., Hughes, S. (2023). Quasinormal Mode Theories and Applications in Classical and Quantum Nanophotonics. In: Gordon, R. (eds) Advances in Near-Field Optics. Springer Series in Optical Sciences, vol 244. Springer, Cham. https://doi.org/10.1007/978-3-031-34742-9_3

Download citation

Publish with us

Policies and ethics