Skip to main content

Fundamental Limits to Near-Field Optical Response

  • Chapter
  • First Online:
Advances in Near-Field Optics

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 244))

Abstract

Near-field optics is an exciting frontier of photonics and plasmonics. The tandem of strongly localized fields and enhanced emission rates offers significant opportunities for wide-ranging applications while also creating the following basic questions: How large can such enhancements be? To what extent do material losses inhibit optimal response? Over what bandwidths can these effects be sustained? This chapter surveys theoretical techniques for answering these questions. We start with physical intuition and mathematical definitions of the response functions of interest (LDOS, CDOS, SERS, NFRHT, etc.), after which we describe the general theoretical techniques for bounding such functions. Finally, we apply those techniques specifically to near-field optics, for which we describe known bounds, optimal designs, and open questions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S.A. Maier, H.A. Atwater, Plasmonics: localization and guiding of electromagnetic energy in metal/dielectric structures. J. Appl. Phys. 98(1), 10 (2005)

    Google Scholar 

  2. E. Betzig, R.J. Chichester, Single molecules observed by near-field scanning optical microscopy. Science 262(5138), 1422–1425 (1993)

    Article  ADS  Google Scholar 

  3. T. Taminiau, F. Stefani, F.B. Segerink, N. Van Hulst, Optical antennas direct single-molecule emission. Nat. Photonics 2(4), 234–237 (2008)

    Article  Google Scholar 

  4. M. Khajavikhan, A. Simic, M. Katz, J. Lee, B. Slutsky, A. Mizrahi, V. Lomakin, Y. Fainman, Thresholdless nanoscale coaxial lasers. Nature 482(7384), 204–207 (2012)

    Article  ADS  Google Scholar 

  5. R.F. Oulton, V.J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, X. Zhang, Plasmon lasers at deep subwavelength scale. Nature 461(7264), 629–632 (2009)

    Article  ADS  Google Scholar 

  6. I. Maksymov, M. Besbes, J.-P. Hugonin, J. Yang, A. Beveratos, I. Sagnes, I. Robert-Philip, P. Lalanne, Metal-coated nanocylinder cavity for broadband nonclassical light emission. Phys. Rev. Lett. 105(18), 180502 (2010)

    Google Scholar 

  7. H. Shim, L. Fan, S.G. Johnson, O.D. Miller, Fundamental limits to near-field optical response over any bandwidth. Phys. Rev. X 9, 011043 (2019)

    Google Scholar 

  8. K. Joulain, R. Carminati, J.-P. Mulet, J.-J. Greffet, Definition and measurement of the local density of electromagnetic states close to an interface. Phys. Rev. B: Condens. Matter Mater. Phys. 68, 245405 (2003)

    Article  ADS  Google Scholar 

  9. E. Yablonovitch, Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett. 58(20), 2059 (1987)

    Google Scholar 

  10. E. Yablonovitch, Photonic crystals. J. Mod. Opt. 41(2), 173–194 (1994)

    Article  ADS  Google Scholar 

  11. J.D. Joannopoulos, S.G. Johnson, J.N. Winn, R.D. Meade, Photonic Crystals: Molding the Flow of Light (Princeton University Press, Princeton, 2011)

    Book  MATH  Google Scholar 

  12. E.M. Purcell, Spontaneous emission probabilities at radio frequencies. Phys. Rev. 69, 681 (1946)

    Google Scholar 

  13. M. Pelton, J. Vukovic, G.S. Solomon, A. Scherer, Y. Yamamoto, Three-dimensionally confined modes in micropost microcavities: quality factors and purcell factors. IEEE J. Quantum Electron. 38(2), 170–177 (2002)

    Article  ADS  Google Scholar 

  14. T. Kippenberg, S. Spillane, K. Vahala, Demonstration of ultra-high-q small mode volume toroid microcavities on a chip. Appl. Phys. Lett. 85(25), 6113–6115 (2004)

    Article  ADS  Google Scholar 

  15. N. Stoltz, M. Rakher, S. Strauf, A. Badolato, D. Lofgreen, P. Petroff, L. Coldren, D. Bouwmeester, High-quality factor optical microcavities using oxide apertured micropillars. Appl. Phys. Lett. 87(3), 031105 (2005)

    Google Scholar 

  16. J.T. Robinson, C. Manolatou, L. Chen, M. Lipson, Ultrasmall mode volumes in dielectric optical microcavities. Phys. Rev. Lett. 95, 143901 (2005)

    Article  ADS  Google Scholar 

  17. X. Liang, S.G. Johnson, Formulation for scalable optimization of microcavities via the frequency-averaged local density of states. Opt. Express 21, 30812–30841 (2013)

    Article  ADS  Google Scholar 

  18. H. Choi, M. Heuck, D. Englund, Self-similar nanocavity design with ultrasmall mode volume for single-photon nonlinearities. Phys. Rev. Lett. 118, 223605 (2017)

    Article  ADS  Google Scholar 

  19. S. Hu, M. Khater, R. Salas-Montiel, E. Kratschmer, S. Engelmann, W.M. Green, S.M. Weiss, Experimental realization of deep-subwavelength confinement in dielectric optical resonators. Sci. Adv. 4(8) (2018)

    Google Scholar 

  20. A. Taflove, A. Oskooi, S.G. Johnson, Advances in FDTD Computational Electrodynamics: Photonics and Nanotechnology (Artech house, Norwood, 2013)

    Google Scholar 

  21. E.N. Economou, Green’s Functions in Quantum Physics (Springer Science & Business Media, Berlin, 2006)

    Book  Google Scholar 

  22. F. Wijnands, J.B. Pendry, F.J. Garcia-Vidal, P.M. Bell, P.J. Roberts, L.M. Moreno, Green’s functions for Maxwell’s equations: application to spontaneous emission. Opt. Quantum Electron. 29(2), 199–216 (1997)

    Article  Google Scholar 

  23. Y. Xu, R.K. Lee, A. Yariv, Quantum analysis and the classical analysis of spontaneous emission in a microcavity. Phys. Rev. A 61(3), 033807 (2000)

    Google Scholar 

  24. C. Sauvan, J.P. Hugonin, I.S. Maksymov, P. Lalanne, Theory of the spontaneous optical emission of nanosize photonic and plasmon resonators. Phys. Rev. Lett. 110, 237401 (2013)

    Article  ADS  Google Scholar 

  25. P. Lalanne, W. Yan, K. Vynck, C. Sauvan, J.-P. Hugonin, Light interaction with photonic and plasmonic resonances. Laser Photon. Rev. 12, 1700113 (2018)

    Article  ADS  Google Scholar 

  26. H. Zhang, O.D. Miller, Quasinormal coupled mode theory. arXiv:2010.08650 (2020)

    Google Scholar 

  27. D. Pellegrino, D. Balestri, N. Granchi, M. Ciardi, F. Intonti, F. Pagliano, A.Y. Silov, F.W. Otten, T. Wu, K. Vynck, et al., Non-lorentzian local density of states in coupled photonic crystal cavities probed by near-and far-field emission. Phys. Rev. Lett. 124(12), 123902 (2020)

    Google Scholar 

  28. F.G. De Abajo, Optical excitations in electron microscopy. Rev. Mod. Phys. 82(1), 209 (2010)

    Google Scholar 

  29. A. Cazé, R. Pierrat, R. Carminati, Spatial coherence in complex photonic and plasmonic systems. Phys. Rev. Lett. 110, 063903 (2013)

    Article  ADS  Google Scholar 

  30. R. Carminati, M. Gurioli, Purcell effect with extended sources: the role of the cross density of states. Opt. Express 30, 16174–16183 (2022)

    Article  ADS  Google Scholar 

  31. A. Canaguier-Durand, R. Pierrat, R. Carminati, Cross density of states and mode connectivity: probing wave localization in complex media. Phys. Rev. A 99, 013835 (2019)

    Article  ADS  Google Scholar 

  32. V. Krachmalnicoff, E. Castanié, Y. De Wilde, R. Carminati, Fluctuations of the local density of states probe localized surface plasmons on disordered metal films. Phys. Rev. Lett. 105, 183901 (2010)

    Article  ADS  Google Scholar 

  33. H.T. Dung, L. Knöll, D.-G. Welsch, Intermolecular energy transfer in the presence of dispersing and absorbing media. Phys. Rev. A 65, 043813 (2002)

    Article  ADS  Google Scholar 

  34. D. Martín-Cano, L. Martín-Moreno, F.J. García-Vidal, E. Moreno, Resonance energy transfer and superradiance mediated by plasmonic nanowaveguides. Nano Lett. 10, 3129–3134 (2010)

    Article  ADS  Google Scholar 

  35. J.A. Gonzaga-Galeana, J.R. Zurita-Sánchez, A revisitation of the Förster energy transfer near a metallic spherical nanoparticle: (1) efficiency enhancement or reduction? (2) the control of the Förster radius of the unbounded medium. (3) the impact of the local density of states. J. Chem. Phys. 139(24), 244302 (2013)

    Google Scholar 

  36. J. Kästel, M. Fleischhauer, Suppression of spontaneous emission and superradiance over macroscopic distances in media with negative refraction. Phys. Rev. A 71(1), 011804 (2005)

    Google Scholar 

  37. J. Kästel, M. Fleischhauer, Quantum electrodynamics in media with negative refraction. Laser Phys. 15(1), 135–145 (2005)

    Google Scholar 

  38. D. Dzsotjan, A.S. Sørensen, M. Fleischhauer, Quantum emitters coupled to surface plasmons of a nanowire: a Green’s function approach. Phys. Rev. B 82(7), 075427 (2010)

    Google Scholar 

  39. D. Martín-Cano, A. González-Tudela, L. Martín-Moreno, F.J. García-Vidal, C. Tejedor, E. Moreno, Dissipation-driven generation of two-qubit entanglement mediated by plasmonic waveguides. Phys. Rev. B 84, 235306 (2011)

    Article  ADS  Google Scholar 

  40. A. Gonzalez-Tudela, D. Martin-Cano, E. Moreno, L. Martin-Moreno, C. Tejedor, F.J. Garcia-Vidal, Entanglement of two qubits mediated by one-dimensional plasmonic waveguides. Phys. Rev. Lett. 106, 020501 (2011)

    Article  ADS  Google Scholar 

  41. A. Otto, I. Mrozek, H. Grabhorn, W. Akemann, Surface-enhanced raman scattering. J. Phys. Condens. Matt. 4(5), 1143 (1992)

    Google Scholar 

  42. S. Nie, S.R. Emory, Probing single molecules and single nanoparticles by surface-enhanced raman scattering. Science 275(5303), 1102–1106 (1997)

    Article  Google Scholar 

  43. K. Kneipp, Y. Wang, H. Kneipp, L.T. Perelman, I. Itzkan, R.R. Dasari, M.S. Feld, Single molecule detection using surface-enhanced raman scattering (sers). Phys. Rev. Lett. 78(9), 1667 (1997)

    Google Scholar 

  44. K. Kneipp, H. Kneipp, I. Itzkan, R.R. Dasari, M.S. Feld, Surface-enhanced raman scattering and biophysics. J. Phys. Condens. Matt. 14(18), R597 (2002)

    Google Scholar 

  45. D.A. Long, Raman Spectroscopy (McGraw-Hill, New York, 1977)

    Google Scholar 

  46. J. Michon, M. Benzaouia, W. Yao, O.D. Miller, S.G. Johnson, Limits to surface-enhanced raman scattering near arbitrary-shape scatterers. Opt. Express 27, 35189–35202 (2019)

    Article  ADS  Google Scholar 

  47. J.H. Lienhard IV, J.H. Lienhard V, A Heat Transfer Textbook, 4th ed. (Dover, Downers Grove, 2011)

    Google Scholar 

  48. D. Polder, M. Van Hove, Theory of radiative heat transfer between closely spaced bodies. Phys. Rev. B: Condens. Matter Mater. Phys. 4(10), 3303–3314 (1971)

    Article  ADS  Google Scholar 

  49. S.M. Rytov, Y.A. Kravtsov, V.I. Tatarskii, Principles of Statistical Radiophysics (Springer, New York, 1988)

    Book  MATH  Google Scholar 

  50. S.-A. Biehs, M. Tschikin, R. Messina, P. Ben-Abdallah, Super-Planckian near-field thermal emission with phonon-polaritonic hyperbolic metamaterials. Appl. Phys. Lett. 102(13), 131106 (2013)

    Google Scholar 

  51. O.D. Miller, S.G. Johnson, A.W. Rodriguez, Effectiveness of thin films in lieu of hyperbolic metamaterials in the near field. Phys. Rev. Lett. 112, 157402 (2014)

    Article  ADS  Google Scholar 

  52. S. Shen, A. Narayanaswamy, G. Chen, Surface phonon polaritons mediated energy transfer between nanoscale gaps. Nano Lett. 9, 2909–2913 (2009)

    Article  ADS  Google Scholar 

  53. E. Rousseau, A. Siria, G. Jourdan, S. Volz, F. Comin, J. Chevrier, J.-J. Greffet, Radiative heat transfer at the nanoscale. Nat. Photonics 3(9), 514–517 (2009)

    Article  ADS  Google Scholar 

  54. B. Song, Y. Ganjeh, S. Sadat, D. Thompson, A. Fiorino, V. Fernández-Hurtado, J. Feist, F.J. Garcia-Vidal, J.C. Cuevas, P. Reddy, et al., Enhancement of near-field radiative heat transfer using polar dielectric thin films. Nat. Nanotechnol. 10(3), 253–258 (2015)

    Article  ADS  Google Scholar 

  55. K. Kim, B. Song, V. Fernández-Hurtado, W. Lee, W. Jeong, L. Cui, D. Thompson, J. Feist, M.T.H. Reid, F.J. García-Vidal, J.C. Cuevas, E. Meyhofer, P. Reddy, Radiative heat transfer in the extreme near field. Nature 528, 387–391 (2015)

    Article  ADS  Google Scholar 

  56. J.J. Loomis, H.J. Maris, Theory of heat transfer by evanescent electromagnetic waves. Phys. Rev. B: Condens. Matter Mater. Phys. 50(24), 18517–18524 (1994)

    Article  ADS  Google Scholar 

  57. J.B. Pendry, Radiative exchange of heat between nanostructures. J. Phys. Condens. Matter 11(35), 6621–6633 (1999)

    Article  ADS  Google Scholar 

  58. K. Joulain, J.-P. Mulet, F. Marquier, R. Carminati, J.-J. Greffet, Surface electromagnetic waves thermally excited: radiative heat transfer, coherence properties and casimir forces revisited in the near field. Surf. Sci. Rep. 57, 59–112 (2005)

    Article  ADS  Google Scholar 

  59. P. Ben-Abdallah, K. Joulain, J. Drevillon, G. Domingues, Near-field heat transfer mediated by surface wave hybridization between two films. J. Appl. Phys. 106(4), 44306 (2009)

    Google Scholar 

  60. S.-A. Biehs, E. Rousseau, J.-J. Greffet, Mesoscopic description of radiative heat transfer at the nanoscale. Phys. Rev. Lett. 105, 234301 (2010)

    Article  ADS  Google Scholar 

  61. M. Krüger, T. Emig, M. Kardar, Nonequilibrium electromagnetic fluctuations: heat transfer and interactions.’ Phys. Rev. Lett. 106, 210404 (2011)

    Article  ADS  Google Scholar 

  62. J.P. Mulet, K. Joulain, R. Carminati, J.J. Greffet, Nanoscale radiative heat transfer between a small particle and a plane surface. Appl. Phys. Lett. 78(19), 2931–2933 (2001)

    Article  ADS  Google Scholar 

  63. A.W. Rodriguez, O. Ilic, P. Bermel, I. Celanovic, J.D. Joannopoulos, M. Soljačić, S.G. Johnson, Frequency-Selective Near-Field radiative heat transfer between photonic crystal slabs: a computational approach for arbitrary geometries and materials. Phys. Rev. Lett. 107, 114302 (2011)

    Article  ADS  Google Scholar 

  64. D. Dalvit, P. Milonni, D. Roberts, F. Da Rosa, Casimir Physics, vol. 834 (Springer, Berlin, 2011)

    MATH  Google Scholar 

  65. S.Y. Buhmann, Dispersion Forces I: Macroscopic Quantum Electrodynamics and Ground-State Casimir, Casimir–Polder and van der Waals forces, vol. 247 (Springer, Berlin, 2013)

    Google Scholar 

  66. A.W. Rodriguez, F. Capasso, S.G. Johnson, The casimir effect in microstructured geometries. Nat. Photonics 5(4), 211–221 (2011)

    Article  ADS  Google Scholar 

  67. P.S. Venkataram, S. Molesky, P. Chao, A.W. Rodriguez, Fundamental limits to attractive and repulsive casimir-polder forces. Phys. Rev. A 101(5), 052115 (2020)

    Google Scholar 

  68. L. Zhu, S. Fan, Persistent directional current at equilibrium in nonreciprocal many-body near field electromagnetic heat transfer. Phys. Rev. Lett. 117(13), 134303 (2016)

    Google Scholar 

  69. A. Raman, S. Fan, Photonic band structure of dispersive metamaterials formulated as a hermitian eigenvalue problem. Phys. Rev. Lett. 104, 087401 (2010)

    Article  ADS  Google Scholar 

  70. T. Wu, M. Gurioli, P. Lalanne, Nanoscale light confinement: the q’s and v’s. ACS Photonics 8(6), 1522–1538 (2021)

    Article  Google Scholar 

  71. C. Sauvan, T. Wu, R. Zarouf, E.A. Muljarov, P. Lalanne, Normalization, orthogonality, and completeness of quasinormal modes of open systems: the case of electromagnetism. Opt. Express 30(5), 6846–6885 (2022)

    Article  ADS  Google Scholar 

  72. T. Kato, Perturbation Theory for Linear Operators, vol. 132 (Springer Science & Business Media, Berlin, 2013)

    Google Scholar 

  73. D.C. Brody, E.-M. Graefe, Information geometry of complex hamiltonians and exceptional points. Entropy 15(9), 3361–3378 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  74. W. Shockley, H.J. Queisser, Detailed balance limit of efficiency of p-n junction solar cells. J. Appl. Phys. 32, 510–519 (1961)

    Article  ADS  Google Scholar 

  75. O.D. Miller, E. Yablonovitch, S.R. Kurtz, Strong internal and external luminescence as solar cells approach the Shockley-Queisser limit. IEEE J. Photovoltaics 2, 303–311 (2012)

    Article  Google Scholar 

  76. E. Yablonovitch, Statistical ray optics. J. Opt. Soc. Am. 72(7), 899–907 (1982)

    Article  ADS  Google Scholar 

  77. H.A. Wheeler, Fundamental limitations of small antennas. Proc. IRE 35, 1479–1484 (1947)

    Article  Google Scholar 

  78. L.J. Chu, Physical limitations of Omni-Directional antennas. J. Appl. Phys. 19(12), 1163–1175 (1948)

    Article  ADS  Google Scholar 

  79. R.F. Harrington, Effect of antenna size on gain, bandwidth, and efficiency. J. Res. Natl. Bur. Stand. Sect. D Radio Propag. 64D, 1 (1960)

    Article  MATH  Google Scholar 

  80. D.F. Sievenpiper, D.C. Dawson, M.M. Jacob, T. Kanar, S. Kim, J. Long, R.G. Quarfoth, Experimental validation of performance limits and design guidelines for small antennas. IEEE Trans. Antennas Propag. 60, 8–19 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  81. D.J. Bergman, Exactly solvable microscopic geometries and rigorous bounds for the complex dielectric constant of a two-component composite material. Phys. Rev. Lett. 44(19), 1285–1287 (1980)

    Article  ADS  Google Scholar 

  82. G.W. Milton, Bounds on the complex dielectric constant of a composite material. Appl. Phys. Lett. 37(3), 300 (1980)

    Google Scholar 

  83. D.J. Bergman, Bounds for the complex dielectric constant of a two-component composite material. Phys. Rev. B 23(6), 3058–3065 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  84. G.W. Milton, Bounds on the complex permittivity of a two-component composite material. J. Appl. Phys. 52(1981), 5286–5293 (1981)

    Article  ADS  Google Scholar 

  85. G.W. Milton, Bounds on the transport and optical properties of a two-component composite material. J. Appl. Phys. 52(8), 5294–5304 (1981)

    Article  ADS  Google Scholar 

  86. C. Kern, O.D. Miller, G.W. Milton, Tight bounds on the effective complex permittivity of isotropic composites and related problems. Phys. Rev. Appl. 14, 054068 (2020)

    Article  ADS  Google Scholar 

  87. N. Fang, H. Lee, C. Sun, X. Zhang, Sub-diffraction-limited optical imaging with a silver superlens. Science 308, 534–537 (2005)

    Article  ADS  Google Scholar 

  88. R. Merlin, Radiationless electromagnetic interference: evanescent-field lenses and perfect focusing. Science 317, 927–929 (2007)

    Article  ADS  Google Scholar 

  89. C.W. McCutchen, Superresolution in microscopy and the Abbe resolution limit. J. Opt. Soc. Am. 57(10), 1190–1192 (1967)

    Article  ADS  Google Scholar 

  90. E.H.K. Stelzer, Beyond the diffraction limit? Nature 417, 806–807 (2002)

    Article  ADS  Google Scholar 

  91. N.I. Zheludev, What diffraction limit? Nat. Mat. 7(6), 420–422 (2008)

    Article  Google Scholar 

  92. D. Slepian, Prolate spheroidal wave functions, fourier analysis and uncertainty— I. Bell Syst. Tech. J. 40(1), 43–63 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  93. H.J. Landau, H.O. Pollak, Prolate spheroidal wave functions, fourier analysis and uncertainty—II. Bell Syst. Tech. J. 40(1), 65–84 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  94. P.J. Ferreira, A. Kempf, Superoscillations: faster than the nyquist rate. IEEE Trans. Sig. Proces. 54(10), 3732–3740 (2006)

    Article  ADS  MATH  Google Scholar 

  95. H. Shim, H. Chung, O.D. Miller, Maximal free-space concentration of electromagnetic waves. Phys. Rev. Appl. 14(1), 014007 (2020)

    Google Scholar 

  96. C.E. Shannon, W. Weaver, The Mathematical Theory of Communication (University of Illinois Press, Urbana, 1949)

    MATH  Google Scholar 

  97. T.M. Cover, Elements of Information Theory (John Wiley & Sons, Hoboken, 1999)

    Google Scholar 

  98. W.D. Heiss, The physics of exceptional points. J. Phys. A: Math. Theor. 45, 444016 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  99. M.-A. Miri, A. Alù, Exceptional points in optics and photonics. Science 363, eaar7709 (2019)

    Google Scholar 

  100. N. Bender, H. Yılmaz, Y. Bromberg, H. Cao, Creating and controlling complex light. APL Photonics 4, 110806 (2019)

    Article  ADS  Google Scholar 

  101. C.W. Hsu, B. Zhen, A.D. Stone, J.D. Joannopoulos, M. Soljačić, Bound states in the continuum. Nat. Rev. Mat. 1, 1–13 (2016)

    Google Scholar 

  102. R.G. Newton, Optical theorem and beyond. Am. J. Phys. 44(7), 639–642 (1976)

    Article  ADS  Google Scholar 

  103. J.D. Jackson, Classical Electrodynamics, 3rd ed. (John Wiley & Sons, Hoboken, 1999)

    MATH  Google Scholar 

  104. D.R. Lytle, P.S. Carney, J.C. Schotland, E. Wolf, Generalized optical theorem for reflection, transmission, and extinction of power for electromagnetic fields. Phys. Rev. E 71, 056610 (2005)

    Article  ADS  Google Scholar 

  105. Z. Kuang, O.D. Miller, Computational bounds to light–matter interactions via local conservation laws. Phys. Rev. Lett. 125, 263607 (2020)

    Article  ADS  Google Scholar 

  106. O.D. Miller, A.G. Polimeridis, M.T. Homer Reid, C.W. Hsu, B.G. DeLacy, J.D. Joannopoulos, M. Soljacic, S.G. Johnson, Fundamental limits to optical response in absorptive systems. Opt. Express 24, 3329–3364 (2016)

    Article  ADS  Google Scholar 

  107. O.D. Miller, O. Ilic, T. Christensen, M.T.H. Reid, H.A. Atwater, J.D. Joannopoulos, M. Soljacic, S.G. Johnson, Limits to the optical response of graphene and two-dimensional materials. Nano Lett. 17, 5408–5415 (2017)

    Article  ADS  Google Scholar 

  108. Y. Ivanenko, M. Gustafsson, S. Nordebo, Optical theorems and physical bounds on absorption in lossy media. Opt. Express 27, 34323–34342 (2019)

    Article  ADS  Google Scholar 

  109. S. Nordebo, G. Kristensson, M. Mirmoosa, S. Tretyakov, Optimal plasmonic multipole resonances of a sphere in lossy media. Phys. Rev. B Condens. Matt. 99, 054301 (2019)

    Article  ADS  Google Scholar 

  110. Y. Yang, O.D. Miller, T. Christensen, J.D. Joannopoulos, M. Soljacic, Low-loss plasmonic dielectric nanoresonators. Nano Lett. 17, 3238–3245 (2017)

    Article  ADS  Google Scholar 

  111. O.D. Miller, S.G. Johnson, A.W. Rodriguez, Shape-independent limits to near-field radiative heat transfer. Phys. Rev. Lett. 115, 204302 (2015)

    Article  ADS  Google Scholar 

  112. Y. Yang, A. Massuda, C. Roques-Carmes, S.E. Kooi, T. Christensen, S.G. Johnson, J.D. Joannopoulos, O.D. Miller, I. Kaminer, M. Soljacic, Maximal spontaneous photon emission and energy loss from free electrons. Nat. Phys. 14, 894–899 (2018)

    Article  Google Scholar 

  113. O.D. Miller, K. Park, R.A. Vaia, Towards maximum optical efficiency of ensembles of colloidal nanorods. Opt. Express 30, 25061–25077 (2022)

    Article  ADS  Google Scholar 

  114. L. Tsang, J.A. Kong, K.-H. Ding, Scattering of Electromagnetic Waves: Theories and Applications (John Wiley & Sons, Inc., New York, 2000)

    Book  Google Scholar 

  115. S. Molesky, P. Chao, A.W. Rodriguez, Hierarchical mean-field T operator bounds on electromagnetic scattering: upper bounds on near-field radiative purcell enhancement. Phys. Rev. Res. 2, 043398 (2020)

    Article  Google Scholar 

  116. Z. Kuang, L. Zhang, O.D. Miller, Maximal single-frequency electromagnetic response. Optica 7, 1746–1757 (2020)

    Article  ADS  Google Scholar 

  117. R.E. Hamam, A. Karalis, J.D. Joannopoulos, M. Soljačić, Coupled-mode theory for general free-space resonant scattering of waves. Phys. Rev. A 75, 053801 (2007)

    Article  ADS  Google Scholar 

  118. D.-H. Kwon, D.M. Pozar, Optimal characteristics of an arbitrary receive antenna. IEEE Trans. Antennas Propag. 57, 3720–3727 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  119. Z. Ruan, S. Fan, Design of subwavelength superscattering nanospheres. Appl. Phys. Lett. 98(4), 043101 (2011)

    Google Scholar 

  120. I. Liberal, I. Ederra, R. Gonzalo, R. Ziolkowski, Upper bounds on scattering processes and Metamaterial-Inspired structures that reach them. IEEE Trans. Antennas Propag. 62, 6344–6353 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  121. I. Liberal, Y. Ra’di, R. Gonzalo, I. Ederra, S.A. Tretyakov, R.W. Ziolkowski, Least upper bounds of the powers extracted and scattered by bi-anisotropic particles. IEEE Trans. Antennas Propag. 62, 4726–4735 (2014)

    Article  ADS  MATH  Google Scholar 

  122. J.-P. Hugonin, M. Besbes, P. Ben-Abdallah, Fundamental limits for light absorption and scattering induced by cooperative electromagnetic interactions. Phys. Rev. B: Condens. Matter Mater. Phys. 91, 180202 (2015)

    Article  ADS  Google Scholar 

  123. A.E. Miroshnichenko, M.I. Tribelsky, Ultimate absorption in light scattering by a finite obstacle. Phys. Rev. Lett. 120(3), 033902 (2018)

    Google Scholar 

  124. M. Gustafsson, M. Cismasu, Physical bounds and optimal currents on antennas. IEEE Trans. Antennas Propag. 60(6), 2672–2681 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  125. M. Gustafsson, K. Schab, L. Jelinek, M. Capek, Upper bounds on absorption and scattering. New J. Phys. 22, 073013 (2020)

    Article  MathSciNet  Google Scholar 

  126. S. Molesky, P. Chao, W. Jin, A.W. Rodriguez, Global T operator bounds on electromagnetic scattering: upper bounds on far-field cross sections. Phys. Rev. Res. 2, 033172 (2020)

    Article  Google Scholar 

  127. M.I. Abdelrahman, F. Monticone, How thin and efficient can a metasurface reflector be? Universal bounds on reflection for any direction and polarization. arXiv:2208.05533 (2022)

    Google Scholar 

  128. L. Jelinek, M. Gustafsson, M. Capek, K. Schab, Fundamental bounds on the performance of monochromatic passive cloaks. Opt. Express 29(15), 24068–24082 (2021)

    Article  ADS  Google Scholar 

  129. K. Schab, L. Jelinek, M. Capek, M. Gustafsson, Upper bounds on focusing efficiency. Opt. Express 30(25), 45705–45723 (2022)

    Article  ADS  Google Scholar 

  130. W.C. Chew, M.S. Tong, B. Hu, Integral equation methods for electromagnetic and elastic waves. Synth. Lect. Comput. Electromagn. 3, 1–241 (2008)

    Article  Google Scholar 

  131. D.A. Miller, Spatial channels for communicating with waves between volumes. Opt. Lett. 23(21), 1645–1647 (1998)

    Article  ADS  Google Scholar 

  132. D.A. Miller, Communicating with waves between volumes: evaluating orthogonal spatial channels and limits on coupling strengths. Appl. Opt. 39(11), 1681–1699 (2000)

    Article  ADS  Google Scholar 

  133. R. Piestun, D.A. Miller, Electromagnetic degrees of freedom of an optical system. JOSA A 17(5), 892–902 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  134. D.A. Miller, Waves, modes, communications, and optics: a tutorial. Adv. Opt. Photonics 11(3), 679–825 (2019)

    Article  ADS  Google Scholar 

  135. L.N. Trefethen, D. Bau, Numerical Linear Algebra (Society for Industrial and Applied Mathematics, Philadelphia, 1997)

    Book  MATH  Google Scholar 

  136. Z. Kuang, D.A.B. Miller, O.D. Miller, Bounds on the coupling strengths of communication channels and their information capacities. arXiv:2205.05150 (2022)

    Google Scholar 

  137. C. Ehrenborg, M. Gustafsson, Fundamental bounds on mimo antennas. IEEE Antennas Wireless Propag. Lett. 17(1), 21–24 (2017)

    Article  ADS  Google Scholar 

  138. C. Ehrenborg, M. Gustafsson, Physical bounds and radiation modes for mimo antennas. IEEE Trans. Antennas Propag. 68(6), 4302–4311 (2020)

    Article  ADS  Google Scholar 

  139. C. Ehrenborg, M. Gustafsson, M. Capek, Capacity bounds and degrees of freedom for mimo antennas constrained by q-factor. IEEE Trans. Antennas Propag. (2021)

    Google Scholar 

  140. Y. Gao, H. Vinck, and T. Kaiser, Massive mimo antenna selection: switching architectures, capacity bounds, and optimal antenna selection algorithms. IEEE Trans. Sig. Proces. 66(5), 1346–1360 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  141. S. Asaad, A.M. Rabiei, R.R. Müller, Massive mimo with antenna selection: fundamental limits and applications. IEEE Trans. Wireless Commun. 17(12), 8502–8516 (2018)

    Article  Google Scholar 

  142. S.G. Johnson, P. Bienstman, M.A. Skorobogatiy, M. Ibanescu, E. Lidorikis, J.D. Joannopoulos, Adiabatic theorem and continuous coupled-mode theory for efficient taper transitions in photonic crystals. Phys. Rev. E 66, 66608 (2002)

    Article  ADS  Google Scholar 

  143. S. Boyd, L. El Ghaoui, E. Feron, V. Balakrishnan, Linear Matrix Inequalities in System and Control Theory (SIAM, Philadelphia, 1994)

    Book  MATH  Google Scholar 

  144. M.X. Goemans, D.P. Williamson, Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming. J. ACM 42(6), 1115–1145 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  145. Z.Q. Luo, W.K. Ma, A. So, Y. Ye, S. Zhang, Semidefinite relaxation of quadratic optimization problems. IEEE Signal Process. Mag. 27(3), 20–34 (2010)

    Article  ADS  Google Scholar 

  146. S. Sojoudi, J. Lavaei, Physics of power networks makes hard optimization problems easy to solve, in 2012 IEEE Power and Energy Society General Meeting (IEEE, Piscataway, 2012), pp. 1–8

    Book  Google Scholar 

  147. E.J. Candes, T. Strohmer, V. Voroninski, Phaselift: exact and stable signal recovery from magnitude measurements via convex programming. Commun. Pure Appl. Math. 66(8), 1241–1274 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  148. R. Horstmeyer, R.Y. Chen, X. Ou, B. Ames, J.A. Tropp, C. Yang, Solving ptychography with a convex relaxation. New J. Phys. 17(5), 053044 (2015)

    Google Scholar 

  149. M. Laurent, F. Rendl, Semidefinite programming and integer programming. Handbooks Oper. Res. Manag. Sci. 12(C), 393–514 (2005)

    Article  MATH  Google Scholar 

  150. L. Vandenberghe, S. Boyd, Semidefinite programming. SIAM Rev. 38, 49–95 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  151. S. Boyd, L. Vandenberghe, Convex Optimization (Cambridge University Press, Cambridge, 2004)

    Book  MATH  Google Scholar 

  152. J. Park, S. Boyd, General Heuristics for Nonconvex Quadratically Constrained Quadratic Programming. arXiv:1703.07870 [math] (2017)

    Google Scholar 

  153. G. Angeris, J. Vučković, S. Boyd, Heuristic methods and performance bounds for photonic design. Opt. Express 29(2), 2827–2854 (2021)

    Article  ADS  Google Scholar 

  154. H. Shim, Z. Kuang, Z. Lin, O.D. Miller, Fundamental limits to multi-functional and tunable nanophotonic response. arXiv: 2112.10816 (2021)

    Google Scholar 

  155. H. Zhang, Z. Kuang, S. Puri, O.D. Miller, Conservation-law-based global bounds to quantum optimal control. Phys. Rev. Lett. 127, 110506 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  156. G. Angeris, T. Diamandis, J. Vučković, S. Boyd, Bounds on efficiency metrics in photonics. Preprint. arXiv:2204.05243 (2022)

    Google Scholar 

  157. G. Angeris, A note on generalizing power bounds for physical design. arXiv:2208.04411 (2022)

    Google Scholar 

  158. F.W. King, Sum rules for the optical constants. J. Math. Phys. 17(8), 1509–1514 (1976)

    Article  ADS  Google Scholar 

  159. V. Lucarini, J.J. Saarinen, K.-E. Peiponen, E. M. Vartiainen, Kramers-Kronig Relations in Optical Materials Research (Springer Science & Business Media, Berlin, 2005)

    Google Scholar 

  160. H.M. Nussenzveig, Causality and Dispersion Relations (Academic Press, New York, 1972)

    Google Scholar 

  161. E. Kaxiras, J.D. Joannopoulos, Quantum Theory of Materials (Cambridge University Press, Cambridge, 2019)

    Book  MATH  Google Scholar 

  162. J. Skaar, K. Seip, Bounds for the refractive indices of metamaterials. J. Phys. D Appl. Phys. 39, 1226–1229 (2006)

    Article  ADS  Google Scholar 

  163. M. Gustafsson, D. Sjöberg, Sum rules and physical bounds on passive metamaterials. New J. Phys. 12, 043046 (2010)

    Article  ADS  MATH  Google Scholar 

  164. H. Shim, F. Monticone, O.D. Miller, Fundamental limits to the refractive index of transparent optical materials. Adv. Mat. 33, 2103946 (2021)

    Article  Google Scholar 

  165. C. Sohl, M. Gustafsson, G. Kristensson, Physical limitations on broadband scattering by heterogeneous obstacles. J. Phys. A: Math. Theor. 40, 11165–11182 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  166. R.G. Gordon, Three sum rules for total optical absorption cross sections. J. Chem. Phys. 38(7), 1724 (1963)

    Google Scholar 

  167. E.M. Purcell, On the absorption and emission of light by interstellar grains. Astrophys. J. 158, 433–440 (1969)

    Article  ADS  Google Scholar 

  168. D.S. Jones, Scattering by inhomogeneous dielectric particles. Q. J. Mech. Appl. Mech. 38(1), 135–155 (1985)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  169. H. Shim, Z. Kuang, O.D. Miller, Optical materials for maximal nanophotonic response (Invited). Opt. Mat. Express 10, 1561–1585 (2020)

    Article  ADS  Google Scholar 

  170. S. Molesky, P.S. Venkataram, W. Jin, A.W. Rodriguez, Fundamental limits to radiative heat transfer: theory. Phys. Rev. B 101(3), 035408 (2020)

    Google Scholar 

  171. P.S. Venkataram, S. Molesky, W. Jin, A.W. Rodriguez, Fundamental limits to radiative heat transfer: the limited role of nanostructuring in the near-field. Phys. Rev. Lett. 124(1), 013904 (2020)

    Google Scholar 

  172. P. Ben-Abdallah, K. Joulain, Fundamental limits for noncontact transfers between two bodies. Phys. Rev. B: Condens. Matter Mater. Phys. 82, 121419 (2010)

    Article  ADS  Google Scholar 

  173. W. Jin, S. Molesky, Z. Lin, A.W. Rodriguez, Material scaling and frequency-selective enhancement of near-field radiative heat transfer for lossy metals in two dimensions via inverse design. Phys. Rev. B 99(4), 041403 (2019)

    Google Scholar 

  174. S. Sanders, A. Manjavacas, Analysis of the limits of the local density of photonic states near nanostructures. ACS Photonics 5, 2437–2445 (2018)

    Article  Google Scholar 

  175. S.M. Barnett, R. Loudon, Sum rule for modified spontaneous emission rates. Phys. Rev. Lett. 77(12), 2444–2446 (1996)

    Article  ADS  Google Scholar 

  176. L. Zhang, F. Monticone, O.D. Miller, All electromagnetic scattering bodies are matrix-valued oscillators. arXiv: 2211.04457 (2022)

    Google Scholar 

  177. H. Hashemi, C.-W. Qiu, A.P. Mccauley, J.D. Joannopoulos, S.G. Johnson, Diameter-bandwidth product limitation of isolated-object cloaking. Phys. Rev. A 86, 013804 (2012)

    Article  ADS  Google Scholar 

  178. L. Zhang, O.D. Miller, Optimal materials for maximum large-area near-field radiative heat transfer. ACS Photonics 7, 3116–3129 (2020)

    Article  Google Scholar 

  179. R. Mittapally, J.W. Lim, L. Zhang, O.D. Miller, P. Reddy, E. Meyhofer, Probing the limits to near-field heat transfer enhancements in phonon-polaritonic materials. Nano Lett. 23, 2187–2194 (2023)

    Article  ADS  Google Scholar 

  180. P. Chao, R.K. Defo, S. Molesky, A. Rodriguez, Maximum electromagnetic local density of states via material structuring. Nanophotonics 12, 549–557 (2022)

    Article  Google Scholar 

  181. Z.-J. Yang, T.J. Antosiewicz, R. Verre, F.J. Garcia de Abajo, S.P. Apell, M. Kall, Ultimate limit of light extinction by nanophotonic structures. Nano Lett. 15(11), 7633–7638 (2015)

    Article  ADS  Google Scholar 

  182. A. Bernland, A. Luger, M. Gustafsson, Sum rules and constraints on passive systems. J. Phys. A Math. Theoret. 44(14), 145205 (2011)

    Google Scholar 

  183. J.-M. Hartmann, C. Boulet, D. Robert, Collisional Effects on Molecular Spectra: Laboratory Experiments and Models, Consequences for Applications (Elsevier, Amsterdam, 2021)

    Google Scholar 

  184. R. Carminati, J.C. Schotland, Principles of Scattering and Transport of Light (Cambridge University Press, Cambridge, 2021)

    Book  MATH  Google Scholar 

  185. P.-A. Absil, R. Mahony, R. Sepulchre, Optimization Algorithms on Matrix Manifolds (Princeton University Press, Princeton, 2009)

    MATH  Google Scholar 

  186. N. Boumal, B. Mishra, P.-A. Absil, R. Sepulchre, Manopt, a Matlab toolbox for optimization on manifolds. J. Mach. Learn. Res. 15(42), 1455–1459 (2014)

    MATH  Google Scholar 

  187. S. Gertler, Z. Kuang, C. Christie, O.D. Miller, Many physical design problems are sparse QCQPs. arXiv:2303.17691 (2023)

    Google Scholar 

  188. G. Angeris, J. Vuckovic, S.P. Boyd, Computational bounds for photonic design. ACS Photonics 6(5), 1232–1239 (2019)

    Article  Google Scholar 

  189. Q. Zhao, L. Zhang, O.D. Miller, Minimum dielectric-resonator mode volumes. arXiv: 2008.13241 (2020)

    Google Scholar 

  190. M. Grant, S. Boyd, CVX: Matlab software for disciplined convex programming, version 2.1. http://cvxr.com/cvx (2014)

  191. Gurobi Optimization, LLC, Gurobi optimizer reference manual (2019)

    Google Scholar 

  192. E. Rousseau, M. Laroche, J.-J. Greffet, Asymptotic expressions describing radiative heat transfer between polar materials from the far-field regime to the nanoscale regime. J. Appl. Phys. 111(1), 014311 (2012)

    Google Scholar 

  193. M. Pascale, G.T. Papadakis, Tight bounds and the role of optical loss in polariton-mediated near-field heat transfer. Phys. Rev. Appl. 19(3), 034013 (2023)

    Google Scholar 

  194. S.G. Johnson, Numerical methods for computing casimir interactions. In: Dalvit, D., Milonni, P., Roberts, D., da Rosa, F. (eds.) Casimir Physics. Lecture Notes in Physics, Springer, Berlin, Heidelberg. 834, 175–218 (2011). https://doi.org/10.1007/978-3-642-20288-9_6

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Owen D. Miller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Miller, O.D. (2023). Fundamental Limits to Near-Field Optical Response. In: Gordon, R. (eds) Advances in Near-Field Optics. Springer Series in Optical Sciences, vol 244. Springer, Cham. https://doi.org/10.1007/978-3-031-34742-9_2

Download citation

Publish with us

Policies and ethics