Skip to main content

Visualization Psychology: Foundations for an Interdisciplinary Research Program

  • Chapter
  • First Online:
Visualization Psychology
  • 302 Accesses

Abstract

What might a discipline of Visualization Psychology look like? If research on the psychological aspects of visualization were to coalesce, in the sense of a Lakatosian research program, what refutation-resistant theoretical commitments would magnetize its “hard core”? In this chapter, we argue that any interdisciplinary inquiry concerned with psychological aspects of visualization should situate its phenomena in the broader context of external representation, as a (triadic) semiotic activity achieved via information processing in a distributed cognitive system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Self-identified as the “premier forum for advances in visualization and visual analytics,” VIS is sponsored by the IEEE (The Institute of Electrical and Electronics Engineers) Computer Society and Technical Committee (special interest group) on Visualization and Graphics (TCVG).

  2. 2.

    One might also find research detailing interaction with graphics in other applied branches of Psychology—the use of multimedia graphics in the courtroom, for example—however the theories, models, and frameworks governing the basic science of such occurrences would likely come from cognitive, educational, or perceptual psychology.

  3. 3.

    Referring to the annual IEEE combined conferences on Information Visualization (InfoVIS), Scientific Visualization (SciVIS), and Visual Analytics Science and Technology (VAST).

  4. 4.

    Palmer reserves the qualifier cognitive for internal representations, designating the external as “noncognitive.” Following a distributed cognitive perspective, we would characterize both as cognitive representations and prefer the term “mental” to describe those representations not perceivable to others.

  5. 5.

    More “accessible” is perhaps the more generous characterization.

  6. 6.

    Particularly in Cognitive Science, Learning Science/Educational Psychology, and disciplinary education like Math, Chemistry, and Physics.

  7. 7.

    The International Conference on the Theory and Application of Diagrams is a biennial gathering held since 2000, attended by a cross-section of Philosophers, Psychologists, Mathematicians, and Computer Scientists.

  8. 8.

    Note that clarity and simplicity do not imply truth. The designer of a representation has a voice that is echoed in every design decision, from what information to include to how to encode it.

  9. 9.

    “No treatment of semiotics can claim to be comprehensive because, in the broadest sense (as a general theory of signs), it embraces the whole field of signification, including “life, the universe, and everything,” regardless of whether the signs are goal-directed (or interpreted as being so)” [12, pg. xvi].

  10. 10.

    Epistemology and Design of human–InFormation Interaction in Cognitive activitiEs.

References

  1. W. Aigner, S. Miksch, W. Muller, H. Schumann, and C. Tominski. Visualizing time-oriented data. a systematic view. Computers & Graphics, 31(3):401–409, June 2007.

    Google Scholar 

  2. S. Ainsworth. DeFT: A conceptual framework for considering learning with multiple representations. Learning and Instruction, 16(3):183–198, June 2006.

    Article  Google Scholar 

  3. W. Bechtel. Philosophy of Science: An Overview for Cognitive Science. Psychology Press, 1988.

    Google Scholar 

  4. F. Beck, M. Burch, S. Diehl, and D. Weiskopf. A Taxonomy and Survey of Dynamic Graph Visualization. Computer Graphics Forum, 00(00):1–27, 2016.

    Google Scholar 

  5. J. Bertin. Semiology of Graphics: Diagrams, Networks, Maps. University of Wisconsin Press, Madison, WI, 1983.

    Google Scholar 

  6. A. Blackwell and Y. Engelhardt. A Meta-Taxonomy for Diagram Research. In Diagrammatic Representation and Inference, pages 47–64, 2002.

    Google Scholar 

  7. T. Blascheck, K. Kurzhals, M. Raschke, M. Burch, D. Weiskopf, and T. Ertl. Visualization of Eye Tracking Data: A Taxonomy and Survey. Computer Graphics Forum, 36(8):260–284, 2017.

    Article  Google Scholar 

  8. M. Boden. Mind As Machine: A History of Cognitive Science Two-Volume Set. Oxford University Press, 2006.

    Google Scholar 

  9. M. Bostock, V. Ogievetsky, and J. Heer. D\({ }^{3}\) Data-Driven Documents. IEEE Transactions on Visualization and Computer Graphics, 17(12), Dec. 2011.

    Google Scholar 

  10. M. Cabré Castellví. Terminology: Theory, Methods, and Applications, volume 1. John Benjamins Publishing, 1999.

    Book  Google Scholar 

  11. S. Card, J. Mackinlay, and B. Shneiderman. Readings in Information Visualization. Using Vision to Think. Morgan Kaufmann Publishers, San Francisco, CA, 1999.

    Google Scholar 

  12. D. Chandler. Semiotics: the basics. The basics. Routledge, New York, NY, third edition, 2017.

    Google Scholar 

  13. P. C. Cheng. Probably good diagrams for learning: Representational epistemic recodification of probability theory. Topics in Cognitive Science, 3(3):475–498, 2011.

    Article  Google Scholar 

  14. P. C. Cheng and H. A. Simon. Scientific discovery and creative reasoning with diagrams. In S. M. Smith, T. T. Ward, and R. A. Finke, editors, The Creative Cognition Approach, pages 205–228. The MIT Press, 1995.

    Google Scholar 

  15. E. Chi. A taxonomy of visualization techniques using the data state reference model. In IEEE Symposium on Information Visualization 2000. INFOVIS 2000. Proceedings, pages 69–75, 2000.

    Google Scholar 

  16. A. Clark. Being There: Putting Brain, Body and World Together Again. MIT Press, 1997.

    Google Scholar 

  17. A. Clark and D. Chalmers. The Extended Mind. Analysis, 58(1):7–19, 1998.

    Article  Google Scholar 

  18. W. S. Cleveland and R. McGill. Graphical Perception: Theory, Experimentation, and Application to the Development of Graphical Methods. Journal of the American Statistical Association, 79(387):531–554, 1984.

    Article  Google Scholar 

  19. W. S. Cleveland and R. McGill. An Experiment In Graphical Perception. International Journal of Man-Machine Studies, 25(5):491–500, Nov. 1986.

    Article  Google Scholar 

  20. W. S. Cleveland and R. McGill. Graphical Perception: The Visual Decoding of Quantitative Information on Graphical Displays of Data. Journal of the Royal Statistical Society Series A-Statistics in Society, 150:192–229, 1987.

    Article  Google Scholar 

  21. E. de Vries and C. Masclet. A framework for the study of external representations in collaborative design settings. International Journal of Human-Computer Studies, 71(1):46–58, Jan. 2013.

    Article  Google Scholar 

  22. M. A. Elliott, C. Nothelfer, C. Xiong, and D. A. Szafir. A Design Space of Vision Science Methods for Visualization Research. IEEE Transactions on Visualization and Computer Graphics, 27(2):1117–1127, Feb. 2021.

    Article  Google Scholar 

  23. Y. Engelhardt. The Language of Graphics. PhD thesis, University of Amsterdam, 2002.

    Google Scholar 

  24. S. Few. Now You See It: Simple Visualization Techniques for Quantitative Analysis. Analytics Press, 2009.

    Google Scholar 

  25. B. Fisher, T. M. Green, and R. Arias-Hernández. Visual Analytics as a Translational Cognitive Science. Topics in Cognitive Science, 3(3):609–625, 2011.

    Article  Google Scholar 

  26. J. Grudin. From Tool to Partner: The Evolution of Human-Computer Interaction, volume 10 of Synthesis Lectures on Human-Centered Informatics. Morgan & Claypool Publishers, 2017.

    Book  Google Scholar 

  27. R. L. Harris. Information Graphics: A Comprehensive Illustrated Reference. Oxford University Press, 1999.

    MATH  Google Scholar 

  28. M. Hegarty. The Cognitive Science of Visual-Spatial Displays: Implications for Design. Topics in Cognitive Science, 3(3):446–474, 2011.

    Article  Google Scholar 

  29. J. Hollan, E. Hutchins, and D. Kirsh. Distributed cognition: Toward a new foundation for human-computer interaction research. Transactions on Computer-Human Interaction (TOCHI), 7(2):174–196, June 2000.

    Article  Google Scholar 

  30. J. Hoopes. Peirce on Signs: Writings on Semiotic by Charles Sanders Peirce. The University of North Carolina Press, Chapel Hill, 1991.

    Google Scholar 

  31. E. Hutchins. Cognition in the Wild. MIT Press, pages 1–5, 1995. ISBN: 0262581469.

    Google Scholar 

  32. E. Hutchins. Cognition, Distributed. In International Encyclopedia of the Social & Behavioral Sciences, pages 2068–2072. Elsevier, 2001.

    Google Scholar 

  33. W. Kintsch. The role of knowledge in discourse comprehension: a construction integration model. Psychological Review, pages 163–182, 1988.

    Google Scholar 

  34. D. Kirsh. When is Information Explicitly Represented? In The Vancouver Studies in Cognitive Science, pages 340–365. Oxford University Press, 1990.

    Google Scholar 

  35. D. Kirsh. Implicit and Explicit Representation. Encyclopedia of Cognitive Science, pages 478–481, 2006.

    Google Scholar 

  36. D. Kirsh. Thinking with external representations. AI and Society, 25(4):441–454, 2010.

    Article  Google Scholar 

  37. J. Larkin and H. Simon. Why a diagram is (sometimes) worth ten thousand words. Cognitive Science, 99:65–99, 1987.

    Article  Google Scholar 

  38. P. H. Lindsay and D. Norman. Human information processing: an introduction to psychology. Academic Press, New York, 1972.

    Google Scholar 

  39. Z. Liu, N. Nersessian, and J. Stasko. Distributed cognition as a theoretical framework for information visualization. IEEE transactions on visualization and computer graphics, 14(6):1173–80, 2007.

    Google Scholar 

  40. M. Massironi. The Psychology of Graphic Images. Psychology Press, 2001.

    Book  Google Scholar 

  41. R. Mayer. Cognitive Theory of Multimedia Learning. In The Cambridge Handbook of Multimedia Learning, pages 31–48. Cambridge University Press, 2005.

    Google Scholar 

  42. B. H. McCormick, T. A. DeFanti, and M. D. Brown. Visualization in Scientific Computing. Computer Graphics, 6(21):81, Nov. 1987.

    Google Scholar 

  43. T. Munzner. Visualization Design and Analysis. A.K. Peters visualization series. CRC Press, Taylor & Francis Group, 2014.

    Book  Google Scholar 

  44. A. Musgrave and C. Pigden. Imre Lakatos. In E. N. Zalta, editor, The Stanford Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford University, 2016.

    Google Scholar 

  45. D. Nauta. The Meaning of Information. Mouton, The Haugue, 1972.

    Book  Google Scholar 

  46. U. Neisser. Cognitive Psychology. The Century psychology series. Appleton-Century-Crofts, New York, 1967.

    Google Scholar 

  47. D. A. Norman. Things That Make Us Smart: Defending Human Attributes in the Age of the Machine. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1993.

    Google Scholar 

  48. S. E. Palmer. Fundamental Aspects of Cognitive Representation. In E. Rosch and B. B. Lloyd, editors, Cognition and Categorization, pages 259–302. Erlbaum, Hillsdale, NJ, 1978.

    Google Scholar 

  49. S. E. Palmer and R. Kimchi. The Information Processing Approach to Cognition. In Approaches to Cognition: Contrasts and Controversies, page 38. Lawrence Erlbaum Associates, 1986.

    Google Scholar 

  50. P. Parsons and K. Sedig. Common Visualizations: Their Cognitive Utility. In Handbook of Human Centric Visualization, pages 671–691. Springer, 2014.

    Google Scholar 

  51. P. Parsons and K. Sedig. Distribution of Information Processing While Performing Complex Cognitive Activities with Visualization Tools. In Handbook of Human Centric Visualization, pages 671–691. Springer, 2014.

    Google Scholar 

  52. S. Pinker. Theory of Graph Comprehension. In R. Freedle, editor, Artificial Intelligence and the Future of Testing, pages 73–126. Erlbaum, Hillsdale, NJ, 1990.

    Google Scholar 

  53. Y. Rogers. When the external entered HCI: Designing effective representations. In T. Erickson and D. W. McDonald, editors, HCI Remixed: Reflections on Works That Have Influenced the HCI Community, pages 275–280. MIT Press, Cambridge, MA, Jan. 2008.

    Google Scholar 

  54. A. Satyanarayan, D. Moritz, K. Wongsuphasawat, and J. Heer. Vega-Lite: A Grammar of Interactive Graphics. IEEE Transactions on Visualization and Computer Graphics, 23(1):341–350, 2017.

    Article  Google Scholar 

  55. M. Scaife and Y. Rogers. External cognition: how do graphical representations work? International Journal of Human-Computer Studies, pages 185–213, 1996.

    Google Scholar 

  56. W. Schnotz. An Integrated Model of Text and Picture Comprehension. In The Cambridge Handbook of Multimedia Learning, pages 49–69. Cambridge University Press, 2005.

    Google Scholar 

  57. K. Sedig and P. Parsons. Interaction Design for Complex Cognitive Activities with Visual Representations: A Pattern-Based Approach. AIS Transactions on Human-Computer Interaction, 5(2):84–133, 2013.

    Article  Google Scholar 

  58. K. Sedig and P. Parsons. Design of Visualizations for Human-Information Interaction: A Pattern-Based Framework. Synthesis Lectures on Visualization. Morgan & Claypool Publishers, 2016.

    Book  Google Scholar 

  59. K. Sedig, P. Parsons, and A. Babanski. Towards a Characterization of Interactivity in Visual Analytics. Journal of Multimedia Processing and Technologies, Special Issue on Theory and Application of Visual Analytics, 3(1):12–28, 2012.

    Google Scholar 

  60. K. Sedig, P. Parsons, M. Dittmer, and R. Haworth. Human-Centered Interactivity of Visualization Tools: Micro and Macro-level Considerations. In Handbook of Human Centric Visualization, pages 671–691. Springer, 2014.

    Google Scholar 

  61. P. Shah. Graph Comprehension: The Role of Format, Content and Individual Differences. In M. Anderson, B. Meyer, and P. Olivier, editors, Diagrammatic Representation and Reasoning, pages 173–185. Springer London, London, 2002.

    Google Scholar 

  62. P. Shah and E. G. Freedman. Bar and line graph comprehension: An interaction of top-down and bottom-up processes. Topics in Cognitive Science, 3(3):560–578, 2011.

    Article  Google Scholar 

  63. P. Shah, E. G. Freedman, and I. Vekiri. The Comprehension of Quantitative Information in Graphical Displays. In P. Shah, editor, The Cambridge Handbook of Visuospatial Thinking, pages 426–476. Cambridge University Press, New York, NY, 2005.

    Chapter  Google Scholar 

  64. P. Shah and J. Hoeffner. Review of graph comprehension research: Implications for instruction. Educational Psychology Review, 14(1):47–69, Mar. 2002.

    Article  Google Scholar 

  65. B. Shneiderman. The Eyes Have It: A Task By Data Type Taxonomy for Information Visualization. Proceedings 1996 IEEE Symposium on Visual Languages, pages 336–343, 1996.

    Google Scholar 

  66. D. Simkin and R. Hastie. An Information-Processing Analysis of Graph Perception. Journal of the American Statistical Association, 82(398):454–465, 1987.

    Article  Google Scholar 

  67. D. E. Stokes. Pasteur’s Quadrant: Basic Science and Technological Innovation. Brookings Institution Press, 1997.

    Google Scholar 

  68. D. A. Szafir, S. Haroz, M. Gleicher, and S. Franconeri. Four types of ensemble coding in data visualizations. Journal of Vision, 16(5):11–11, Mar. 2016.

    Article  Google Scholar 

  69. M. Tory and T. Moller. Rethinking Visualization: A High-Level Taxonomy. In IEEE Symposium on Information Visualization, pages 151–158, Oct. 2004.

    Google Scholar 

  70. B. Tversky. Visualizing Thought. Topics in Cognitive Science, 3(3):499–535, 2011.

    Article  Google Scholar 

  71. VisPsych Committee. Visualization Psychology — 2020 IEEE VIS Workshop, 2020.

    Google Scholar 

  72. C. Ware. Information Visualization: Perception for Design. Elsevier Inc., San Francisco, CA, 2004.

    Google Scholar 

  73. D. Whitney and A. Y. Leib. Ensemble Perception. Annual Review of Psychology, page 25, 2017.

    Google Scholar 

  74. L. Wilkinson. The Grammar of Graphics. Statistics and Computing. Springer-Verlag, New York, 1999.

    Google Scholar 

  75. M. Wilson. Six views of embodied cognition. Psychonomic Bulletin & Review, 9(4):625–36, Dec. 2002.

    Article  Google Scholar 

  76. J. Worrall and G. Currie, editors. The Methodology of Scientific Research Programmes: Philosophical Papers, volume 1. Cambridge University Press, Cambridge, 1978.

    Google Scholar 

  77. J. Zhang and D. Norman. Representations in Distributed Cognitive Tasks. Cognitive science, 18(1):87–122, Jan. 1994.

    Article  Google Scholar 

Download references

Acknowledgements

We offer thanks to Pamela Riviere for offering a diagram of neural data in Fig. 9.1, to Arvind Satyanarayan, Paul Parsons, David Kirsh, and Oisin Parkinsoncoombs for productive discussions on these topics, and to anonymous reviewers for productive feedback.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fox, A.R., Hollan, J.D. (2023). Visualization Psychology: Foundations for an Interdisciplinary Research Program. In: Albers Szafir, D., Borgo, R., Chen, M., Edwards, D.J., Fisher, B., Padilla, L. (eds) Visualization Psychology. Springer, Cham. https://doi.org/10.1007/978-3-031-34738-2_9

Download citation

Publish with us

Policies and ethics