Skip to main content

Visualization Onboarding Grounded in Educational Theories

  • Chapter
  • First Online:
Visualization Psychology

Abstract

The aim of visualization is to support people in dealing with large and complex information structures, to make these structures more comprehensible, facilitate exploration, and enable knowledge discovery. However, users often have problems reading and interpreting data from visualizations, in particular when they experience them for the first time. A lack of visualization literacy, i.e., knowledge in terms of domain, data, visual encoding, interaction, and also analytical methods can be observed. To support users in learning how to use new digital technologies, the concept of onboarding has been successfully applied in other domains. However, it has not received much attention from the visualization community so far. This chapter aims to fill this gap by defining the concept and systematically laying out the design space of onboarding in the context of visualization as a descriptive design space. On this basis, we present a survey of approaches from the academic community as well as from commercial products, especially surveying educational theories that inform the onboarding strategies. Additionally, we derived design considerations based on previous publications and present some guidelines for the design of visualization onboarding concepts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://useronboard.com, accessed: 2021-04-30.

References

  1. Advizor Solutions. https://www.advizorsolutions.com/software/interactive-data-visualization/, 2019. Accessed: 2019-03-14.

  2. W. Aigner, A. Rind, and M. Wagner. KAVA-Time: Knowledge-Assisted Visual Analytics Methods for Time-Oriented Data. In Tagungsband des 12. Forschungsforum der österreichischen Fachhochschulen (FFH) 2018, 2018.

    Google Scholar 

  3. B. Alper, N. H. Riche, F. Chevalier, J. Boy, and M. Sezgin. Visualization literacy at elementary school. In Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems, CHI ’17, pages 5485–5497, New York, NY, USA, 2017. ACM.

    Google Scholar 

  4. N. Andrienko, T. Lammarsch, G. Andrienko, G. Fuchs, D. Keim, S. Miksch, and A. Rind. Viewing visual analytics as model building. Computer Graphics Forum, published online before print, 2018.

    Google Scholar 

  5. R. S. Baker, A. T. Corebett, and K. R. Koedinger. Toward a model of learning data representations—eScholarship. In Proceedings of the Annual Meeting of the Cognitive Science Society, volume 23, 2001.

    Google Scholar 

  6. N. Banovic, T. Grossman, J. Matejka, and G. Fitzmaurice. Waken: Reverse engineering usage information and interface structure from software videos. In Proceedings of the ACM Symposium on User Interface Software and Technology, UIST ’12, pages 83–92. ACM, 2012.

    Google Scholar 

  7. M. Behrisch, D. Streeb, F. Stoffel, D. Seebacher, B. Matejek, S. H. Weber, S. Mittelstaedt, H. Pfister, and D. Keim. Commercial visual analytics systems-advances in the big data analytics field. IEEE Transactions on Visualization and Computer Graphics, pages 1–1, 2018.

    Google Scholar 

  8. L. Bergman, V. Castelli, T. Lau, and D. Oblinger. DocWizards: A system for authoring follow-me documentation wizards. In Proceedings of the 18th annual ACM symposium on User interface software and technology, pages 191–200. ACM, 2005.

    Google Scholar 

  9. F. Bishop, J. Zagermann, U. Pfeil, G. Sanderson, H. Reiterer, and U. Hinrichs. Construct-a-vis: Exploring the free-form visualization processes of children. IEEE Transactions on Visualization and Computer Graphics, 26(1):451–460, 2020.

    Google Scholar 

  10. J. M. Carroll, editor. Interfacing thought: Cognitive aspects of human-computer interaction. Interfacing thought: Cognitive aspects of human-computer interaction. The MIT Press, 1987.

    Google Scholar 

  11. C. Chen. Top 10 unsolved information visualization problems. IEEE Computer Graphics and Applications, 25(4):12–16, July 2005.

    Article  Google Scholar 

  12. P. K. Chilana, A. J. Ko, and J. O. Wobbrock. LemonAid: selection-based crowdsourced contextual help for web applications. In Proceedings of the 2012 ACM annual conference on Human Factors in Computing Systems—CHI ’12, page 1549. ACM Press, 2012.

    Google Scholar 

  13. An overview of context-sensitive and embedded help formats. https://pronovix.com/blog/overview-context-sensitive-and-embedded-help-formats, 2019. Accessed: 2019-03-14.

  14. D. De Bock, J. Deprez, W. Van Dooren, M. Roelens, and L. Verschaffel. Abstract or Concrete Examples in Learning Mathematics? A Replication and Elaboration of Kaminski, Sloutsky, and Heckler’s Study. Journal for Research in Mathematics Education, 42(2):109–126, 2011.

    Article  Google Scholar 

  15. T. M. Duffy, J. Lowyck, and D. H. Jonassen, editors. Designing Environments for Constructive Learning. Nato ASI Subseries F:. Springer-Verlag, 1993.

    Google Scholar 

  16. P. A. Ertmer and T. J. Newby. Behaviorism, cognitivism, constructivism: Comparing critical features from an instructional design perspective. Performance Improvement Quarterly, 26(2):43–71, 2013.

    Article  Google Scholar 

  17. P. Federico, M. Wagner, A. Rind, A. Amor-Amorós, S. Miksch, and W. Aigner. The role of explicit knowledge: A conceptual model of knowledge-assisted visual analytics. In Proc. IEEE Conference on Visual Analytics Science and Technology (VAST). IEEE, 2017. In press.

    Google Scholar 

  18. J. Fernquist, T. Grossman, and G. Fitzmaurice. Sketch-sketch revolution: An engaging tutorial system for guided sketching and application learning. In Proceedings of the 24th annual ACM symposium on User interface software and technology, pages 373–382. ACM, 2011.

    Google Scholar 

  19. E. E. Firat, A. Denisova, and R. S. Laramee. Treemap Literacy: A Classroom-Based Investigation. In M. Romero and B. Sousa Santos, editors, Eurographics 2020—Education Papers. The Eurographics Association, 2020.

    Google Scholar 

  20. E. E. Firat, A. Denisova, and R. S. Laramee. Treemap Literacy: A Classroom-Based Investigation. In M. Romero and B. Sousa Santos, editors, Eurographics 2020—Education Papers. The Eurographics Association, 2020.

    Google Scholar 

  21. S. N. Friel, F. R. Curcio, and G. W. Bright. Making sense of graphs: Critical factors influencing comprehension and instructional implications. Journal for Research in Mathematics Education, 32(2):124–158, 2001.

    Article  Google Scholar 

  22. T. Grossman and G. Fitzmaurice. ToolClips: An investigation of contextual video assistance for functionality understanding. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pages 1515–1524. ACM, 2010.

    Google Scholar 

  23. T. Grossman, G. Fitzmaurice, and R. Attar. A survey of software learnability: Metrics, methodologies and guidelines. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI ’09, pages 649–658. ACM, 2009.

    Google Scholar 

  24. G. Hart. The five w’s of online help systems. http://www.geoff-hart.com/articles/2002/fivew.htm.

  25. G. Hart. The five W’s: An old tool for the new task of task analysis. Technical communication, 43(2):139–145, 1996.

    Google Scholar 

  26. F. Hohman, M. Kahng, R. Pienta, and D. H. Chau. Visual analytics in deep learning: An interrogative survey for the next frontiers. IEEE Transactions on Visualization and Computer Graphics, 25(8):2674–2693, 2019.

    Article  Google Scholar 

  27. D. Holton and D. Clarke. Scaffolding and metacognition. International Journal of Mathematical Education in Science and Technology, 37(2):127–143, 2006.

    Article  Google Scholar 

  28. Y. Holtz and C. Healy. From data to viz | find the graphic you need, 2021. Library Catalog: www.data-to-viz.com.

  29. K. J. Holyoak and P. Thagard. Mental leaps: Analogy in creative thought. A Bradford book. MIT press, Cambridge, MA, US; London, England, 1995.

    Google Scholar 

  30. T. Hug and N. Friesen. Outline of a microlearning agenda. eLearning Papers, 16, 2009.

    Google Scholar 

  31. S. Huron, S. Carpendale, A. Thudt, A. Tang, and M. Mauerer. Constructive visualization. In Proceedings of the 2014 Conference on Designing Interactive Systems, DIS ’14, page 433–442, New York, NY, USA, 2014. Association for Computing Machinery.

    Google Scholar 

  32. IBM Cognos Analytics. https://www.ibm.com/at-en/marketplace/business-intelligence, 2019. Accessed: 2019-03-14.

  33. M. Kandlhofer, G. Steinbauer, J. Lassnig, W. Baumann, S. Plomer, A. Ballagi, and I. Alfoldi. Enabling the Creation of Intelligent Things: Bringing Artificial Intelligence and Robotics to Schools. In IEEE Frontiers in Education Conference (FIE), 2019.

    Google Scholar 

  34. H. Kang, C. Plaisant, and B. Shneiderman. New approaches to help users get started with visual interfaces: Multi-layered interfaces and integrated initial guidance. In Proceedings of the 2003 Annual National Conference on Digital Government Research, dg.o ’03, pages 1–6. Digital Government Society of North America, 2003.

    Google Scholar 

  35. H. Kang, C. Plaisant, and B. Shneiderman. New approaches to help users get started with visual interfaces: Multi-layered interfaces and integrated initial guidance. In Proceedings of the 2003 Annual National Conference on Digital Government Research, dg.o ’03, pages 1–6. Digital Government Society of North America, 2003.

    Google Scholar 

  36. D. A. Keim, J. Kohlhammer, G. Ellis, and F. Mansmann. Mastering the information age—solving problems with visual analytics. Eurographics, 2010.

    Google Scholar 

  37. D. A. Keim, F. Mansmann, J. Schneidewind, J. Thomas, and H. Ziegler. Visual Analytics: Scope and challenges. In S. J. Simoff, M. H. Böhlen, and A. Mazeika, editors, Visual Data Mining, LNCS 4404, pages 76–90. Springer, Berlin, 2008.

    Google Scholar 

  38. C. Kelleher and R. Pausch. Stencils-based tutorials: Design and evaluation. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI ’05, pages 541–550. ACM, 2005.

    Google Scholar 

  39. Keshif | Data Made Explorable. https://www.keshif.me/. Accessed: 2020-04-15.

  40. H. J. Klein, B. Polin, and K. L. Sutton. Specific onboarding practices for the socialization of new employees. International Journal of Selection and Assessment, 23(3):263–283, 2015.

    Article  Google Scholar 

  41. D. Kolb. Experiential Learning: Experience As The Source Of Learning And Development, volume 1. Prentice-Hall, 1984. Journal Abbreviation: Journal of Business Ethics Publication Title: Journal of Business Ethics.

    Google Scholar 

  42. A. Kumar. Why user onboarding is essential for your application?, 2017.

    Google Scholar 

  43. B. C. Kwon and B. Lee. A comparative evaluation on online learning approaches using parallel coordinate visualization. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI ’16, pages 993–997. ACM Press, 2016.

    Google Scholar 

  44. T. Lammarsch, W. Aigner, A. Bertone, S. Miksch, and A. Rind. Towards a concept how the structure of time can support the visual analytics process. In S. Miksch and G. Santucci, editors, EUROVA, pages 9–12. Eurographics, Eurographics, 2011.

    Google Scholar 

  45. G. E. Marai. Visual scaffolding in integrated spatial and nonspatial analysis. In EuroVis Workshop on Visual Analytics (EuroVA). The Eurographics Association, 2015.

    Google Scholar 

  46. R. E. Mayer. The search for insight: Grappling with Gestalt psychology’s unanswered questions. In R. J. Sternberg and J. E. Davidson, editors, The nature of insight, pages 3–12. MIT Press, Cambridge, MA, US, 1995.

    Google Scholar 

  47. Microsoft Power BI. https://powerbi.microsoft.com/de-de/, 2019. Accessed: 2019-03-14.

  48. T. Munzner. A nested process model for visualization design and validation. IEEE Transactions on Visualization and Computer Graphics (InfoVis ’09), 15(6):921–928, 2009.

    Article  Google Scholar 

  49. O. Ola and K. Sedig. Health literacy for the general public: Making a case for non-trivial visualizations. Informatics, 4(4):33, 2017.

    Google Scholar 

  50. S. Palmiter and J. Elkerton. An evaluation of animated demonstrations of learning computer-based tasks. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI ’91, pages 257–263. ACM, 1991.

    Google Scholar 

  51. J. Peeck. Enhancing graphic-effects in instructional texts: Influencing learning activities. In W. Schnotz and R. W. Kulhavy, editors, Advances in Psychology, volume 108 of Comprehension of Graphics, pages 291–301. North-Holland, 1994.

    Google Scholar 

  52. M. Pohl, M. Smuc, and E. Mayr. The user puzzle—explaining the interaction with visual analytics systems. IEEE Transactions on Visualization and Computer Graphics, 18(12):2908–2916, 2012.

    Article  Google Scholar 

  53. QlikTech QlikView. https://www.qlik.com/us/products/qlikview, 2019. Accessed: 2019-03-14.

  54. W. Ribarsky and B. Fisher. The human-computer system: Towards an operational model for problem solving. In Proc. Hawaii Int. Conf. System Sciences (HICSS), pages 1446–1455, 2016.

    Google Scholar 

  55. S. Ribecca. The data visualisation catalogue. https://datavizcatalogue.com/, 2020. Accessed: 2020-03-12.

  56. A. Rind, M. Wagner, and W. Aigner. Towards a structural framework for explicit domain knowledge in visual analytics. In IEEE Workshop on Visual Analytics in Healthcare (VAHC), pages 33–40, 2019.

    Google Scholar 

  57. J. C. Roberts, P. D. Ritsos, J. R. Jackson, and C. Headleand. The explanatory visualization framework: An active learning framework for teaching creative computing using explanatory visualizations. IEEE Transactions on Visualization and Computer Graphics, 24(1):791–801, 2018.

    Article  Google Scholar 

  58. P. Ruchikachorn and K. Mueller. Learning visualizations by analogy: Promoting visual literacy through visualization morphing. IEEE Transactions on Visualization and Computer Graphics, 21(9):1028–1044, 2015.

    Article  Google Scholar 

  59. D. Sacha, A. Stoffel, F. Stoffel, K. Kwon, Bum Chul, G. Ellis, and D. A. Keim. Knowledge Generation Model for Visual Analytics. IEEE Transactions on Visualization and Computer Graphics, 20(12):1604–1613, Dec. 2014. 00000.

    Google Scholar 

  60. SAP Lumira. https://saplumira.com/, 2019. Accessed: 2019-03-14.

  61. SAS JMP. https://www.jmp.com/en_us/software/data-analysis-software.html, 2019. Accessed: 2019-03-14.

  62. SAS Visual Analytics. https://www.sas.com/en_us/software/visual-analytics.html, 2019. Accessed: 2019-03-14.

  63. R. K. Sawyer and J. G. Greeno. Situativity and learning. In M. Aydede and P. Robbins, editors, The Cambridge Handbook of Situated Cognition, pages 347–367. Cambridge: Cambridge University Press, 2009.

    Google Scholar 

  64. A. Schmidt. Microlearning and the Knowledge Maturing Process: Towards Conceptual Foundations for Work-Integrated Microlearning Support. In T. Hug, M. Lindner, and P. A. Bruck, editors, Proceedings of the 3rd International Microlearning 2007 Conference, Innsbruck, Austria, June 2007. Innsbruck University Press.

    Google Scholar 

  65. H.-J. Schulz, T. Nocke, M. Heitzler, and H. Schumann. A systematic view on data descriptors for the visual analysis of tabular data. Information Visualization, 16(3):232–256, 2017.

    Article  Google Scholar 

  66. P. Shah, E. G. Freedman, and I. Vekiri. The comprehension of quantitative information in graphical displays. In The Cambridge Handbook of Visuospatial Thinking, Cambridge Handbooks in Psychology, pages 426–476. Cambridge University Press, 2005.

    Google Scholar 

  67. C. Stoiber, F. Grassinger, M. Pohl, H. Stitz, M. Streit, and W. Aigner. Visualization onboarding: Learning how to read and use visualizations. In IEEE Workshop on Visualization for Communication. IEEE, 2019.

    Google Scholar 

  68. J. Swabish and S. Ribecca. The graphic continuum: A poster project for your office. https://policyviz.com/2014/09/09/graphic-continuum/, 2014. Accessed: 2020-03-25.

  69. Tableau Software Tableau. https://www.tableau.com/products/desktop, 2019. Accessed: 2019-03-14.

  70. Y. Tanahashi, N. Leaf, and K. Ma. A study on designing effective introductory materials for information visualization. Computer Graphics Forum, 35(7):117–126, 2016.

    Article  Google Scholar 

  71. J. J. Thomas and K. A. Cook, editors. Illuminating the Path: The Research and Development Agenda for Visual Analytics. IEEE, 2005.

    Google Scholar 

  72. TIBCO Jaspersoft. https://www.jaspersoft.com/, 2019. Accessed: 2019-03-14.

  73. TIBCO Spotfire. https://www.tibco.com/products/tibco-spotfire, 2019. Accessed: 2019-03-14.

  74. C. Tominski. Event-based concepts for user-driven visualization. Information Visualization, 10(1):65–81, Jan. 2011.

    Article  Google Scholar 

  75. J. J. van Wijk. The value of visualization. In Proc. IEEE Visualization (VIS 05), pages 79–86, 2005.

    Google Scholar 

  76. X. Wang, D. H. Jeong, W. Dou, S.-W. Lee, W. Ribarsky, and R. Chang. Defining and applying knowledge conversion processes to a visual analytics system. Computers & Graphics, 33(5):616–623, Oct. 2009.

    Article  Google Scholar 

  77. Z. Wang, L. Sundin, D. Murray-Rust, and B. Bach. Cheat sheets for data visualization techniques. In Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems, CHI ’20, page 1–13, New York, NY, USA, 2020. Association for Computing Machinery.

    Google Scholar 

  78. J. B. Watson. Behaviorism. Taylor & Francis, 1st edition, 1997.

    Google Scholar 

  79. M. A. Yalçın. A Systematic and Minimalist Approach to Lower Barriers in Visual Data Exploration. Dissertation, University of Maryland, College Park, 2016.

    Google Scholar 

  80. Z. Zhang, B. Wang, F. Ahmed, I. V. Ramakrishnan, R. Zhao, A. Viccellio, and K. Mueller. The five Ws for information visualization with application to healthcare informatics. IEEE Transactions on Visualization and Computer Graphics, 19(11):1895–1910, 2013.

    Article  Google Scholar 

Download references

Acknowledgements

This work was funded by the Austrian Science Fund as part of the VisOnFire project (FWF P27975-NBL), the Austrian Ministry for Transport, Innovation, and Technology (BMVIT) under the ICT of the Future program via the SEVA project (no. 874018), as well as the FFG, Contract No. 854184: “Pro2Future,” which is funded within the Austrian COMET Program Competence Centers for Excellent Technologies under the auspices of the Austrian Federal Ministry for Transport, Innovation, and Technology, the Austrian Federal Ministry for Digital and Economic Affairs and of the Provinces of Upper Austria and Styria. COMET is managed by the Austrian Research Promotion Agency FFG.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christina Stoiber .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Stoiber, C. et al. (2023). Visualization Onboarding Grounded in Educational Theories. In: Albers Szafir, D., Borgo, R., Chen, M., Edwards, D.J., Fisher, B., Padilla, L. (eds) Visualization Psychology. Springer, Cham. https://doi.org/10.1007/978-3-031-34738-2_6

Download citation

Publish with us

Policies and ethics