Skip to main content

Optimum Design of Reinforced Concrete Columns in Case of Fire

  • Chapter
  • First Online:
Hybrid Metaheuristics in Structural Engineering

Part of the book series: Studies in Systems, Decision and Control ((SSDC,volume 480))

  • 151 Accesses

Abstract

When designing load-bearing reinforced concrete components, external factors such as fire should be taken into account in addition to horizontal and vertical forces. Parameters such as cross-section of the reinforced concrete components, concrete cover, material properties and quantity of the concrete steel affect significantly the fire resistance of the reinforced concrete section exposed to fire. In this study, optimal cross-sections are obtained for 30, 60 and 90 fire duration taking into account the different cross-sections and concrete cover of the reinforced concrete column. The method for calculating the optimal sections of reinforced concrete columns is the modified metaheuristic algorithm, which is a combination of Flower Pollination Algorithm (FPA) with Jaya Algorithm (JA). The behavior of reinforced concrete column in case of fire is investigated according to EN-1992-1-2 (Eurocode 2: Design of reinforced concrete structures-Part 1–2: General rules—Structural fire design). The Eurocode offers 3 different methods for the fire design of concrete structures (simplified, advanced calculation methods and the tabulated date). In this study, optimal results are obtained in the tabulated date section. Thus, some limitations in EN-1992-1-2 such as minimum reinforcement cross-sectional area and column buckling length have been overcome.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. United States Fire Administration: Fire statistics. http://usfa.fema.gov/statistics/. Accessed 6 Apr 2023

  2. ISO: Fire resistance tests-elements of building construction. International Standard ISO 834, Geneva (1975)

    Google Scholar 

  3. Park, G.K., Yim, H.J.: Evaluation of fire-damaged concrete: an experimental analysis based on destructive and nondestructive methods. Int. J. Concr. Struct. Mater. 11(3), 447–457 (2017)

    Article  Google Scholar 

  4. Guo, Z., Shi, X.: Experiment and Calculation of Reinforced Concrete at Elevated Temperatures. Elsevier, pp. 56–66 (2011)

    Google Scholar 

  5. Kahanji, C., Ali, F., Nadjai, A.: Explosive spalling of ultra-high performance fibre reinforced concrete beams under fire. J. Struct. Fire Eng. 7(4), 328–348 (2016)

    Article  Google Scholar 

  6. Haksever, A., Anderberg, Y., Haksever, A., Anderberg, Y.: Comparison between measured and computed structural response of some reinforced concrete columns in fire. Fire Saf. J. 4(4), 293–297 (1982)

    Article  Google Scholar 

  7. Lie, T.T., Lin, T.D.: Influence of restraint on fire performance of reinforced concrete columns. Fire Saf. Sci. 1, 291–300 (1986)

    Article  Google Scholar 

  8. Lie, T.T.: Fire resistance of reinforced concrete columns: a parametric study. J. Fire Prot. Eng. 1(4), 121–129 (1989)

    Article  Google Scholar 

  9. Lin, T.D., Zwiers, R.I., Burg, R.G., Lie, T.T., McGrath, R.J.: Fire Resistance of Reinforced Concrete Columns (No. RD101B) (1992)

    Google Scholar 

  10. Kodur, V.K.R., Sultan, M.A.: Structural Behaviour of High Strength Concrete Columns Exposed to Fire (1998)

    Google Scholar 

  11. Bisby, L.A.: Fire Behaviour of Fibre-Reinforced Polymer (FRP) Reinforced or Confined Concrete, p. 2520. Queen’s University, Kingston (Kanada) (2003)

    Google Scholar 

  12. Ali, F., Nadjai, A., Silcock, G., Abu-Tair, A.: Outcomes of a major research on fire resistance of concrete columns. Fire Saf. J. 39(6), 433–445 (2004)

    Article  Google Scholar 

  13. Xu, Y.Y., Wu, B.: Fire resistance of reinforced concrete columns with L-, T-, and +-shaped cross-sections. Fire Saf. J. 44(6), 869–880 (2009)

    Article  Google Scholar 

  14. Romero, M.L., Moliner, V., Espinos, A., Ibañez, C., Hospitaler, A.: Fire behavior of axially loaded slender high strength concrete-filled tubular columns. J. Constr. Steel Res. 67(12), 1953–1965 (2011)

    Article  Google Scholar 

  15. Dong, H., Cao, W., Bian, J., Zhang, J.: The fire resistance performance of recycled aggregate concrete columns with different concrete compressive strengths. Materials 7(12), 7843–7860 (2014)

    Article  Google Scholar 

  16. Seręga, S.: Effect of transverse reinforcement spacing on fire resistance of high strength concrete columns. Fire Saf. J. 71, 150–161 (2015)

    Article  Google Scholar 

  17. Wu, B., Xiong, W., Liu, F.: Fire behaviours of concrete columns with prior seismic damage. Mag. Concr. Res. 69(7), 365–378 (2017)

    Article  Google Scholar 

  18. Buch, S.H., Sharma, U.K.: Fire resistance of eccentrically loaded reinforced concrete columns. Fire Technol. 55, 1517–1552 (2019)

    Article  Google Scholar 

  19. Nigdeli, S.M., Bekdas, G., Kım, S., Geem, Z.W.: A novel harmony search based optimization of reinforced concrete biaxially loaded columns. Struct. Eng. Mech. 54(6), 1097–1109 (2015)

    Article  Google Scholar 

  20. Bekdaş, G., Cakiroglu, C., Kim, S., Geem, Z.W.: Optimization and predictive modeling of reinforced concrete circular columns. Materials 15(19) (2022)

    Google Scholar 

  21. Bekdaş, G., Cakiroglu, C., Kim, S., Geem, Z.W.: Optimal dimensioning of retaining walls using explainable ensemble learning algorithms. Materials 15(14) (2022)

    Google Scholar 

  22. Nigdeli, S.M., Bekdaş, G., Yang, X.: Metaheuristic optimization of reinforced concrete footings. KSCE J. Civ. Eng. 22(11), 4555–4563 (2018)

    Article  Google Scholar 

  23. Yucel, M., Bekdaş, G., Işıkdağ, Ü., Apak, S.: Optimum modelling for rectangular shape reinforced concrete (RC) beam with the aim of minimum CO2 emission. J. Environ. Prot. Ecol. 22(5), 1992–2002 (2021)

    Google Scholar 

  24. Yucel, M., Nigdeli, S.M., Bekdaş, G.: Generation of sustainable models with multi-objective optimum design of reinforced concrete (RC) structures. Structures 40, 223–236 (2022)

    Article  Google Scholar 

  25. Bekdaş, G., Yucel, M., Nigdeli, S.M.: Generation of eco-friendly design for post-tensioned axially symmetric reinforced concrete cylindrical walls by minimizing of CO2 emission. Struct. Des. Tall Spec. Build. 31(13) (2022)

    Google Scholar 

  26. Bekdaş, G., Nigdeli, S.M., Kim, S., Geem, Z.W.: Modified harmony search algorithm-based optimization for eco-friendly reinforced concrete frames. Sustainability 14(6), 3361 (2022)

    Article  Google Scholar 

  27. Arama, Z.A., Kayabekir, A.E., Bekdas, G., Geem, Z.W.: CO2 and cost optimization of reinforced concrete cantilever soldier piles: a parametric study with harmony search algorithm. Sustainability 12 (2020)

    Google Scholar 

  28. Cakiroglu, C., Islam, K., Bekdaş, G., Apak, S.: Cost and CO2 emission-based optimisation of reinforced concrete deep beams using Jaya algorithm. J. Environ. Prot. Ecol. 23(6), 2420–2429 (2022)

    Google Scholar 

  29. Eurocode 2: Design of Concrete Structures, Part 1–2: General Rules–Structural Fire Design, EN 1992-1-2 (2004)

    Google Scholar 

  30. Franssen, J.M.: Design of concrete columns based on EC2 tabulated data–a critical review. In: 1rst int. Structures in Fire Workshop (2000)

    Google Scholar 

  31. Yang, X.S., Karamanoglu, M., He, X.: Flower pollination algorithm: a novel approach for multiobjective optimization. Eng. Optim. 46(9), 1222–1237 (2014)

    Article  MathSciNet  Google Scholar 

  32. Rao, R.: Jaya: a simple and new optimization algorithm for solving constrained and unconstrained optimization problems. Int. J. Ind. Eng. Comput. 7(1), 19–34 (2016)

    Google Scholar 

  33. Rao, R.V., Savsani, V.J., Vakharia, D.P.: Teaching–learning-based optimization: a novel method for constrained mechanical design optimization problems. Comput. Aided Des. 43(3), 303–315 (2011)

    Article  Google Scholar 

  34. MathWorks Inc.: MATLAB R2015a.Natick, MA, USA (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sinan Melih Nigdeli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Günay, U., Ulusoy, S., Bekdaş, G., Nigdeli, S.M. (2023). Optimum Design of Reinforced Concrete Columns in Case of Fire. In: Bekdaş, G., Nigdeli, S.M. (eds) Hybrid Metaheuristics in Structural Engineering. Studies in Systems, Decision and Control, vol 480. Springer, Cham. https://doi.org/10.1007/978-3-031-34728-3_3

Download citation

Publish with us

Policies and ethics