Skip to main content
  • 108 Accesses

Abstract

In this chapter applications of sub- and supercritical fluids as reaction media for chemical and biochemical reactions as well as the reactant for different products are presented. The solvent properties of supercritical fluids enable them to apply them as solvent and as reactant in polymerization reactions and in hydrothermal synthesis. As solvent subcritical and supercritical fluids are applied for carbonylation, oxidation, hydrogenation, hydroformylation and as reaction media for biochemical reactions. Chemical reactions in supercritical media are already realized on industrial scale. The highest volume of use of supercritical fluids as reactant and as solvent media are processes on production of various polymer grades of polyethylene. Biochemical reactions in supercritical media were not yet applied in industrial scale. But most probably—due to excellent solvent properties of dense gases, low costs of some subcritical or supercritical fluids, possibilities of products fractionation and product formulation—these processes will sooner or later be applied in industrial scale.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adamovic T, Zhu X, Perez E, Balakshin M, Cocero MJ (2022) Understanding sulfonated kraft lignin re-polymerization by ultrafast reactions in supercritical water. J Supercrit Fluids 191:105768

    Article  CAS  Google Scholar 

  • Adschiri T, Byrappa K (2009) Supercritical hydrothermal synthesis of organic-inorganic hybrid nanoparticles. In: Muramatsu A, Miyashita T (eds) Nanohybridization of organic-inorganic materials. Springer, Berlin, Heidelberg, pp 247–280

    Chapter  Google Scholar 

  • Adschiri T, Lee Y-W, Goto M, Takami S (2011) Green materials synthesis with supercritical water. Green Chem 13(6):1380–1390

    Article  CAS  Google Scholar 

  • Adschiri T, Takami S, Arita T, Hojo D, Minami K, Aoki N, Togashi T (2013) Handbook of advanced ceramics: Chapter 11.1.5. In: Supercritical hydrothermal synthesis. Elsevier Inc. Chapters

    Google Scholar 

  • Adschiri T, Takami S, Minami K, Yamagata T, Miyata K, Morishita T, Ueda M, Fukushima K, Ueno M, Okada T, Oshima H, Mitani Y, Asahina S, Unno S (2012) Super hybrid materials. Mater Sci Forum 700:145–149

    Article  CAS  Google Scholar 

  • Alaimo D, Grignard B, Kuppan C, Adriaensen Y, Genet MJ, Dupont-Gillain C, Gohy J-F, Fustin C-A, Detrembleur C, Jérôme C (2017) A photocleavable stabilizer for the preparation of PHEMA nanogels by dispersion polymerization in supercritical carbon dioxide. Polym Chem 8(3):581–591

    Article  CAS  Google Scholar 

  • Albertsson A-C, Srivastava RK (2008) Recent developments in enzyme-catalyzed ring-opening polymerization. Adv Drug Deliv Rev 60(9):1077–1093

    Article  CAS  PubMed  Google Scholar 

  • Altinel H, Avsar G, Guzel B (2009a) Fluorinated rhodium-phosphine complexes as efficient homogeneous catalysts for the hydrogenation of styrene in supercritical carbon dioxide. Transit Met Chem 34(3):331–335

    Article  CAS  Google Scholar 

  • Altinel H, Avsar G, Yilmaz MK, Guzel B (2009b) New perfluorinated rhodium–BINAP catalysts and hydrogenation of styrene in supercritical CO2. J Supercrit Fluids 51(2):202–208

    Article  CAS  Google Scholar 

  • Alzahrani A, Zhou D, Kuchel RP, Zetterlund PB, Aldabbagh F (2019) Polymerization-induced self-assembly based on ATRP in supercritical carbon dioxide. Polym Chem 10(21):2658–2665

    Article  CAS  Google Scholar 

  • Amandi R, Scovell K, Licence P, Lotz TJ, Poliakoff M (2007) The synthesis of o-cyclohexylphenol in supercritical carbon dioxide: towards a continuous two-step reaction. Green Chem 9(7):797–801

    Article  CAS  Google Scholar 

  • Aoki N, Sato A, Sasaki H, Litwinowicz A-A, Seong G, Aida T, Hojo D, Takami S, Adschiri T (2016) Kinetics study to identify reaction-controlled conditions for supercritical hydrothermal nanoparticle synthesis with flow-type reactors. J Supercrit Fluids 110:161–166

    Article  CAS  Google Scholar 

  • Baheti P, Gimello O, Bouilhac C, Lacroix-Desmazes P, Howdle SM (2018) Sustainable synthesis and precise characterisation of bio-based star polycaprolactone synthesised with a metal catalyst and with lipase. Polym Chem 9(47):5594–5607

    Article  CAS  Google Scholar 

  • Bártlová M, Bernášek P, Sýkora J, Sovová H (2006) HPLC in reversed phase mode: tool for investigation of kinetics of blackcurrant seed oil lipolysis in supercritical carbon dioxide. J Chromatogr B 839(1):80–84

    Article  Google Scholar 

  • Bei K, Ma P, Wang J, Li K, Lyu J, Hu Z, Chou I-M, Pan Z (2017) Depolymerization of poly(ethylene naphthalate) in fused silica capillary reactor and autoclave reactor from 240 to 280 °C in subcritical water. Polym Eng Sci 57(12):1382–1388

    Article  CAS  Google Scholar 

  • Bektesevic S, Kleman AM, Marteel-Parrish AE, Abraham MA (2006) Hydroformylation in supercritical carbon dioxide: Catalysis and benign solvents. J Supercrit Fluids 38(2):232–241

    Article  CAS  Google Scholar 

  • Belkheiri T, Andersson S-I, Mattsson C, Olausson L, Theliander H, Vamling L (2018) Hydrothermal liquefaction of Kraft Lignin in subcritical water: influence of phenol as capping agent. Energy Fuels 32(5):5923–5932

    Article  CAS  Google Scholar 

  • Benito-Román Ó, Teresa Sanz M, Melgosa R, de Paz E, Escudero I, Beltrán S (2019) Studies of polyphenol oxidase inactivation by means of high pressure carbon dioxide (HPCD). J Supercrit Fluids 147:310–321

    Article  Google Scholar 

  • Bermejo MD, Cocero MJ (2006) Supercritical water oxidation: a technical review. AIChE J 52(11):3933–3951

    Article  CAS  Google Scholar 

  • Bermejo MD, Kotlewska AJ, Florusse LJ, Cocero MJ, van Rantwijk F, Peters CJ (2008) Influence of the enzyme concentration on the phase behaviour for developing a homogeneous enzymatic reaction in ionic liquid–CO2 media. Green Chem 10(10):1049–1054

    Article  CAS  Google Scholar 

  • Bhanage BM, Fujita S, Ikushima Y, Arai M (2001) Synthesis of dimethyl carbonate and glycols from carbon dioxide, epoxides, and methanol using heterogeneous basic metal oxide catalysts with high activity and selectivity. Appl Catal Gen 219(1):259–266

    Article  CAS  Google Scholar 

  • Bogel-Łukasik E, Bogel-Łukasik R, da Ponte MN (2009) Pt- and Pd-catalysed limonene hydrogenation in high-density carbon dioxide. Monatshefte Für Chem Chem Mon 140(11):1361

    Article  Google Scholar 

  • Bowen Y, Zhemin S (2019) Supercritical water oxidation of pyridine and 3-cyanopyridine: TOC removal, kinetics, and degradation pathway. J Environ Eng 145(4):1–5

    Google Scholar 

  • Brunner G (2009) Near and supercritical water. Part II: Oxidative processes. J Supercrit Fluids 47(3):382–390

    Google Scholar 

  • Brunner G (2010) Applications of supercritical fluids. Annu Rev Chem Biomol Eng 1:321–342

    Article  CAS  PubMed  Google Scholar 

  • Brunner G (2005) Supercritical fluids: technology and application to food processing. J Food Eng 67(1):21–33

    Article  Google Scholar 

  • Byrappa K, Adschiri T (2007) Hydrothermal technology for nanotechnology. Prog Cryst Growth Charact Mater 53(2):117–166

    Article  CAS  Google Scholar 

  • Canıaz RO, Erkey C (2014) Process intensification for heavy oil upgrading using supercritical water. Chem Eng Res Des 92(10):1845–1863

    Article  Google Scholar 

  • Cantero DA, Bermejo MD, Cocero MJ (2015) Governing chemistry of cellulose hydrolysis in supercritical water. Chemsuschem 8(6):1026–1033

    Article  CAS  PubMed  Google Scholar 

  • Cantero DA, Martínez C, Bermejo MD, Cocero MJ (2014) Simultaneous and selective recovery of cellulose and hemicellulose fractions from wheat bran by supercritical water hydrolysis. Green Chem 17(1):610–618

    Article  Google Scholar 

  • Cao L, Wang X, Wang G, Wang J (2015) A pH-sensitive porous chitosan membrane prepared via surface grafting copolymerization in supercritical carbon dioxide. Polym Int 64(3):383–388

    Article  CAS  Google Scholar 

  • Carvalho NB, Silva MA de O, Fricks AT, Franceschi E, Dariva C, Zanin GM, Lima ÁS, Soares CMF (2014) Evaluation of activity of Bacillus lipase (free and immobilized) treated with compressed propane. J Mol Catal B Enzym 99:130–135

    Google Scholar 

  • Chamberlain TW, Earley JH, Anderson DP, Khlobystov AN, Bourne RA (2014) Catalytic nanoreactors in continuous flow: hydrogenation inside single-walled carbon nanotubes using supercritical CO2. Chem Commun 50(40):5200–5202

    Article  CAS  Google Scholar 

  • Chao M (2014) Supercritical water oxidation of wastewater-based drilling fluid with glycol addition. J Adv Oxid Technol 17(2):385–388

    Google Scholar 

  • Chen M, Cao Y, Wang Y, Yang Z, Wang Q, Sun Q, Wang J (2019) Depolymerization of lignin over CoO/m-SEP catalyst under supercritical methanol. J Renew Sustain Energy 11(1):1–9

    Article  Google Scholar 

  • Chen P, Zhang Q, Shu R, Xu Y, Ma L, Wang T (2017) Catalytic depolymerization of the hydrolyzed lignin over mesoporous catalysts. Bioresour Technol 226:125–131

    Article  CAS  PubMed  Google Scholar 

  • Chouchi D, Gourgouillon D, Courel M, Vital J, Nunes da Ponte M (2001) The influence of phase behavior on reactions at supercritical conditions: the hydrogenation of α-Pinene. Ind Eng Chem Res 40(12):2551–2554

    Article  CAS  Google Scholar 

  • Ciftci ON, Temelli F (2013) Enzymatic conversion of corn oil into biodiesel in a batch supercritical carbon dioxide reactor and kinetic modeling. J Supercrit Fluids 75:172–180

    Article  CAS  Google Scholar 

  • Ciftci ON, Temelli F (2011) Continuous production of fatty acid methyl esters from corn oil in a supercritical carbon dioxide bioreactor. J Supercrit Fluids 58(1):79–87

    Article  CAS  Google Scholar 

  • Clark P, Poliakoff M, Wells A (2007) Continuous Flow Hydrogenation of a Pharmaceutical Intermediate, [4-(3,4-Dichlorophenyl)-3,4-dihydro-2H-naphthalenyidene]methylamine, in supercritical carbon dioxide. Adv Synth Catal 349(17–18):2655–2659

    Article  CAS  Google Scholar 

  • Clifford AA (1994) Reactions in supercritical fluids. In: Kiran E, Sengers JMHL (eds) Supercritical fluids: fundamentals for application. Springer, Netherlands, Dordrecht, pp 449–479

    Chapter  Google Scholar 

  • Cokoja M, Wilhelm ME, Anthofer MH, Herrmann WA, Kühn FE (2015) Synthesis of cyclic carbonates from epoxides and carbon dioxide by using organocatalysts. Chemsuschem 8(15):2436–2454

    Article  CAS  PubMed  Google Scholar 

  • Cole-Hamilton DJ (2006) Asymmetric catalytic synthesis of organic compounds using metal complexes in supercritical fluids. Adv Synth Catal 348(12–13):1341–1351

    Article  CAS  Google Scholar 

  • Colombo TS, Mazutti MA, Di Luccio M, de Oliveira D, Oliveira JV (2015) Enzymatic synthesis of soybean biodiesel using supercritical carbon dioxide as solvent in a continuous expanded-bed reactor. J Supercrit Fluids 97:16–21

    Article  CAS  Google Scholar 

  • Combes GB, Dehghani F, Lucien FP, Dillow AK, Foster NR (2000) Chapter 14—Asymmetric catalytic hydrogenation in CO2 expanded methanol—an application of gas anti-solvent reactions (GASR). In: Abraham MA, Hesketh RP (eds) Reaction engineering for pollution prevention. Elsevier Science, Amsterdam, pp 173–181

    Chapter  Google Scholar 

  • Comim Rosso SR, Bianchin E, de Oliveira D, Oliveira JV, Ferreira SRS (2013) Enzymatic synthesis of poly(ɛ-caprolactone) in supercritical carbon dioxide medium by means of a variable-volume view reactor. J Supercrit Fluids 79:133–141

    Article  CAS  Google Scholar 

  • Costa LI, Storti G (2018) Kinetic modeling of precipitation and dispersion polymerizations. In: Pauer W (ed) Polymer reaction engineering of dispersed systems, vol II. Springer International Publishing, Cham, pp 45–77

    Google Scholar 

  • Dai W-L, Luo S-L, Yin S-F, Au C-T (2009) The direct transformation of carbon dioxide to organic carbonates over heterogeneous catalysts. Appl Catal Gen 366(1):2–12

    Article  CAS  Google Scholar 

  • Dai Z, Hatano B, Kadokawa J, Tagaya H (2002) Effect of diaminotoluene on the decomposition of polyurethane foam waste in superheated water. Polym Degrad Stab 76(2):179–184

    Article  CAS  Google Scholar 

  • Dalla Rosa C, Morandim MB, Ninow JL, Oliveira D, Treichel H, Oliveira JV (2009) Continuous lipase-catalyzed production of fatty acid ethyl esters from soybean oil in compressed fluids. Bioresour Technol 100(23):5818–5826

    Article  CAS  PubMed  Google Scholar 

  • Darensbourg DJ, Yarbrough JC (2002) Mechanistic aspects of the copolymerization reaction of carbon dioxide and epoxides, using a Chiral Salen Chromium Chloride catalyst. J Am Chem Soc 124(22):6335–6342

    Article  CAS  PubMed  Google Scholar 

  • Darr JA, Poliakoff M (1999) New directions in inorganic and metal-organic coordination chemistry in supercritical fluids. Chem Rev 99(2):495–542

    Article  CAS  PubMed  Google Scholar 

  • Darr JA, Zhang J, Makwana NM, Weng X (2017) Continuous hydrothermal synthesis of inorganic nanoparticles: applications and future directions. Chem Rev 117(17):11125–11238

    Article  CAS  PubMed  Google Scholar 

  • de Oliveira D, Feihrmann AC, Dariva C, Cunha AG, Bevilaqua JV, Destain J, Oliveira JV, Freire DMG (2006a) Influence of compressed fluids treatment on the activity of Yarrowia lipolytica lipase. J Mol Catal B Enzym 39(1):117–123

    Article  Google Scholar 

  • de Souza MM, Veneral JG, Furigo Junior A, de Oliveira JV, Di Luccio M, Prando LT, Terenzi H, de Oliveira D (2017) Effect of compressed fluids on the enzymatic activity and structure of lysozyme. J Supercrit Fluids 130:125–132

    Article  Google Scholar 

  • Dong LB, McVicker GB, Kiserow DJ, Roberts GW (2010) Hydrogenation of polystyrene in CO2-expanded liquids: the effect of catalyst composition on deactivation. Appl Catal Gen 384(1):45–50

    Article  CAS  Google Scholar 

  • dos Santos P, Meireles MAA, Martínez J (2017) Production of isoamyl acetate by enzymatic reactions in batch and packed bed reactors with supercritical CO2. J Supercrit Fluids 127:71–80. https://doi.org/10.1016/j.supflu.2017.03.019

    Article  CAS  Google Scholar 

  • dos Santos P, Zabot GL, Meireles MAA, Mazutti MA, Martínez J (2016) Synthesis of eugenyl acetate by enzymatic reactions in supercritical carbon dioxide. Biochem Eng J 114:1–9

    Article  CAS  Google Scholar 

  • Du L, Kelly JY, Roberts GW, DeSimone JM (2009) Fluoropolymer synthesis in supercritical carbon dioxide. J Supercrit Fluids 47(3):447–457

    Article  CAS  Google Scholar 

  • Durham E, Stewart C, Roe D, Xu R, Zhang S, Roberts CB (2014) Supercritical Fischer-Tropsch synthesis: heavy aldehyde production and the role of process conditions. Ind Eng Chem Res 53(23):9695–9702

    Article  CAS  Google Scholar 

  • Durham E, Xu R, Zhang S, Eden MR, Roberts CB (2013) Supercritical adiabatic reactor for Fischer-Tropsch synthesis. Ind Eng Chem Res 52(9):3133–3136

    Article  CAS  Google Scholar 

  • Elbashir NO, Bukur DB, Durham E, Roberts CB (2010) Advancement of Fischer-Tropsch synthesis via utilization of supercritical fluid reaction media. AIChE J 56(4):997–1015

    CAS  Google Scholar 

  • Eliseev OL, Savost’yanov AP, Sulima SI, Lapidus AL (2018) Recent development in heavy paraffin synthesis from CO and H2. Mendeleev Commun 28(4):345–351

    Google Scholar 

  • Elmanovich IVV, Sizov VEE, Zefirov VVV, Kalinina AAA, Gallyamov MOO, Papkov VSS, Muzafarov AMM (2022) Chemical recycling of high-molecular-weight organosilicon compounds in supercritical fluids. Polymers 14(23):5170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fan L, Fujimoto K (1999) Fischer-Tropsch synthesis in supercritical fluid: characteristics and application. Appl Catal Gen 186(1):343–354

    Article  CAS  Google Scholar 

  • Fang L (2016) Catalytic wet oxidation of waste drilling fluid. Oxid Commun 39(3 A):2728–2732

    Google Scholar 

  • Feiten MC, Morigi I, Di Luccio M, Oliveira JV (2023) Activity and stability of lipase from Candida Antarctica after treatment in pressurized fluids. Biotechnol Lett 45(2):287–298

    Article  CAS  PubMed  Google Scholar 

  • Feng S-H, Li G-H (2017) Chapter 4—hydrothermal and solvothermal syntheses. In: Xu R, Xu Y (eds) Modern inorganic synthetic chemistry, 2nd edn. Elsevier, Amsterdam, pp 73–104

    Chapter  Google Scholar 

  • Findrik Z, Vasić-Rački Ð, Primožič M, Habulin M, Knez Ž (2005) Enzymatic activity of L-amino acid oxidase from snake venom Crotalus adamanteus in supercritical CO2. Biocatal Biotransformation 23(5):315–321

    Article  CAS  Google Scholar 

  • Franken LPG, Marcon NS, Treichel H, Oliveira D, Freire DMG, Dariva C, Destain J, Oliveira JV (2010) Effect of treatment with compressed propane on lipases hydrolytic activity. Food Bioprocess Technol 3(4):511–520

    Article  CAS  Google Scholar 

  • Fricks AT, Oestreicher EG, Filho LC, Feihrmann AC, Cordeiro Y, Dariva C, Antunes OAC (2009) Effects of compressed fluids on the activity and structure of horseradish peroxidase. J Supercrit Fluids 50(2):162–168

    Article  CAS  Google Scholar 

  • Fujii T, Kawasaki S, Adschiri T (2016a) Kinetic study of octanoic acid enhanced crystal growth of boehmite under sub- and supercritical hydrothermal conditions. J Supercrit Fluids 118:148–152

    Article  CAS  Google Scholar 

  • Fujii T, Kawasaki S, Suzuki A, Adschiri T (2016b) High-speed morphology control of Boehmite nanoparticles by supercritical hydrothermal treatment with carboxylic acids. Cryst Growth Des 16(4):1996–2001

    Article  CAS  Google Scholar 

  • Gameiro M, Lisboa P, Paiva A, Barreiros S, Simões P (2015) Supercritical carbon dioxide-based integrated continuous extraction of oil from chicken feather meal, and its conversion to biodiesel in a packed-bed enzymatic reactor, at pilot scale. Fuel 153:135–142

    Article  CAS  Google Scholar 

  • Ghaffari-Moghaddam M, Eslahi H, Aydin YA, Saloglu D (2015) Enzymatic processes in alternative reaction media: a mini review. J Biol Methods 2(3):e25

    Article  Google Scholar 

  • Ghaziaskar HS, Daneshfar A, Calvo L (2006) Continuous esterification or dehydration in supercritical carbon dioxide. Green Chem 8(6):576–581

    Article  CAS  Google Scholar 

  • Gong Y, Guo Y, Sheehan JD, Chen Z, Wang S (2018) Oxidative degradation of landfill leachate by catalysis of CeMnOx/TiO2 in supercritical water: mechanism and kinetic study. Chem Eng J 331:578–586

    Article  CAS  Google Scholar 

  • Gong Y, Guo Y, Wang S, Song W (2016) Supercritical water oxidation of Quinazoline: effects of conversion parameters and reaction mechanism. Water Res 100:116–125

    Article  CAS  PubMed  Google Scholar 

  • Gong Y, Guo Y, Wang S, Song W, Xu D (2017) Supercritical water oxidation of quinazoline: reaction kinetics and modeling. Water Res 110:56–65

    Article  CAS  PubMed  Google Scholar 

  • Goodship V, Ogur EO (2004) Polymer processing with supercritical fluids. iSmithers Rapra Publishing

    Google Scholar 

  • Goto M, Obuchi R, Hirose T, Sakaki T, Shibata M (2004) Hydrothermal conversion of municipal organic waste into resources. Bioresour Technol 93(3):279–284

    Article  CAS  PubMed  Google Scholar 

  • Guthalugu NK, Balaraman M, Kadimi US (2006) Optimization of enzymatic hydrolysis of triglycerides in soy deodorized distillate with supercritical carbon dioxide. Biochem Eng J 29(3):220–226

    Article  CAS  Google Scholar 

  • Gutiérrez-Arnillas E, Álvarez MS, Deive FJ, Rodríguez A, Sanromán MÁ (2016) New horizons in the enzymatic production of biodiesel using neoteric solvents. Renew Energy 98:92–100

    Article  Google Scholar 

  • Guzmán-Lagunes F, López-Luna A, Gimeno M, Bárzana E (2012) Enzymatic synthesis of poly-l-lactide in supercritical R134a. J Supercrit Fluids 72:186–190

    Article  Google Scholar 

  • Habulin M, Primožič M, Knez Ž (2005) Enzymatic reactions in high-pressure membrane reactors. Ind Eng Chem Res 44(25):9619–9625

    Article  CAS  Google Scholar 

  • Haldorai Y, Shim J-J, Lim KT (2012) Synthesis of polymer–inorganic filler nanocomposites in supercritical CO2. J Supercrit Fluids 71:45–63

    Article  CAS  Google Scholar 

  • Hao Q-Q, Zhao Y-H, Yang H-H, Liu Z-T, Liu Z-W (2012) Alumina grafted to SBA-15 in supercritical CO2 as a support of cobalt for Fischer-Tropsch synthesis. Energy Fuels 26(11):6567–6575

    Article  CAS  Google Scholar 

  • He L-N, Yasuda H, Sakakura T (2003) New procedure for recycling homogeneous catalyst: propylene carbonate synthesis under supercritical CO2 conditions. Green Chem 5(1):92–94

    Article  CAS  Google Scholar 

  • Hernández FJ, de los Ríos AP, Gómez D, Rubio M, Víllora G (2006) A new recirculating enzymatic membrane reactor for ester synthesis in ionic liquid/supercritical carbon dioxide biphasic systems. Appl Catal B Environ 67(1):121–126

    Google Scholar 

  • Hidajat MJ, Riaz A, Park J, Insyani R, Verma D, Kim J (2017) Depolymerization of concentrated sulfuric acid hydrolysis lignin to high-yield aromatic monomers in basic sub- and supercritical fluids. Chem Eng J 317:9–19

    Article  CAS  Google Scholar 

  • Hintermair U, Franciò G, Leitner W (2013) A fully integrated continuous-flow system for asymmetric catalysis: enantioselective hydrogenation with supported ionic liquid phase catalysts using supercritical CO2 as the mobile phase. Chem Eur J 19(14):4538–4547

    Google Scholar 

  • Hintermair U, Höfener T, Pullmann T, Franciò G, Leitner W (2010) Continuous enantioselective hydrogenation with a molecular catalyst in supported ionic liquid phase under supercritical CO2 flow. Chem Cat Chem 2(2):150–154

    CAS  Google Scholar 

  • Hobbs HR, Thomas NR (2007) Biocatalysis in supercritical fluids, in fluorous solvents, and under solvent-free conditions. Chem Rev 107(6):2786–2820

    Article  CAS  PubMed  Google Scholar 

  • Housaindokht MR, Monhemi H (2013) The open lid conformation of the lipase is explored in the compressed gas: New insights from molecular dynamic simulation. J Mol Catal B Enzym 87:135–138

    Article  CAS  Google Scholar 

  • Huang J, Qi W, Wu Y, Zhu Z (2005) Depolymerization of polybutylene terephthalate in supercritical methanol. Acta Polym Sin 2(2):309–312

    Google Scholar 

  • Huang X, Korányi TI, Boot MD, Hensen EJM (2014) Catalytic depolymerization of lignin in supercritical ethanol. Chemsuschem 7(8):2276–2288

    Article  CAS  PubMed  Google Scholar 

  • Ikariya T, Kayari Y, Kishimoto Y, Noguchi Y (2000) Highly efficient carbonylation reactions of organic halides in supercritical carbon dioxide. Prog Nucl Energy 37(1):429–434

    Article  CAS  Google Scholar 

  • Inoue S, Koinuma H, Tsuruta T (1969) Copolymerization of carbon dioxide and epoxide. J Polym Sci [b] 7(4):287–292

    CAS  Google Scholar 

  • Jessop PG (2006) Homogeneous catalysis using supercritical fluids: recent trends and systems studied. J Supercrit Fluids 38(2):211–231

    Article  CAS  Google Scholar 

  • Jessop PG, Leitner W (1999) Chemical synthesis using supercritical fluids. WILEY‐VCH Verlag GmbH

    Google Scholar 

  • Jia L, Jiang H, Li J (1999) Palladium(II)-catalyzed oxidation of acrylate esters to acetals in supercritical carbon dioxide. Chem Commun 11:985–986

    Article  Google Scholar 

  • Jiang H, Jia L, Li J (2000) Wacker reaction in supercritical carbon dioxide. Green Chem 2(4):161–164

    Article  CAS  Google Scholar 

  • Jiang H-F, Shen Y-X, Wang Z-Y (2008) Palladium-catalyzed aerobic oxidation of terminal olefins with electron-withdrawing groups in scCO2. Tetrahedron 64(3):508–514

    Article  CAS  Google Scholar 

  • Kamimura A, Ikeda K, Suzuki S, Kato K, Akinari Y, Sugimoto T, Kashiwagi K, Kaiso K, Matsumoto H, Yoshimoto M (2014) Efficient conversion of polyamides to ω-hydroxyalkanoic acids: a new method for chemical recycling of waste plastics. Chemsuschem 7(9):2473–2477

    Article  CAS  PubMed  Google Scholar 

  • Kamimura A, Ikeda K, Suzuki S, Kato K, Matsumoto H, Kaiso K, Yoshimoto M (2017) A kinetic study on the conversion of nylon 12 to methyl 12-hydroxydodecanoate in supercritical MeOH in the presence of carboxylic acid. Polym Degrad Stab 146:95–104

    Article  CAS  Google Scholar 

  • Kang J, Myint AA, Sim S, Kim J, Kong WB, Lee Y-W (2018) Kinetics of the upgrading of heavy oil in supercritical methanol. J Supercrit Fluids 133:133–138

    Article  CAS  Google Scholar 

  • Kani I, Flores R, Fackler JP, Akgerman A (2004) Hydroformylation of styrene in supercritical carbon dioxide with fluoroacrylate polymer supported rhodium catalysts. J Supercrit Fluids 31(3):287–294

    Article  CAS  Google Scholar 

  • Kavčič S, Knez Ž, Leitgeb M (2014) Antimicrobial activity of n-butyl lactate obtained via enzymatic esterification of lactic acid with n-butanol in supercritical trifluoromethane. J Supercrit Fluids 85:143–150

    Article  Google Scholar 

  • Kazaryan PS, Tyutyunov AA, Kondratenko MS, Elmanovich IV, Stakhanov AI, Zefirov VV, Gallyamov MO, Blagodatskikh IV, Khokhlov AR (2019) Superhydrophobic coatings on textiles based on novel poly(perfluoro-tert-hexylbutyl methacrylate-co-hydroxyethyl methacrylate) copolymer deposited from solutions in supercritical carbon dioxide. J Supercrit Fluids 149:34–41

    Article  CAS  Google Scholar 

  • Kim H, Mitton DB, Latanision RM (2010) Corrosion behavior of Ni-base alloys in aqueous HCl solution of pH 2 at high temperature and pressure. Corros Sci 52(3):801–809

    Article  CAS  Google Scholar 

  • Klaus S, Lehenmeier MW, Anderson CE, Rieger B (2011) Recent advances in CO2/epoxide copolymerization—New strategies and cooperative mechanisms. Coord Chem Rev 255(13):1460–1479

    Article  CAS  Google Scholar 

  • Knez Ž (2009) Enzymatic reactions in dense gases. J Supercrit Fluids 47(3):357–372

    Article  CAS  Google Scholar 

  • Knez Ž (2018) Enzymatic reactions in subcritical and supercritical fluids. J Supercrit Fluids 134:133–140

    Article  CAS  Google Scholar 

  • Knez Z, Laudani CG, Habulin M, Reverchon E (2007) Exploiting the pressure effect on lipase-catalyzed wax ester synthesis in dense carbon dioxide. Biotechnol Bioeng 97(6):1366–1375

    Article  CAS  PubMed  Google Scholar 

  • Knez Ž, Leitgeb M, Primožič M (2015a) Biochemical Reactions in Supercritical Fluids. Funct Food Ingred Nutraceuticals Process Technol 13:127

    Article  Google Scholar 

  • Knez Ž, Leitgeb M, Primožič M (2015b) Enzymatic reactions in supercritical fluids. In: High pressure fluid technology for green food processing. Springer, pp 185–215

    Google Scholar 

  • Knez Ž, Markočič E, Leitgeb M, Primožič M, Knez Hrnčič M, Škerget M (2014) Industrial applications of supercritical fluids: a review. Energy 77:235–243

    Article  CAS  Google Scholar 

  • Koeken ACJ, van den Broeke LJP, Deelman B-J, Keurentjes JTF (2011) Full kinetic description of 1-octene hydroformylation in a supercritical medium. J Mol Catal Chem 346(1):1–11

    Article  CAS  Google Scholar 

  • Kuhn G de O, Coghetto C, Treichel H, de Oliveira D, Oliveira JV (2011) Effect of compressed fluids treatment on the activity of inulinase from Kluyveromyces marxianus NRRL Y-7571 immobilized in montmorillonite. Process Biochem 46(12):2286–2290

    Google Scholar 

  • Kunene TE, Webb PB, Cole-Hamilton DJ (2011) Highly selective hydroformylation of long-chain alkenes in a supercritical fluid ionic liquid biphasic system. Green Chem 13(6):1476–1481

    Article  CAS  Google Scholar 

  • Lang X-D, He X-FL (2015) Sustainable solid catalysts for cyclic carbonate synthesis from CO2 and epoxide. Curr Org Chem 19(8):681–694

    Article  CAS  Google Scholar 

  • Laudani CG, Habulin M, Knez Ž, Porta GD, Reverchon E (2007) Lipase-catalyzed long chain fatty ester synthesis in dense carbon dioxide: kinetics and thermodynamics. J Supercrit Fluids 41(1):92–101

    Article  CAS  Google Scholar 

  • Lee JH, Kwon CH, Kang JW, Park C, Tae B, Kim SW (2009) Biodiesel production from various oils under supercritical fluid conditions by Candida antartica lipase B using a stepwise reaction method. Appl Biochem Biotechnol 156(1–3):24–34

    Article  PubMed  Google Scholar 

  • Leitgeb M, Primožič M, Knez Ž (2007) Supercritical fluids as solvents for enzymatic reactions. Acta Chim Slov 54(4):667–677

    Google Scholar 

  • Li N, Yan B, Xiao X-M (2015) A review of laboratory-scale research on upgrading heavy oil in supercritical water. Energies 8(8):8962–8989

    Article  CAS  Google Scholar 

  • Limarta SO, Ha J-M, Park Y-K, Lee H, Suh DJ, Jae J (2018) Efficient depolymerization of lignin in supercritical ethanol by a combination of metal and base catalysts. J Ind Eng Chem 57:45–54

    Article  CAS  Google Scholar 

  • Lin T-J, Chen S-W, Chang A-C (2006) Enrichment of n-3 PUFA contents on triglycerides of fish oil by lipase-catalyzed trans-esterification under supercritical conditions. Biochem Eng J 29(1):27–34

    Article  CAS  Google Scholar 

  • Liu H, Meng Y, Zhang G, Li G (2016) Supercritical water oxidation of drilling fluid wastewater. Oxid Commun 39(2):1687–1693

    CAS  Google Scholar 

  • López-Luna A, Gallegos JL, Gimeno M, Vivaldo-Lima E, Bárzana E (2010) Lipase-catalyzed syntheses of linear and hyperbranched polyesters using compressed fluids as solvent media. J Mol Catal B Enzym 67(1):143–149

    Article  Google Scholar 

  • Lozano P, Diego TD, Vaultier M, Iborra JL (2009) Dynamic kinetic resolution of Sec-Alcohols in ionic liquids/supercritical carbon dioxide biphasic systems. Int J Chem React Eng 7(1)

    Google Scholar 

  • Lozano P, Garcia-Verdugo E, V Luis S, Pucheault M, Vaultier M (2011) (Bio) catalytic continuous flow processes in scCO2 and/or ILs: towards sustainable (Bio) catalytic synthetic platforms. Curr Org Synth 8(6):810–823

    Google Scholar 

  • Lozano P, Nieto S, L Serrano J, Perez J, Sanchez-Gomez G, Garcia-Verdugo E, V Luis S (2017) Flow biocatalytic processes in ionic liquids and supercritical fluids. Mini-Rev Org Chem 14(1):65–74

    Google Scholar 

  • Lutz J-F, Lehn J-M, Meijer E, Matyjaszewski K (2016) From precision polymers to complex materials and systems. Nat Rev Mater 1(5):16024

    Article  CAS  Google Scholar 

  • Ma X, Ma R, Hao W, Chen M, Yan F, Cui K, Tian Y, Li Y (2015) Common pathways in ethanolysis of Kraft Lignin to platform chemicals over molybdenum-based catalysts. ACS Catal 5(8):4803–4813

    Article  CAS  Google Scholar 

  • Madras G, Kolluru C, Kumar R (2004) Synthesis of biodiesel in supercritical fluids. Fuel 83(14):2029–2033

    Article  CAS  Google Scholar 

  • Mahmood N, Yuan Z, Schmidt J, (Charles) Xu C (2013) Production of polyols via direct hydrolysis of kraft lignin: Effect of process parameters. Bioresour Technol 139:13–20

    Google Scholar 

  • Malek Abbaslou RM, Soltan Mohammadzadeh JS, Dalai AK (2009) Review on Fischer-Tropsch synthesis in supercritical media. Fuel Process Technol 90(7):849–856

    Article  CAS  Google Scholar 

  • Manera AP, Kuhn G, Polloni A, Marangoni M, Zabot G, Kalil SJ, de Oliveira D, Treichel H, Vladimir Oliveira J, Mazutti MA, Maugeri F (2011) Effect of compressed fluids treatment on the activity, stability and enzymatic reaction performance of β-galactosidase. Food Chem 125(4):1235–1240

    Article  CAS  Google Scholar 

  • Manera AP, Zabot GL, Vladimir Oliveira J, de Oliveira D, Mazutti MA, Kalil SJ, Treichel H, Filho FM (2012) Enzymatic synthesis of galactooligosaccharides using pressurised fluids as reaction medium. Food Chem 133(4):1408–1413

    Article  CAS  Google Scholar 

  • Marrone PA (2013) Supercritical water oxidation—Current status of full-scale commercial activity for waste destruction. J Supercrit Fluids 79:283–288

    Article  CAS  Google Scholar 

  • Marszałek K, Doesburg P, Starzonek S, Szczepańska J, Woźniak Ł, Lorenzo JM, Skąpska S, Rzoska S, Barba FJ (2019) Comparative effect of supercritical carbon dioxide and high pressure processing on structural changes and activity loss of oxidoreductive enzymes. J CO2 Util 29:46–56

    Google Scholar 

  • Martínez CM, Cantero DA, Bermejo MD, Cocero MJ (2015) Hydrolysis of cellulose in supercritical water: reagent concentration as a selectivity factor. Cellulose 22(4):2231–2243

    Article  Google Scholar 

  • Marx S (2016) Glycerol-free biodiesel production through transesterification: a review. Fuel Process Technol 151:139–147

    Article  CAS  Google Scholar 

  • Matsuda T (2013) Recent progress in biocatalysis using supercritical carbon dioxide. J Biosci Bioeng 115(3):233–241

    Article  CAS  PubMed  Google Scholar 

  • Matsuda T, Watanabe K, Harada T, Nakamura K (2004) Enzymatic reactions in supercritical CO2: carboxylation, asymmetric reduction and esterification. Catal Today 96(3):103–111

    Article  CAS  Google Scholar 

  • McAllister TD, Farrand LD, Howdle SM (2016) Improved particle size control for the dispersion polymerization of methyl methacrylate in supercritical carbon dioxide. Macromol Chem Phys 217(20):2294–2301

    Article  CAS  Google Scholar 

  • Melgosa R, Sanz MT, Solaesa ÁG, de Paz E, Beltrán S, Lamas DL (2017) Supercritical carbon dioxide as solvent in the lipase-catalyzed ethanolysis of fish oil: Kinetic study. J CO2 Util 17:170–179

    Google Scholar 

  • Mena M, Shirai K, Tecante A, Bárzana E, Gimeno M (2015) Enzymatic syntheses of linear and hyperbranched poly-l-lactide using compressed R134a–ionic liquid media. J Supercrit Fluids 103:77–82

    Article  CAS  Google Scholar 

  • Monfared A, Mohammadi R, Hosseinian A, Sarhandi S, Nezhad PDK (2019) Cycloaddition of atmospheric CO2 to epoxides under solvent-free conditions: a straightforward route to carbonates by green chemistry metrics. RSC Adv 9(7):3884–3899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morales Ibarra R, Sasaki M, Goto M, Quitain AT, García Montes SM, Aguilar-Garib JA (2015) Carbon fiber recovery using water and benzyl alcohol in subcritical and supercritical conditions for chemical recycling of thermoset composite materials. J Mater Cycles Waste Manag 17(2):369–379

    Article  CAS  Google Scholar 

  • More SR, Yadav GD (2018) Effect of supercritical CO2 as reaction medium for selective hydrogenation of acetophenone to 1-phenylethanol. ACS Omega 3(6):7124–7132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muratov G, Seo KW, Kim C (2005) Application of supercritical carbon dioxide to the bioconversion of cotton fibers. J Ind Eng Chem 11(1):42–46

    CAS  Google Scholar 

  • Musie G, Wei M, Subramaniam B, Busch DH (2001) Catalytic oxidations in carbon dioxide-based reaction media, including novel CO2-expanded phases. Coord Chem Rev 219–221:789–820

    Article  Google Scholar 

  • Nakamura K, Yamanaka R, Matsuda T, Harada T (2003) Recent developments in asymmetric reduction of ketones with biocatalysts. Tetrahedron Asymmetry 14(18):2659–2681

    Article  CAS  Google Scholar 

  • Nyari NLD, Zabot GL, Zamadei R, Paluzzi AR, Tres MV, Zeni J, Venquiaruto LD, Dallago RM (2018) Activation of Candida antarctica lipase B in pressurized fluids for the synthesis of esters. J Chem Technol Biotechnol 93(3):897–908

    Article  CAS  Google Scholar 

  • Okajima I, Watanabe K, Haramiishi S, Nakamura M, Shimamura Y, Sako T (2017) Recycling of carbon fiber reinforced plastic containing amine-cured epoxy resin using supercritical and subcritical fluids. J Supercrit Fluids 119:44–51. https://doi.org/10.1016/j.supflu.2016.08.015

    Article  CAS  Google Scholar 

  • Oliveira D, Feihrmann AC, Rubira AF, Kunita MH, Dariva C, Oliveira JV (2006b) Assessment of two immobilized lipases activity treated in compressed fluids. J Supercrit Fluids 38(3):373–382. https://doi.org/10.1016/j.supflu.2005.12.007

    Article  CAS  Google Scholar 

  • Oliveira PF, Machado RAF, Barth D, Acosta ED (2016) Dispersion polymerization of methyl methacrylate in supercritical carbon dioxide using vinyl terminated poly(dimethylsiloxane). Chem Eng Process Process Intensif 103:46–52

    Article  CAS  Google Scholar 

  • Onwudili JA, Williams PT (2006) Flameless supercritical water incineration of polycyclic aromatic hydrocarbons. Int J Energy Res 30(7):523–533

    Article  CAS  Google Scholar 

  • Onwudili JA, Williams PT (2007) Reaction mechanisms for the decomposition of phenanthrene and naphthalene under hydrothermal conditions. J Supercrit Fluids 39(3):399–408

    Article  CAS  Google Scholar 

  • Osanai Y, Toshima K, Matsumura S (2006) Enzymatic transformation of aliphatic polyesters into cyclic oligomers using enzyme packed column under continuous flow of supercritical carbon dioxide with toluene. Sci Technol Adv Mater 7(2):202–208

    Article  CAS  Google Scholar 

  • Palocci C, Falconi M, Chronopoulou L, Cernia E (2008) Lipase-catalyzed regioselective acylation of tritylglycosides in supercritical carbon dioxide. J Supercrit Fluids 45(1):88–93

    Article  CAS  Google Scholar 

  • Parilti R, Alaimo D, Grignard B, Boury F, Howdle SM, Jérôme C (2017) Mild synthesis of poly(HEMA)-networks as well-defined nanoparticles in supercritical carbon dioxide. J Mater Chem B 5(29):5806–5815

    Article  CAS  PubMed  Google Scholar 

  • Parilti R, Riva R, Howdle SM, Dupont-Gillain C, Jerome C (2018) Sulindac encapsulation and release from functional poly(HEMA) microparticles prepared in supercritical carbon dioxide. Int J Pharm 549(1):161–168

    Article  CAS  PubMed  Google Scholar 

  • Pavlovič I, Knez Ž, Škerget M (2013) Hydrothermal reactions of agricultural and food processing wastes in sub- and supercritical water: a review of fundamentals, mechanisms, and state of research. J Agric Food Chem 61(34):8003–8025

    Article  PubMed  Google Scholar 

  • Peng Y-K, Sun L-L, Shi W, Long J-J (2016) Investigation of enzymatic activity, stability and structure changes of pectinase treated in supercritical carbon dioxide. J Clean Prod 125:331–340

    Article  CAS  Google Scholar 

  • Philippot G, Elissalde C, Maglione M, Aymonier C (2014) Supercritical fluid technology: a reliable process for high quality BaTiO3 based nanomaterials. Adv Powder Technol 25(5):1415–1429

    Article  CAS  Google Scholar 

  • Polloni AE, Veneral JG, Rebelatto EA, de Oliveira D, Oliveira JV, Araújo PHH, Sayer C (2017) Enzymatic ring opening polymerization of ω-pentadecalactone using supercritical carbon dioxide. J Supercrit Fluids 119:221–228

    Article  CAS  Google Scholar 

  • Primozic M, Habulin M, Knez Z (2006) Proteinase-catalyzed hydrolysis of casein at atmospheric pressure and in supercritical media. Chem Biochem Eng Q 20(3):255–261

    CAS  Google Scholar 

  • Qu H, Gong J-H, Tan X-C, Yuan P-Q, Cheng Z-M, Yuan W-K (2019) Dissolution of polycyclic aromatic hydrocarbons in subcritical and supercritical Water: a molecular dynamics simulation study. Chem Eng Sci 195:958–967

    Article  CAS  Google Scholar 

  • Rajappagowda R, Numan-Al-Mobin AM, Yao B, Cook RD, Smirnova A (2017) Toward selective lignin liquefaction: synergistic effect of hetero- and homogeneous catalysis in sub- and supercritical fluids. Energy Fuels 31(1):578–586

    Article  CAS  Google Scholar 

  • Randolph TW, Blanch HW, Prausnitz JM (1988a) Enzyme-caytalyzed oxidation of cholesterol in supercritical carbon dioxide. AIChE J 34(8):1354–1360

    Article  CAS  Google Scholar 

  • Randolph TW, Clark DS, Blanch HW, Prausnitz JM (1988b) Enzymatic oxidation of cholesterol aggregates in supercritical carbon dioxide. Science 239(4838):387–390

    Article  CAS  PubMed  Google Scholar 

  • Rathke JW, Klingler RJ, Krause TR (1991) Propylene hydroformylation in supercritical carbon dioxide. Organometallics 10(5):1350–1355

    Article  CAS  Google Scholar 

  • Ren M, Wang S, Yang C, Xu H, Guo Y, Roekaerts D (2019) Supercritical water oxidation of quinoline with moderate preheat temperature and initial concentration. Fuel 236:1408–1414

    Article  CAS  Google Scholar 

  • Rezaei K, Temelli F, Jenab E (2007) Effects of pressure and temperature on enzymatic reactions in supercritical fluids. Biotechnol Adv 25(3):272–280

    Article  CAS  PubMed  Google Scholar 

  • Romero MD, Calvo L, Alba C, Habulin M, Primožič M, Knez Ž (2005) Enzymatic synthesis of isoamyl acetate with immobilized Candida antarctica lipase in supercritical carbon dioxide. J Supercrit Fluids 33(1):77–84

    Article  CAS  Google Scholar 

  • Rosero-Henao JC, Bueno BE, de Souza R, Ribeiro R, Lopes de Oliveira A, Gomide CA, Gomes TM, Tommaso G (2019) Potential benefits of near critical and supercritical pre-treatment of lignocellulosic biomass towards anaerobic digestion. Waste Manag Res J Int Solid Wastes Public Clean Assoc ISWA 37(1):74–82

    Article  CAS  Google Scholar 

  • Rosso Comim SR, Veneral JG, de Oliveira D, Ferreira SRS, Oliveira JV (2015) Enzymatic synthesis of poly(ɛ-caprolactone) in liquified petroleum gas and carbon dioxide. J Supercrit Fluids 96:334–348

    Article  CAS  Google Scholar 

  • Šabeder S, Habulin M, Knez Ž (2005) Comparison of the esterification of fructose and palmitic acid in organic solvent and in supercritical carbon dioxide. Ind Eng Chem Res 44(25):9631–9635

    Article  Google Scholar 

  • Salgın U, Salgın S, Takaç S (2007) The enantioselective hydrolysis of racemic naproxen methyl ester in supercritical CO2 using Candida rugosa lipase. J Supercrit Fluids 43(2):310–316

    Article  Google Scholar 

  • Sánchez-Oneto J, Portela JR, Nebot E, Martínez de la Ossa E (2007) Hydrothermal oxidation: application to the treatment of different cutting fluid wastes. J Hazard Mater 144(3):639–644

    Article  PubMed  Google Scholar 

  • Sari A (2014) Investigation of the supercritical conditions for Fischer-Tropsch reaction over an industrial Co–Ru/γ-Al2O3 catalyst. Chem Eng J 244:317–326

    Article  CAS  Google Scholar 

  • Savage PE (2009) A perspective on catalysis in sub- and supercritical water. J Supercrit Fluids 47(3):407–414

    Article  CAS  Google Scholar 

  • Scandelai APJ, Cardozo Filho L, Martins DCC, Freitas TKF de S, Garcia JC, Tavares CRG (2018) Combined processes of ozonation and supercritical water oxidation for landfill leachate degradation. Waste Manag 77:466–476

    Google Scholar 

  • Seki T, Grunwaldt J-D, Baiker A (2008) Heterogeneous catalytic hydrogenation in supercritical fluids: potential and limitations. Ind Eng Chem Res 47(14):4561–4585

    Article  CAS  Google Scholar 

  • Senyay-Oncel D, Yesil-Celiktas O (2015) Characterization, immobilization, and activity enhancement of cellulase treated with supercritical CO2. Cellulose 22(6):3619–3631

    Article  CAS  Google Scholar 

  • Senyay-Oncel D, Yesil-Celiktas O (2013) Treatment of immobilized α-amylase under supercritical CO2 conditions: Can activity be enhanced after consecutive enzymatic reactions? J Mol Catal B Enzym 91:72–76

    Article  CAS  Google Scholar 

  • Senyay-Oncel D, Yesil-Celiktas O (2011) Activity and stability enhancement of α-amylase treated with sub- and supercritical carbon dioxide. J Biosci Bioeng 112(5):435–440

    Article  CAS  PubMed  Google Scholar 

  • ſirin ÿzlem Z, Demirkol O, Akbaſlar D, Giray ES (2013) Clean and efficient synthesis of flavanone in sub-critical water. J Supercrit Fluids 81:217–220

    Google Scholar 

  • Song Q-W, He L-N, Wang J-Q, Yasuda H, Sakakura T (2012) Catalytic fixation of CO2 to cyclic carbonates by phosphonium chlorides immobilized on fluorous polymer. Green Chem 15(1):110–115

    Article  Google Scholar 

  • Sovová H, Zarevúcka M, Bernášek P, Stamenić M (2008) Kinetics and specificity of Lipozyme-catalysed oil hydrolysis in supercritical CO2. Chem Eng Res Des 86(7):673–681

    Article  Google Scholar 

  • Stephenson P, Kondor B, Licence P, Scovell K, Ross SK, Poliakoff M (2006) Continuous asymmetric hydrogenation in supercritical carbon dioxide using an immobilised homogeneous catalyst. Adv Synth Catal 348(12–13):1605–1610

    Article  CAS  Google Scholar 

  • Subramaniam B, Chaudhari RV, Chaudhari AS, Akien GR, Xie Z (2014) Supercritical fluids and gas-expanded liquids as tunable media for multiphase catalytic reactions. Chem Eng Sci 115:3–18

    Article  CAS  Google Scholar 

  • Sun J, Cheng W, Fan W, Wang Y, Meng Z, Zhang S (2009) Reusable and efficient polymer-supported task-specific ionic liquid catalyst for cycloaddition of epoxide with CO2. Catal Today 148(3):361–367

    Article  CAS  Google Scholar 

  • Suzuki Y, Tagaya H, Asou T, Kadokawa J, Chiba K (1999) Decomposition of prepolymers and molding materials of phenol resin in subcritical and supercritical water under an Ar atmosphere. Ind Eng Chem Res 38(4):1391–1395

    Article  CAS  Google Scholar 

  • Tagaya H, Katoh K, Kadokawa J, Chiba K (1999) Decomposition of polycarbonate in subcritical and supercritical water. Polym Degrad Stab 64(2):289–292

    Article  CAS  Google Scholar 

  • Taguchi M, Yamamoto N, Hojo D, Takami S, Adschiri T, Funazukuri T, Naka T (2014) Synthesis of monocarboxylic acid-modified CeO2 nanoparticles using supercritical water. RSC Adv 4(91):49605–49613

    Article  CAS  Google Scholar 

  • Taher H, Al-Zuhair S (2017) The use of alternative solvents in enzymatic biodiesel production: a review. Biofuels Bioprod Biorefining 11(1):168–194

    Article  CAS  Google Scholar 

  • Taher H, Al-Zuhair S, AlMarzouqui A, Hashim I (2011) Extracted fat from lamb meat by supercritical CO2 as feedstock for biodiesel production. Biochem Eng J 55(1):23–31

    Article  CAS  Google Scholar 

  • Tavares MVL, Kanda LRS, Giacomin Junior WR, Ramos LP, Vandenberghe LPS, Corazza ML (2022) Supercritical carbon dioxide effect on lipase-catalyzed geranyl acetate synthesis. J Braz Chem Soc 33(7):715–724

    CAS  Google Scholar 

  • Theuerkauf J, Franciò G, Leitner W (2013) Continuous-flow asymmetric hydrogenation of the β-Keto ester methyl propionylacetate in ionic liquid-supercritical carbon dioxide biphasic systems. Adv Synth Catal 355(1):209–219

    Article  CAS  Google Scholar 

  • Top S, Akgun M, Kipcak E, Bilgili MS (2020) Treatment of hospital wastewater by supercritical water oxidation process. Water Res 185:116279

    Article  CAS  PubMed  Google Scholar 

  • Torres Galvis HM, de Jong KP (2013) Catalysts for production of lower olefins from synthesis gas: a review. ACS Catal 3(9):2130–2149

    Article  CAS  Google Scholar 

  • Tortosa Estorach C, Giménez-Pedrós M, Masdeu-Bultó AM, Sayede AD (2008) Monflier E (2008) Hydroformylation of 1-octene in supercritical carbon dioxide with Alkyl P-Donor ligands on rhodium using a peracetylated β-cyclodextrin as a solubiliser. Eur J Inorg Chem 17:2659–2663

    Article  Google Scholar 

  • Varma MN, Madras G (2007a) Synthesis of isoamyl laurate and isoamyl stearate in supercritical carbon dioxide. Appl Biochem Biotechnol 141(1):139–147

    Article  CAS  PubMed  Google Scholar 

  • Varma MN, Madras G (2010) Kinetics of enzymatic synthesis of geranyl butyrate by transesterification in various supercritical fluids. Biochem Eng J 49(2):250–255

    Article  CAS  Google Scholar 

  • Varma MN, Madras G (2007b) Synthesis of biodiesel from castor oil and linseed oil in supercritical fluids. Ind Eng Chem Res 46(1):1–6

    Article  CAS  Google Scholar 

  • Wahyudiono KT, Sasaki M, Goto M (2007) Decomposition of a lignin model compound under hydrothermal conditions. Chem Eng Technol 30(8):1113–1122

    Article  CAS  Google Scholar 

  • Wahyudiono SM, Goto M (2009) Conversion of biomass model compound under hydrothermal conditions using batch reactor. Fuel 88(9):1656–1664

    Article  CAS  Google Scholar 

  • Wang W, Irvine DJ, Howdle SM (2005) Dispersion catalytic chain transfer polymerizations of methyl methacrylate in supercritical carbon dioxide. Ind Eng Chem Res 44(23):8654–8658

    Article  CAS  Google Scholar 

  • Wang X, Zhou JH, Li HM, Sun GW (2013) Depolymerization of lignin with supercritical fluids: a review. Adv Mater Res 821–822:1126–1134

    Article  Google Scholar 

  • Wang Z-Y, Jiang H-F, Ouyang X-Y, Qi C-R, Yang S-R (2006) Pd(II)-catalyzed acetalization of terminal olefins with electron-withdrawing groups in supercritical carbon dioxide: selective control and mechanism. Tetrahedron 62(42):9846–9854

    Article  CAS  Google Scholar 

  • Webb PB, Kunene TE, Cole-Hamilton DJ (2005) Continuous flow homogeneous hydroformylation of alkenes using supercritical fluids. Green Chem 7(5):373–379

    Article  CAS  Google Scholar 

  • Weber A, Catchpole O, Eltringham W (2008) Supercritical fluid assisted, integrated process for the synthesis and separation of different lipid derivatives. J Sep Sci 31(8):1346–1351

    Article  CAS  PubMed  Google Scholar 

  • Wei M, Musie GT, Busch DH, Subramaniam B (2002) CO2-expanded solvents: unique and versatile media for performing homogeneous catalytic oxidations. J Am Chem Soc 124(11):2513–2517

    Article  CAS  PubMed  Google Scholar 

  • Wu Y, Chen Y, Wu K (2014) Role of co-solvents in biomass conversion reactions using sub/supercritical water. In: Fang Z, Xu C (Charles) (eds) Near-critical and supercritical water and their applications for biorefineries. Springer Netherlands, Dordrecht, pp 69–98

    Google Scholar 

  • Xu D, Wang S, Zhang J, Tang X, Guo Y, Huang C (2015) Supercritical water oxidation of a pesticide wastewater. Chem Eng Res Des 94:396–406

    Article  CAS  Google Scholar 

  • Yanagihara N, Ohgane K (2013) Studies on the oxidative degradation of nylons by nitrogen dioxide in supercritical carbon dioxide. Polym Degrad Stab 98(12):2735–2741

    Article  CAS  Google Scholar 

  • Yang B, Cheng Z, Shen Z (2019a) Decomposition of 14 organophosphate flame retardants during supercritical water oxidation. J Taiwan Inst Chem Eng 95:40–47

    Article  CAS  Google Scholar 

  • Yang B, Cheng Z, Yuan T, Gao X, Tan Y, Ma Y, Shen Z (2018) Temperature sensitivity of nitrogen-containing compounds decomposition during supercritical water oxidation (SCWO). J Taiwan Inst Chem Eng 93:31–41

    Article  CAS  Google Scholar 

  • Yang J, Wang S, Li Y, Zhang Y, Xu D (2019b) Novel design concept for a commercial-scale plant for supercritical water oxidation of industrial and sewage sludge. J Environ Manage 233:131–140

    Article  CAS  PubMed  Google Scholar 

  • Yu G, Xue Y, Xu W, Zhang J, Xue CH (2007) Stability and activity of lipase in subcritical 1,1,1,2-tetrafluoroethane (R134a). J Ind Microbiol Biotechnol 34(12):793–798

    Article  CAS  PubMed  Google Scholar 

  • Zetzl C, Gairola K, Kirsch C, Perez-Cantu L, Smirnova I (2011) High pressure processes in biorefineries. Chem Ing Tech 83(7):1016–1025

    Article  CAS  Google Scholar 

  • Zhang F, Xie Y, Liu P, Hao F, Yao Z, Luo H (2014) Cycloaddition reaction of propylene oxide and carbon dioxide over NaX Zeolite supported metalloporphyrin catalysts. Catal Lett 144(11):1894–1899

    Article  CAS  Google Scholar 

  • Zhao H (2018) Enzymatic ring-opening polymerization (ROP) of polylactones: roles of non-aqueous solvents. J Chem Technol Biotechnol Oxf Oxfs 93(1):9–19

    Article  CAS  Google Scholar 

  • Zhao L-C, Hou Z-Q, Liu C-Z, Wang Y-Y, Dai L-Y (2014) A catalyst-free novel synthesis of diethyl carbonate from ethyl carbamate in supercritical ethanol. Chin Chem Lett 25(10):1395–1398

    Article  Google Scholar 

  • Zheng C, Zhao L, Zhou X, Fu Z, Li A (2013) Treatment technologies for organic wastewater. Water Treat 11:250–286

    Google Scholar 

  • Zurbel A, Kaiser D, Hippmann S, Bertau M (2019) Thermochemische depolymerisation von lignin zur Gewinnung von aromaten. Chem Ing Tech 91(4):484–493

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Željko Knez .

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Knez, Ž., Lütge, C. (2023). Industrial Scale Applications: Reaction-Based Processes. In: Product, Process and Plant Design Using Subcritical and Supercritical Fluids for Industrial Application. Springer, Cham. https://doi.org/10.1007/978-3-031-34636-1_4

Download citation

Publish with us

Policies and ethics