Skip to main content

Abstract

The definition of high pressure in nature as well as in industry is presented. An overview on the occurrence of high pressure in nature is provided. Discovery of critical point, a brief history of supercritical fluids, along with early developments on the use of high pressure and supercritical fluids are presented. The motivation for use of high pressure in industrial scale operations is described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aymonier C, Le Meur AC, Heroguez V (2011) Synthesis of nanocomposite particles using supercritical fluids: a bridge with bio-applications. Nanocomposite particles for bio-applications materials bio-interfaces. Pan Stanford Publishing Ltd., Singapore, pp 145–164

    Google Scholar 

  • Bach E, Schollmeyer E (2007) Supercritical fluid textile dyeing technology. In: Environmental aspects of textile dyeing. Elsevier, pp 93–115

    Google Scholar 

  • Brunner G (2010) Applications of supercritical fluids. Annu Rev Chem Biomol Eng 1(1):321–342

    Article  CAS  PubMed  Google Scholar 

  • Cansell F, Aymonier C, Loppinet-Serani A (2003) Review on materials science and supercritical fluids. Curr Opin Solid State Mater Sci 7(4–5):331–340

    Article  CAS  Google Scholar 

  • Colín-García M, Heredia A, Cordero G, Camprubí A, Negrón-Mendoza A, Ortega-Gutiérrez F, Beraldi H, Ramos-Bernal S (2016) Hydrothermal vents and prebiotic chemistry: a review. Bol Soc Geológica Mex 68(3):599–620

    Article  Google Scholar 

  • de La Tour CC (1822) Exposé de quelques résultats obtenu par l’action combinée de la chaleur et de la compression sur certains liquides, tels que léau, l’alcool, l’ether sulfurique et l’essence de pétrole rectifiée. Ann Chim Phys 21(2):127

    Google Scholar 

  • Dickinson HW (1939) A short history of the steam engine. Cambridge University Press

    Google Scholar 

  • Fabre CE, Condoret J-S, Marty A (1999) Extractive fermentation of aroma with supercritical CO2. Biotechnol Bioeng 64(4):392–400

    Article  CAS  PubMed  Google Scholar 

  • Gold V (ed) (2019) The IUPAC compendium of chemical terminology: the gold book, 4th edn. International Union of Pure and Applied Chemistry (IUPAC), Research Triangle Park, NC

    Google Scholar 

  • Hannay JB, Hogarth J (1879) On the solubility of solids in gases. Proc R Soc Lond 29:324

    Article  Google Scholar 

  • HBM Company (2020) Druck-Kalibrierung. In: Druck-Klibrierung. https://www.hbm.com/de/0151/druck-kalibrierung/

  • Hrnčič MK, Škerget M, Knez Ž (2014) Argon as a potential processing media for natural and synthetic substances. J Supercrit Fluids 95:252–257

    Article  Google Scholar 

  • Hrnčič MK, Cör D, Knez Ž (2018) Subcritical extraction of oil from black and white chia seeds with n-propane and comparison with conventional techniques. J Supercrit Fluids 140:182–187

    Article  Google Scholar 

  • Ilić L, Škerget M, Hrnčič MK, Knez Ž (2009) Phase behavior of sunflower oil and soybean oil in propane and sulphur hexafluoride. J Supercrit Fluids 51(2):109–114

    Article  Google Scholar 

  • Jessop PG, Leitner W (1999) Supercritical fluids as media for chemical reactions. Chem Synth Using Supercrit Fluids. Wiley–VCH, Weinheim, pp 1–36

    Google Scholar 

  • Jianzhong Y, Xianzhen Z, Qinqin X, Chuanjie Z, Aiqin W (2009) Supercritical fluids deposition techniques for the formation of nanocomposites. Prog Chem 21(4):606–614

    Google Scholar 

  • Jung J-I, Bae JY, Bae B-S (2004) Preparation and characterization of structurally stable hexagonal and cubic mesoporous silica thin films. J Sol-Gel Sci Technol 31(1):179–183

    Article  CAS  Google Scholar 

  • Knez Ž (2018) Enzymatic reactions in subcritical and supercritical fluids. J Supercrit Fluids 134:133–140

    Article  CAS  Google Scholar 

  • Knez Ž, Hadolin M, Debrunner B (1999) Separation of pyrrolizidine alkaloids from Petasites hybridus with high pressure n-propane extraction. Chem Tech (Berl DDR 1949) 51(3):141–143

    Google Scholar 

  • Knez Ž, Markočič E, Leitgeb M, Primožič M, Knez Hrnčič M, Škerget M (2014) Industrial applications of supercritical fluids: a review. Energy 77:235–243

    Article  CAS  Google Scholar 

  • Knez Ž, Škerget M, Knez Hrnčič M (2010) Principles of supercritical fluid extraction and applications in the food, beverage and nutraceutical industries. In: Separation, extraction and concentration processes in the food, beverage and nutraceutical industries, pp 3–38

    Google Scholar 

  • Kravanja G (2018) High-perssure process design for polymer treatment and heat transfer enhancement. Ph.D. thesis, University of Maribor

    Google Scholar 

  • Oleson JP (2015) The final word on Roman wooden pumping machinery. J Roman Archaeol 28:707–708

    Article  Google Scholar 

  • Papin D (1681) A new digester or engine for softening bones. Royal society

    Google Scholar 

  • Perrut M (2012) Sterilization and virus inactivation by supercritical fluids (a review). J Supercrit Fluids 66:359–371

    Article  CAS  Google Scholar 

  • Pilz S, Lack E, Seidlitz H, Steinhagen V, Stork K (2006) Überkritische extraktion aus sicht der industrie. Fluid-Verfahrenstechnik Grundlagen Method Tech Prax 2(11.2):1074–1130

    Google Scholar 

  • Quick NJ, Cioffi WR, Shearer JM, Fahlman A, Read AJ (2020) Extreme diving in mammals: first estimates of behavioural aerobic dive limits in Cuvier’s beaked whales. J Exp Biol 223(18):jeb222109

    Google Scholar 

  • Reverchon E (2002) Micro and nano-particles produced by supercritical fluid assisted techniques: present status and perspectives. Chem Eng Trans 2:1–10

    Google Scholar 

  • Saito M (2013) History of supercritical fluid chromatography: Instrumental development. J Biosci Bioeng 115(6):590–599

    Article  CAS  PubMed  Google Scholar 

  • Shen Z, Wang H, Li G (2011) Numerical simulation of the cutting-carrying ability of supercritical carbon dioxide drilling at horizontal section. Pet Explor Dev 38(2):233–236

    Article  CAS  Google Scholar 

  • Sokolov VI, Nikitin LN, Bulygina LA, Khrustalev VN, Starikova ZA, Khokhlov AR (2010) Supercritical carbon dioxide in organometallic synthesis: combination of sc-CO2 with Nafion film as a novel reagent in the synthesis of ethers from hydroxymethylmetallocenes. J Organomet Chem 695(6):799–803

    Article  CAS  Google Scholar 

  • Stahl E, Quirin K-W, Gerard D (2013) Verdichtete gase zur extraktion und raffination. Springer

    Google Scholar 

  • Taylor FW (2014) Venus: atmosphere. In: Spohn T, Breuer D, Johnson T (eds) Encyclopedia of the solar system. Elsevier Science & Technology, Oxford

    Google Scholar 

  • Tomioka N, Fujino K (1997) Natural (Mg, Fe) SiO3-ilmenite and-perovskite in the Tenham meteorite. Science 277(5329):1084–1086

    Article  CAS  PubMed  Google Scholar 

  • UHPT (2017) Uhde high pressure technologies

    Google Scholar 

  • Weidner E (2018) Impregnation via supercritical CO2–what we know and what we need to know. J Supercrit Fluids 134:220–227

    Article  CAS  Google Scholar 

  • Yoo KP, Fukuzato R (2006) Current status of commercial development and operation of SCF technology in China, Japan, Korea and Taiwan. In: Proceedings of the 8th international symposium of supercritical fluids, Kyoto, Japan

    Google Scholar 

  • Zheng S, Hu X, Ibrahim A-R, Tang D, Tan Y, Li J (2010) Supercritical fluid drying: classification and applications. Recent Pat Chem Eng 3(3):230–244

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Željko Knez .

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Knez, Ž., Lütge, C. (2023). Introduction. In: Product, Process and Plant Design Using Subcritical and Supercritical Fluids for Industrial Application. Springer, Cham. https://doi.org/10.1007/978-3-031-34636-1_1

Download citation

Publish with us

Policies and ethics