Skip to main content

Comparative Study of Machine Learning Methods on Spectroscopy Images for Blood Glucose Estimation

  • Conference paper
  • First Online:
Pervasive Computing Technologies for Healthcare (PH 2022)

Abstract

Diabetes and metabolic diseases are considered a silent epidemic in the United States. Monitoring blood glucose, the lead indicator of these diseases, involves either a cumbersome process of extracting blood several times per day or implanting needles under the skin. However, new technologies have emerged for non-invasive blood glucose monitoring, including light absorption and spectroscopy methods. In this paper, we performed a comparative study of diverse Machine Learning (ML) methods on spectroscopy images to estimate blood glucose concentration. We used a database of fingertip images from 45 human subjects and trained several ML methods based on image tensors, color intensity, and statistical image information. We determined that for spectroscopy images, AdaBoost trained with KNeigbors is the best model to estimate blood glucose with a percentage of 90.78% of results in zone “A” (accurate) and 9.22% in zone “B” (clinically acceptable) according to the Clarke Error Grid metric.

Supported by College of Computing and Software Engineering and Office of Research at Kennesaw State University.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sklearn.ensemble.adaboostregressor. https://scikit-learn.org

  2. Alarcón-Paredes, A., Francisco-García, V., Guzmán-Guzmán, I.P., Cantillo-Negrete, J., Cuevas-Valencia, R.E., Alonso-Silverio, G.A.: An IoT-based non-invasive glucose level monitoring system using Raspberry Pi. Appl. Sci. 9(15), 3046 (2019). https://www.mdpi.com/2076-3417/9/15/3046/htm

  3. Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6. IEEE (2017)

    Google Scholar 

  4. Amir, O., et al.: Continuous noninvasive glucose monitoring technology based on “occlusion spectroscopy” (2007)

    Google Scholar 

  5. Brownlee, J.: Histogram-based gradient boosting ensembles in Python (2021). https://machinelearningmastery.com/

  6. Brownlee, J.: XGBoost for regression (2021). https://machinelearningmastery.com/xgboost-for-regression/

  7. Centers for Disease Control and Prevention (CDC): National Diabetes Statistics Report website (2018). https://www.cdc.gov/diabetes/data/statistics-report/index.html. Accessed 2022

  8. Clarke, W.L., Cox, D., Gonder-Frederick, L.A., Carter, W., Pohl, S.L.: Evaluating clinical accuracy of systems for self-monitoring of blood glucose (1987). https://doi.org/10.2337/diacare.10.5.622

  9. Donges, N.: Random forest algorithm: a complete guide. https://builtin.com/data-science/random-forest-algorithm

  10. Enejder, A.M., et al.: Raman spectroscopy for noninvasive glucose measurements. J. Biomed. Opt. 10(3), 031114 (2005)

    Article  Google Scholar 

  11. Haxha, S., Jhoja, J.: Optical based noninvasive glucose monitoring sensor prototype. IEEE Photonics J. 8(6), 1–11 (2016)

    Article  Google Scholar 

  12. Hull, E.L., et al.: Noninvasive skin fluorescence spectroscopy for detection of abnormal glucose tolerance. J. Clin. Transl. Endocrinol. 1(3), 92–99 (2014)

    Google Scholar 

  13. Kasahara, R., Kino, S., Soyama, S., Matsuura, Y.: Noninvasive glucose monitoring using mid-infrared absorption spectroscopy based on a few wavenumbers. Biomed. Opt. Express 9(1), 289–302 (2018)

    Article  Google Scholar 

  14. Kramer, O.: K-nearest neighbors. In: Kramer, O. (ed.) Dimensionality Reduction with Unsupervised Nearest Neighbors, pp. 13–23. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38652-7_2

    Chapter  Google Scholar 

  15. Maruo, K., et al.: Noninvasive blood glucose assay using a newly developed near-infrared system. IEEE J. Sel. Top. Quantum Electron. 9(2), 322–330 (2003)

    Article  Google Scholar 

  16. Moore, J.X., Chaudhary, N., Akinyemiju, T.: Peer reviewed: metabolic syndrome prevalence by race/ethnicity and sex in the United States, National Health and Nutrition Examination Survey, 1988–2012. Preventing Chronic Dis. 14 (2017)

    Google Scholar 

  17. Noble, W.S.: What is a support vector machine? Nat. Biotechnol. 24(12), 1565–1567 (2006)

    Article  Google Scholar 

  18. Pai, P.P., Sanki, P.K., Sahoo, S.K., De, A., Bhattacharya, S., Banerjee, S.: Cloud computing-based non-invasive glucose monitoring for diabetic care. IEEE Trans. Circuits Syst. I Regul. Pap. 65(2), 663–676 (2017)

    Article  Google Scholar 

  19. Pickup, J.C., Khan, F., Zhi, Z.L., Coulter, J., Birch, D.J.: Fluorescence intensity-and lifetime-based glucose sensing using glucose/galactose-binding protein. J. Diab. Sci. Technol. 7(1), 62–71 (2013)

    Article  Google Scholar 

  20. Pitzer, K.R., et al.: Detection of hypoglycemia with the GlucoWatch biographer. Clin. Diabetol. 2(4), 307–314 (2001)

    Google Scholar 

  21. Rachim, V.P., Chung, W.Y.: Wearable-band type visible-near infrared optical biosensor for non-invasive blood glucose monitoring. Sens. Actuators B Chem. 286, 173–180 (2019)

    Article  Google Scholar 

  22. Raj, A.: Unlocking the true power of support vector regression (2020)

    Google Scholar 

  23. Robinson, M.R., et al.: Noninvasive glucose monitoring in diabetic patients: a preliminary evaluation. Clin. Chem. 38(9), 1618–1622 (1992)

    Article  Google Scholar 

  24. Rothman, A.: The Bayesian paradigm & ridge regression (2020). https://towardsdatascience.com

  25. Russakovsky, O., et al.: ImageNet large scale visual recognition challenge. Int. J. Comput. Vis. (IJCV) 115(3), 211–252 (2015). https://doi.org/10.1007/s11263-015-0816-y

    Article  Google Scholar 

  26. Saklayen, M.G.: The global epidemic of the metabolic syndrome. Curr. Hypertens. Rep. 20(2), 1–8 (2018)

    Article  Google Scholar 

  27. Sakr, M.A., Serry, M.: Non-enzymatic graphene-based biosensors for continous glucose monitoring. In: 2015 IEEE SENSORS, pp. 1–4. IEEE (2015)

    Google Scholar 

  28. Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.C.: MobileNetv2: inverted residuals and linear bottlenecks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4510–4520 (2018)

    Google Scholar 

  29. Shi, B., et al.: Learning better deep features for the prediction of occult invasive disease in ductal carcinoma in situ through transfer learning, p. 98 (2018). https://doi.org/10.1117/12.2293594

  30. Tammina, S.: Transfer learning using VGG-16 with deep convolutional neural network for classifying images. Int. J. Sci. Res. Publ. (IJSRP) 9(10), 143–150 (2019)

    Google Scholar 

  31. Valero, M., et al.: Development of a non-invasive blood glucose monitoring system prototype: pilot study. J. Med. Internet Res. JMIR Formative Res. (forthcoming/in press)

    Google Scholar 

  32. Vashist, S.K.: Non-invasive glucose monitoring technology in diabetes management: a review. Anal. Chim. Acta 750, 16–27 (2012)

    Article  Google Scholar 

  33. Vegesna, A., Tran, M., Angelaccio, M., Arcona, S.: Remote patient monitoring via non-invasive digital technologies: a systematic review. Telemed. e-Health 23(1), 3–17 (2017)

    Article  Google Scholar 

  34. Verma, Y.: Hands-on tutorial on elasticnet regression (2021). https://analyticsindiamag.com/hands-on-tutorial-on-elasticnet-regression/

  35. Dong, X., Yu, Z., Cao, W., Shi, Y., Ma, Q.: A survey on ensemble learning. Fron. Comput. Sci. 14, 241–258 (2020). https://doi.org/10.1007/s11704-019-8208-z

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Valero .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kazi, T., Ponakaladinne, K., Valero, M., Zhao, L., Shahriar, H., Ingram, K.H. (2023). Comparative Study of Machine Learning Methods on Spectroscopy Images for Blood Glucose Estimation. In: Tsanas, A., Triantafyllidis, A. (eds) Pervasive Computing Technologies for Healthcare. PH 2022. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 488. Springer, Cham. https://doi.org/10.1007/978-3-031-34586-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-34586-9_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-34585-2

  • Online ISBN: 978-3-031-34586-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics