Skip to main content

Enabling Representation Learning in Ontology-Driven Conceptual Modeling Using Graph Neural Networks

  • Conference paper
  • First Online:
Advanced Information Systems Engineering (CAiSE 2023)

Abstract

Conceptual Models (CMs) are essential for information systems engineering since they provide explicit and detailed representations of the subject domains at hand. Ontology-driven conceptual modeling (ODCM) languages provide primitives for articulating these domain notions based on the ontological categories put forth by upper-level (or foundational) ontologies. Many existing CMs have been created using ontologically-neutral languages (e.g., UML, ER). Connecting these models to ontological categories would provide better support for meaning negotiation, semantic interoperability, and complexity management. However, given the sheer size of this legacy base, manual stereotyping is a prohibitive task. This paper addresses this problem by proposing an approach based on Graph Neural Networks towards automating the task of stereotyping UML class diagrams with the meta-classes offered by the ODCM language OntoUML. Since these meta-classes (stereotypes) represent ontological distinctions put forth by a foundational ontology, this task is equivalent to ontological category prediction for these classes. To enable this approach, we propose a strategy for representing CM vector embeddings that preserve the model elements’ structure and ontological categorization. Finally, we present an evaluation that shows convincing learning of OntoUML model node embeddings used for OntoUML stereotype prediction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Note that the edges in Table 2 do not denote the OntoUML relations as they were transformed into CKG nodes to enable their prediction.

  2. 2.

    Deep Graph Library: https://www.dgl.ai/.

  3. 3.

    This function aggregates the information from a sample of node’s neighbors.

  4. 4.

    http://shorturl.at/EHKNT.

References

  1. Ali, S.J.: Knowledge graph-based conceptual models search. In: Proceedings of the ER Forum and PhD Symposium 2022 (ER 2022). CEUR Workshop Proceedings, vol. 3211 (2022)

    Google Scholar 

  2. Amaral, G., Baião, F., Guizzardi, G.: Foundational ontologies, ontology-driven conceptual modeling, and their multiple benefits to data mining. Wiley Interdisc. Rev. Data Min. Knowl. Discov. 11(4), e1408 (2021)

    Article  Google Scholar 

  3. Barcelos, P.P.F., et al.: A FAIR model catalog for ontology-driven conceptual modeling research. In: Ralyté, J., Chakravarthy, S., Mohania, M., Jeusfeld, M.A., Karlapalem, K. (eds.) ER 2022. LNCS, vol. 13607, pp. 3–17. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-17995-2_1

    Chapter  Google Scholar 

  4. Bengio, Y., Courville, A., Vincent, P.: Representation learning: a review and new perspectives. IEEE Trans. Pattern Anal. Mach. Intell. 35(8), 1798–1828 (2013)

    Article  Google Scholar 

  5. Berquand, A., Riccardi, A.: From engineering models to knowledge graph: delivering new insights into models. In: 9th International Systems & Concurrent Engineering for Space Applications Conference (SECESA 2020) (2020)

    Google Scholar 

  6. Bork, D.: Conceptual modeling and artificial intelligence: mutual benefits from complementary worlds. CoRR abs/2110.08637 (2021). https://arxiv.org/abs/2110.08637

  7. Bork, D., Ali, S.J., Roelens, B.: Conceptual modeling and artificial intelligence: a systematic mapping study. CoRR abs/2303.06758 (2023). https://doi.org/10.48550/arXiv.2303.06758

  8. Burgueño, L., Cabot, J., Gérard, S.: An LSTM-based neural network architecture for model transformations. In: ACM/IEEE 22nd International Conference on Model Driven Engineering Languages and Systems (MODELS), pp. 294–299 (2019)

    Google Scholar 

  9. Chen, J., Hu, P., Jimenez-Ruiz, E., Holter, O.M., Antonyrajah, D., Horrocks, I.: OWL2Vec*: embedding of OWL ontologies. Mach. Learn. 110(7), 1813–1845 (2021). https://doi.org/10.1007/s10994-021-05997-6

    Article  MathSciNet  MATH  Google Scholar 

  10. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018)

  11. Efeoglu, S.: GraphMatcher: a graph representation learning approach for ontology matching (2022)

    Google Scholar 

  12. Grover, A., Leskovec, J.: node2vec: scalable feature learning for networks. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 855–864 (2016)

    Google Scholar 

  13. Guizzardi, G.: The role of foundational ontologies for conceptual modeling and domain ontology representation. In: 2006 7th International Baltic Conference on Databases and Information Systems, pp. 17–25. IEEE (2006)

    Google Scholar 

  14. Guizzardi, G., Prince Sales, T., Almeida, J.P.A., Poels, G.: Relational contexts and conceptual model clustering. In: Grabis, J., Bork, D. (eds.) PoEM 2020. LNBIP, vol. 400, pp. 211–227. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-63479-7_15

    Chapter  Google Scholar 

  15. Guizzardi, G., Wagner, G., Almeida, J.P.A., Guizzardi, R.S.: Towards ontological foundations for conceptual modeling: the unified foundational ontology (UFO) story. Appl. Ontology 10(3–4), 259–271 (2015)

    Article  Google Scholar 

  16. Hamilton, W., Ying, Z., Leskovec, J.: Inductive representation learning on large graphs. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  17. Hamilton, W.L., Ying, R., Leskovec, J.: Representation learning on graphs: methods and applications. arXiv preprint arXiv:1709.05584 (2017)

  18. Huo, S., Völzer, H., Reddy, P., Agarwal, P., Isahagian, V., Muthusamy, V.: Graph autoencoders for business process anomaly detection. In: Polyvyanyy, A., Wynn, M.T., Van Looy, A., Reichert, M. (eds.) BPM 2021. LNCS, vol. 12875, pp. 417–433. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-85469-0_26

    Chapter  Google Scholar 

  19. Junior, A.G.L., Carbonera, J.L., Schimidt, D., Abel, M.: Predicting the top-level ontological concepts of domain entities using word embeddings, informal definitions, and deep learning. Expert Syst. Appl. 203, 117291 (2022)

    Article  Google Scholar 

  20. De Koninck, P., vanden Broucke, S., De Weerdt, J.: act2vec, trace2vec, log2vec, and model2vec: representation learning for business processes. In: Weske, M., Montali, M., Weber, I., vom Brocke, J. (eds.) BPM 2018. LNCS, vol. 11080, pp. 305–321. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98648-7_18

    Chapter  Google Scholar 

  21. Lau, J.H., Baldwin, T.: An empirical evaluation of doc2vec with practical insights into document embedding generation. arXiv preprint arXiv:1607.05368 (2016)

  22. Leão, F., Revoredo, K., Baião, F.: Extending wordnet with UFO foundational ontology. J. Web Semant. 57, 100499 (2019)

    Article  Google Scholar 

  23. Luettgen, S., Seeliger, A., Nolle, T., Mühlhäuser, M.: Case2vec: advances in representation learning for business processes. In: Leemans, S., Leopold, H. (eds.) ICPM 2020. LNBIP, vol. 406, pp. 162–174. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-72693-5_13

    Chapter  MATH  Google Scholar 

  24. Mussbacher, G., et al.: Opportunities in intelligent modeling assistance. Softw. Syst. Model. 19(5), 1045–1053 (2020). https://doi.org/10.1007/s10270-020-00814-5

    Article  Google Scholar 

  25. Pennington, J., Socher, R., Manning, C.D.: GloVe: global vectors for word representation. In: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 1532–1543 (2014)

    Google Scholar 

  26. Perozzi, B., Al-Rfou, R., Skiena, S.: DeepWalk: online learning of social representations. In: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 701–710 (2014)

    Google Scholar 

  27. Ristoski, P., Rosati, J., Di Noia, T., De Leone, R., Paulheim, H.: RDF2Vec: RDF graph embeddings and their applications. Semant. Web 10(4), 721–752 (2019)

    Article  Google Scholar 

  28. Ryen, V., Soylu, A., Roman, D.: Building semantic knowledge graphs from (semi-) structured data: a review. Future Internet 14(5), 129 (2022)

    Article  Google Scholar 

  29. Sequeda, J., Lassila, O.: Designing and building enterprise knowledge graphs. In: Synthesis Lectures on Data, Semantics, and Knowledge, vol. 11, no. 1, pp. 1–165 (2021)

    Google Scholar 

  30. Smajevic, M., Bork, D.: Towards graph-based analysis of enterprise architecture models. In: Ghose, A., Horkoff, J., Silva Souza, V.E., Parsons, J., Evermann, J. (eds.) ER 2021. LNCS, vol. 13011, pp. 199–209. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-89022-3_17

    Chapter  Google Scholar 

  31. Sousa, G., Lima, R., Trojahn, C.: An eye on representation learning in ontology matching (2022)

    Google Scholar 

  32. Sun, S., Meng, F., Chu, D.: A model driven approach to constructing knowledge graph from relational database. In: Journal of Physics: Conference Series, vol. 1584, p. 012073. IOP Publishing (2020)

    Google Scholar 

  33. Trojahn, C., Vieira, R., Schmidt, D., Pease, A., Guizzardi, G.: Foundational ontologies meet ontology matching: a survey. Semant. Web 13(4), 685–704 (2022)

    Article  Google Scholar 

  34. Verdonck, M., Gailly, F., Pergl, R., Guizzardi, G., Martins, B., Pastor, O.: Comparing traditional conceptual modeling with ontology-driven conceptual modeling: an empirical study. Inf. Syst. 81, 92–103 (2019)

    Article  Google Scholar 

  35. Weyssow, M., Sahraoui, H., Syriani, E.: Recommending metamodel concepts during modeling activities with pre-trained language models. Softw. Syst. Model. 21(3), 1071–1089 (2022). https://doi.org/10.1007/s10270-022-00975-5

    Article  Google Scholar 

  36. Xu, K., Hu, W., Leskovec, J., Jegelka, S.: How powerful are graph neural networks? arXiv preprint arXiv:1810.00826 (2018)

  37. Zhou, J., et al.: Graph neural networks: a review of methods and applications. AI Open 1, 57–81 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

This work has been partially funded through the Austrian Research Promotion Agency (FFG) via the Austrian Competence Center for Digital Production (CDP) under the contract number 854187.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Syed Juned Ali .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ali, S.J., Guizzardi, G., Bork, D. (2023). Enabling Representation Learning in Ontology-Driven Conceptual Modeling Using Graph Neural Networks. In: Indulska, M., Reinhartz-Berger, I., Cetina, C., Pastor, O. (eds) Advanced Information Systems Engineering. CAiSE 2023. Lecture Notes in Computer Science, vol 13901. Springer, Cham. https://doi.org/10.1007/978-3-031-34560-9_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-34560-9_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-34559-3

  • Online ISBN: 978-3-031-34560-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics