Abstract
Conceptual Models (CMs) are essential for information systems engineering since they provide explicit and detailed representations of the subject domains at hand. Ontology-driven conceptual modeling (ODCM) languages provide primitives for articulating these domain notions based on the ontological categories put forth by upper-level (or foundational) ontologies. Many existing CMs have been created using ontologically-neutral languages (e.g., UML, ER). Connecting these models to ontological categories would provide better support for meaning negotiation, semantic interoperability, and complexity management. However, given the sheer size of this legacy base, manual stereotyping is a prohibitive task. This paper addresses this problem by proposing an approach based on Graph Neural Networks towards automating the task of stereotyping UML class diagrams with the meta-classes offered by the ODCM language OntoUML. Since these meta-classes (stereotypes) represent ontological distinctions put forth by a foundational ontology, this task is equivalent to ontological category prediction for these classes. To enable this approach, we propose a strategy for representing CM vector embeddings that preserve the model elements’ structure and ontological categorization. Finally, we present an evaluation that shows convincing learning of OntoUML model node embeddings used for OntoUML stereotype prediction.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Note that the edges in Table 2 do not denote the OntoUML relations as they were transformed into CKG nodes to enable their prediction.
- 2.
Deep Graph Library: https://www.dgl.ai/.
- 3.
This function aggregates the information from a sample of node’s neighbors.
- 4.
References
Ali, S.J.: Knowledge graph-based conceptual models search. In: Proceedings of the ER Forum and PhD Symposium 2022 (ER 2022). CEUR Workshop Proceedings, vol. 3211 (2022)
Amaral, G., Baião, F., Guizzardi, G.: Foundational ontologies, ontology-driven conceptual modeling, and their multiple benefits to data mining. Wiley Interdisc. Rev. Data Min. Knowl. Discov. 11(4), e1408 (2021)
Barcelos, P.P.F., et al.: A FAIR model catalog for ontology-driven conceptual modeling research. In: Ralyté, J., Chakravarthy, S., Mohania, M., Jeusfeld, M.A., Karlapalem, K. (eds.) ER 2022. LNCS, vol. 13607, pp. 3–17. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-17995-2_1
Bengio, Y., Courville, A., Vincent, P.: Representation learning: a review and new perspectives. IEEE Trans. Pattern Anal. Mach. Intell. 35(8), 1798–1828 (2013)
Berquand, A., Riccardi, A.: From engineering models to knowledge graph: delivering new insights into models. In: 9th International Systems & Concurrent Engineering for Space Applications Conference (SECESA 2020) (2020)
Bork, D.: Conceptual modeling and artificial intelligence: mutual benefits from complementary worlds. CoRR abs/2110.08637 (2021). https://arxiv.org/abs/2110.08637
Bork, D., Ali, S.J., Roelens, B.: Conceptual modeling and artificial intelligence: a systematic mapping study. CoRR abs/2303.06758 (2023). https://doi.org/10.48550/arXiv.2303.06758
Burgueño, L., Cabot, J., Gérard, S.: An LSTM-based neural network architecture for model transformations. In: ACM/IEEE 22nd International Conference on Model Driven Engineering Languages and Systems (MODELS), pp. 294–299 (2019)
Chen, J., Hu, P., Jimenez-Ruiz, E., Holter, O.M., Antonyrajah, D., Horrocks, I.: OWL2Vec*: embedding of OWL ontologies. Mach. Learn. 110(7), 1813–1845 (2021). https://doi.org/10.1007/s10994-021-05997-6
Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018)
Efeoglu, S.: GraphMatcher: a graph representation learning approach for ontology matching (2022)
Grover, A., Leskovec, J.: node2vec: scalable feature learning for networks. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 855–864 (2016)
Guizzardi, G.: The role of foundational ontologies for conceptual modeling and domain ontology representation. In: 2006 7th International Baltic Conference on Databases and Information Systems, pp. 17–25. IEEE (2006)
Guizzardi, G., Prince Sales, T., Almeida, J.P.A., Poels, G.: Relational contexts and conceptual model clustering. In: Grabis, J., Bork, D. (eds.) PoEM 2020. LNBIP, vol. 400, pp. 211–227. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-63479-7_15
Guizzardi, G., Wagner, G., Almeida, J.P.A., Guizzardi, R.S.: Towards ontological foundations for conceptual modeling: the unified foundational ontology (UFO) story. Appl. Ontology 10(3–4), 259–271 (2015)
Hamilton, W., Ying, Z., Leskovec, J.: Inductive representation learning on large graphs. In: Advances in Neural Information Processing Systems, vol. 30 (2017)
Hamilton, W.L., Ying, R., Leskovec, J.: Representation learning on graphs: methods and applications. arXiv preprint arXiv:1709.05584 (2017)
Huo, S., Völzer, H., Reddy, P., Agarwal, P., Isahagian, V., Muthusamy, V.: Graph autoencoders for business process anomaly detection. In: Polyvyanyy, A., Wynn, M.T., Van Looy, A., Reichert, M. (eds.) BPM 2021. LNCS, vol. 12875, pp. 417–433. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-85469-0_26
Junior, A.G.L., Carbonera, J.L., Schimidt, D., Abel, M.: Predicting the top-level ontological concepts of domain entities using word embeddings, informal definitions, and deep learning. Expert Syst. Appl. 203, 117291 (2022)
De Koninck, P., vanden Broucke, S., De Weerdt, J.: act2vec, trace2vec, log2vec, and model2vec: representation learning for business processes. In: Weske, M., Montali, M., Weber, I., vom Brocke, J. (eds.) BPM 2018. LNCS, vol. 11080, pp. 305–321. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98648-7_18
Lau, J.H., Baldwin, T.: An empirical evaluation of doc2vec with practical insights into document embedding generation. arXiv preprint arXiv:1607.05368 (2016)
Leão, F., Revoredo, K., Baião, F.: Extending wordnet with UFO foundational ontology. J. Web Semant. 57, 100499 (2019)
Luettgen, S., Seeliger, A., Nolle, T., Mühlhäuser, M.: Case2vec: advances in representation learning for business processes. In: Leemans, S., Leopold, H. (eds.) ICPM 2020. LNBIP, vol. 406, pp. 162–174. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-72693-5_13
Mussbacher, G., et al.: Opportunities in intelligent modeling assistance. Softw. Syst. Model. 19(5), 1045–1053 (2020). https://doi.org/10.1007/s10270-020-00814-5
Pennington, J., Socher, R., Manning, C.D.: GloVe: global vectors for word representation. In: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 1532–1543 (2014)
Perozzi, B., Al-Rfou, R., Skiena, S.: DeepWalk: online learning of social representations. In: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 701–710 (2014)
Ristoski, P., Rosati, J., Di Noia, T., De Leone, R., Paulheim, H.: RDF2Vec: RDF graph embeddings and their applications. Semant. Web 10(4), 721–752 (2019)
Ryen, V., Soylu, A., Roman, D.: Building semantic knowledge graphs from (semi-) structured data: a review. Future Internet 14(5), 129 (2022)
Sequeda, J., Lassila, O.: Designing and building enterprise knowledge graphs. In: Synthesis Lectures on Data, Semantics, and Knowledge, vol. 11, no. 1, pp. 1–165 (2021)
Smajevic, M., Bork, D.: Towards graph-based analysis of enterprise architecture models. In: Ghose, A., Horkoff, J., Silva Souza, V.E., Parsons, J., Evermann, J. (eds.) ER 2021. LNCS, vol. 13011, pp. 199–209. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-89022-3_17
Sousa, G., Lima, R., Trojahn, C.: An eye on representation learning in ontology matching (2022)
Sun, S., Meng, F., Chu, D.: A model driven approach to constructing knowledge graph from relational database. In: Journal of Physics: Conference Series, vol. 1584, p. 012073. IOP Publishing (2020)
Trojahn, C., Vieira, R., Schmidt, D., Pease, A., Guizzardi, G.: Foundational ontologies meet ontology matching: a survey. Semant. Web 13(4), 685–704 (2022)
Verdonck, M., Gailly, F., Pergl, R., Guizzardi, G., Martins, B., Pastor, O.: Comparing traditional conceptual modeling with ontology-driven conceptual modeling: an empirical study. Inf. Syst. 81, 92–103 (2019)
Weyssow, M., Sahraoui, H., Syriani, E.: Recommending metamodel concepts during modeling activities with pre-trained language models. Softw. Syst. Model. 21(3), 1071–1089 (2022). https://doi.org/10.1007/s10270-022-00975-5
Xu, K., Hu, W., Leskovec, J., Jegelka, S.: How powerful are graph neural networks? arXiv preprint arXiv:1810.00826 (2018)
Zhou, J., et al.: Graph neural networks: a review of methods and applications. AI Open 1, 57–81 (2020)
Acknowledgements
This work has been partially funded through the Austrian Research Promotion Agency (FFG) via the Austrian Competence Center for Digital Production (CDP) under the contract number 854187.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Ali, S.J., Guizzardi, G., Bork, D. (2023). Enabling Representation Learning in Ontology-Driven Conceptual Modeling Using Graph Neural Networks. In: Indulska, M., Reinhartz-Berger, I., Cetina, C., Pastor, O. (eds) Advanced Information Systems Engineering. CAiSE 2023. Lecture Notes in Computer Science, vol 13901. Springer, Cham. https://doi.org/10.1007/978-3-031-34560-9_17
Download citation
DOI: https://doi.org/10.1007/978-3-031-34560-9_17
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-34559-3
Online ISBN: 978-3-031-34560-9
eBook Packages: Computer ScienceComputer Science (R0)