Skip to main content

Part of the book series: SpringerBriefs in Statistics ((BRIEFSSTATIST))

  • 134 Accesses

Abstract

Besides the convolution closure, it is often of interest to understand whether the attribution of a distribution F to the specific class of distributions is caused by the inclusion of \(F^{*n}\) to the same family. Such an implication is called a convolution-root closure. This chapter is devoted to the convolution-root closure properties for the distribution classes described in Chap. 2. We determine the classes which are closed under convolution roots and which are not.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    If an infinitely divisible distribution belonging to a certain distribution class implies that its Lévy distribution also belongs to the same class, then the class is said to be closed under infinitely divisible distribution roots (see Xu et al. [202]).

References

  1. Cui, Z., Wang, Y., Xu, H.: Local closure under infinitely divisible distribution roots and Esscher transform. Mathematics 10, 4128 (2022)

    Article  Google Scholar 

  2. Cui, Z., Wang, Y., Xu, H.: Some positive conclusions related to the Embrechts-Goldie conjecture. Sib. Math. J. 63, 179–192 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  3. Embrechts, P., Goldie, C.M.: On closure and factorization properties of subexponential and related distributions. J. Aust. Math. Soc. Ser. A 29, 243–256 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  4. Embrechts, P., Goldie, C.M.: On convolution tails. Stochastic Processes Appl. 13, 263–278 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  5. Embrechts, P., Goldie, C.M., Veraverbeke, N.: Subexponentiality and infinite divisibility. Z. Wahrscheinlichkeitstheorie Verw. Gebiete 49, 335–347 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  6. Pakes, A.G.: Convolution equivalence and infinite divisibility. J. Appl. Probab. 41, 407–424 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  7. Pakes, A.G.: Convolution equivalence and infinite divisibility: corrections and corollaries. J. Appl. Probab. 44, 295–305 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  8. Sgibnev, M.S.: Asymptotics of infinite divisibility on \(\mathbb {R}\). Sib. Math. J. 31, 115–119 (1990) (Sibirskii Matematicheskii Zhurnal 31(1), 135–140 (1990))

    Google Scholar 

  9. Shimura, T., Watanabe, T.: Infinite divisibility and generalized subexponentiality. Bernoulli 11, 445–469 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  10. Shimura, T., Watanabe, T.: On the convolution roots in the convolution-equivalent class. Institute of Statistical Mathematics Cooperative Research Report 175, 1–15 (2005)

    Google Scholar 

  11. Shimura, T., Watanabe, T.: Subexponential densities of compound Poisson sums and and the supremum of a random walk. Kyoto J. Math. 63, 223–239 (2023)

    Article  MathSciNet  MATH  Google Scholar 

  12. Watanabe, T.: Convolution equivalence and distributions of random sums. Probab. Theory Relat. Fields 142, 367–397 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  13. Watanabe, T.: The Wiener condition and the conjectures of Embrechts and Goldie. Ann. Probab. 47, 1221–1239 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  14. Watanabe, T.: Two hypotheses on the exponential class in the class of \({O}\)-subexponential infinitely divisible distributions. J. Theor. Probab. 34, 852–873 (2021)

    Google Scholar 

  15. Watanabe, T.: Embrechts-Goldie’s problem on the class of lattice convolution equivalent distributions. J. Theor. Probab. 35, 2622–2642 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  16. Watanabe, T., Yamamuro, K.: Ratio of the tail of an infinitely divisible distribution on the line to that of its Lévy measure. Electron. J. Probab. 15, 44–74 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  17. Xu, H., Foss, S., Wang, Y.: Convolution and convolution-root properties of long-tailed distributions. Extremes 18, 605–628 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  18. Xu, H., Wang, Y., Cheng, D., Yu, C.: On the closure under infinitely divisible distribution roots. Lith. Math. J. 62, 259–287 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  19. Yu, C., Wang, Y., Yang, Y.: The closure of the convolution equivalent distribution class under convolution roots with application to random sums. Statist. Probab. Lett. 80, 462–472 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Leipus, R., Šiaulys, J., Konstantinides, D. (2023). Convolution-Root Closure. In: Closure Properties for Heavy-Tailed and Related Distributions. SpringerBriefs in Statistics. Springer, Cham. https://doi.org/10.1007/978-3-031-34553-1_4

Download citation

Publish with us

Policies and ethics