Skip to main content

Some Remarks About Dependent Type Theory

  • Chapter
  • First Online:
The French School of Programming
  • 48 Accesses

Abstract

The goal of this chapter is to describe a calculus designed in 1984/1985. This calculus was obtained by applying the ideas introduced by N.G. de Bruijn for AUTOMATH to some functional systems created by J.-Y. Girard. There were also strong connections with the work of P. Martin-Löf. This calculus provided quite simple uniform notations for proofs and (functional) programs. Because of this simplicity and uniformity, it was possible to use it for analysing logical problems such as impredicativity, paradoxes, but also notions of computer science such as parametricity. It could also be used as the basis of implementations of proof and functional systems [29], arguably simpler, or at least competitive, with the ones that were available at the time. One main theme of this work is the importance of notations in mathematics and computer science: new questions were asked and solved only because of the use of AUTOMATH notation, itself a variation of \(\lambda \)-notation introduced by A. Church.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Peter Aczel. On Relating Type Theories and Set Theories. In T. Altenkirch, B. Reus, and W. Naraschewski, editors, Types for Proofs and Programs, pages 33–46. Springer, 1998.

    Google Scholar 

  2. Peter Aczel. The Russell-Prawitz modality. Math. Struct. Comput. Sci., 11(4):541–554, 2001.

    Article  MathSciNet  Google Scholar 

  3. M. Algehed and J.-Ph. Bernardy. Simple noninterference from parametricity. Proc. ACM Program. Lang., 3(ICFP):89:1–89:22, 2019.

    Google Scholar 

  4. L. Augustsson, Th. Coquand, and B. Nordström. Another logical framework. In Annual Workshop on Logical Frameworks, 1990, 1990.

    Google Scholar 

  5. S. Awodey, J. Frey, and S. Speight. Impredicative encodings of (higher) inductive types. In Anuj Dawar and Erich Grädel, editors, Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2018, Oxford, UK, July 09-12, 2018, pages 76–85. ACM, 2018.

    Google Scholar 

  6. Henk Barendregt. Introduction to Generalized Type Systems. J. Funct. Program., 1(2):125–154, 1991.

    Article  MathSciNet  Google Scholar 

  7. G. Barthe and Th. Coquand. Remarks on the equational theory of non-normalizing pure type systems. J. Funct. Program., 16(2):137–155, 2006.

    Article  MathSciNet  Google Scholar 

  8. S. Berardi. Type Dependence and Constructive Mathematics. PhD thesis, University of Torino, 1989. PhD thesis.

    Google Scholar 

  9. J.-Ph. Bernardy, P. Jansson, and R. Paterson. Parametricity and dependent types. In Paul Hudak and Stephanie Weirich, editors, Proceeding of the 15th ACM SIGPLAN international conference on Functional programming, ICFP 2010, Baltimore, Maryland, USA, September 27-29, 2010, pages 345–356. ACM, 2010.

    Google Scholar 

  10. Errett Bishop. Foundations of Constructive Analysis. McGraw-Hill, New York, 1967.

    Google Scholar 

  11. Corrado Böhm and Alessandro Berarducci. Automatic synthesis of typed lambda-programs on term algebras. Theor. Comput. Sci., 39:135–154, 1985.

    Article  Google Scholar 

  12. Sylvie Boldo and Guillaume Melquiond. Computer arithmetic and formal proofs. Verifying floating-point algorithms with the Coq system. Amsterdam: Elsevier/ISTE Press, 2017.

    Google Scholar 

  13. K. Buzzard, J. Commelin, and P. Massot. Formalising perfectoid spaces. In Jasmin Blanchette and Catalin Hritcu, editors, Proceedings of the 9th ACM SIGPLAN International Conference on Certified Programs and Proofs, CPP 2020, New Orleans, LA, USA, January 20-21, 2020, pages 299–312. ACM, 2020.

    Google Scholar 

  14. Alonzo Church. A set of postulates for the foundation of logic. Ann. of Math. (2), 33(2):346–366, 1932.

    Article  MathSciNet  Google Scholar 

  15. Alonzo Church. A set of postulates for the foundation of logic. Ann. of Math. (2), 34(4):839–864, 1933.

    Article  MathSciNet  Google Scholar 

  16. Alonzo Church. A formulation of the simple theory of types. Journal of Symbolic Logic, 5:56–68, 1940.

    Article  MathSciNet  Google Scholar 

  17. Alonzo Church. The calculi of Lambda-Conversion, volume 6. Princeton University Press, Princeton, NJ, 1941.

    Google Scholar 

  18. Jesper Cockx, Dominique Devriese, and Frank Piessens. Pattern matching without K. In Johan Jeuring and Manuel M. T. Chakravarty, editors, Proceedings of the 19th ACM SIGPLAN international conference on Functional programming, Gothenburg, Sweden, September 1-3, 2014, pages 257–268. ACM, 2014.

    Google Scholar 

  19. Robert L. Constable, Stuart F. Allen, Mark Bromley, Rance Cleaveland, J. F. Cremer, R. W. Harper, Douglas J. Howe, Todd B. Knoblock, N. P. Mendler, Prakash Panangaden, James T. Sasaki, and Scott F. Smith. Implementing mathematics with the Nuprl proof development system. Prentice Hall, 1986.

    Google Scholar 

  20. Robert L. Constable and N. P. Mendler. Recursive definitions in type theory. In Rohit Parikh, editor, Logics of Programs, Conference, Brooklyn College, New York, NY, USA, June 17-19, 1985, Proceedings, volume 193 of Lecture Notes in Computer Science, pages 61–78. Springer, 1985.

    Google Scholar 

  21. Th. Coquand. Une théorie des constructions. Phd thesis, Université Paris VII, 1985.

    Google Scholar 

  22. Th. Coquand. An Analysis of Girard’s Paradox. In Proceedings of the Symposium on Logic in Computer Science (LICS ’86), Cambridge, Massachusetts, USA, June 16-18, 1986, pages 227–236. IEEE Computer Society, 1986.

    Google Scholar 

  23. Th. Coquand. Pattern matching with dependent types. In Annual Workshop on Logical Frameworks, 1992, 1992.

    Google Scholar 

  24. Th. Coquand. The Paradox of Trees in Type Theory. BIT, 32(1):10–14, 1992.

    Article  MathSciNet  Google Scholar 

  25. Th. Coquand. A new paradox in type theory. In Logic, methodology and philosophy of science IX. Proceedings of the ninth international congress of logic, methodology and philosophy of science, Uppsala, Sweden, August 7-14, 1991, pages 555–570. Amsterdam: North-Holland, 1994.

    Google Scholar 

  26. Th. Coquand. Canonicity and normalization for dependent type theory. Theor. Comput. Sci., 777:184–191, 2019.

    Article  MathSciNet  Google Scholar 

  27. Th. Coquand. Reduction free normalisation for a proof irrelevant type of propositions. CoRR, abs/2103.04287, 2021.

    Google Scholar 

  28. Th. Coquand and H. Herbelin. A-translation and looping combinators in pure type systems. J. Funct. Program., 4(1):77–88, 1994.

    Article  MathSciNet  Google Scholar 

  29. Th. Coquand and G. P. Huet. Constructions: A higher order proof system for mechanizing mathematics. In Bruno Buchberger, editor, EUROCAL ’85, European Conference on Computer Algebra, Linz, Austria, April 1-3, 1985, Proceedings Volume 1: Invited Lectures, volume 203 of Lecture Notes in Computer Science, pages 151–184. Springer, 1985.

    Google Scholar 

  30. Th. Coquand and Gérard P. Huet. The Calculus of Constructions. Inf. Comput., 76:95–120, 1988.

    Google Scholar 

  31. Th. Coquand and Ch. Paulin. Inductively defined types. In Per Martin-Löf and Grigori Mints, editors, COLOG-88, pages 50–66, Berlin, Heidelberg, 1990. Springer Berlin Heidelberg.

    Google Scholar 

  32. N. G. de Bruijn. The mathematical language AUTOMATH, its usage, and some of its extensions. Sympos. Automatic Demonstrat., Versailles/France, 1968, Lect. Notes Math. 125, 29-61 (1970)., 1970.

    Google Scholar 

  33. N. G. de Bruijn. Automath a language for mathematics. Seminaire de mathematiques superieures - ete 1971. No. 52. Montreal: Les Presses de l’Universite de Montreal, 1973.

    Google Scholar 

  34. N. G. de Bruijn. A survey of the project Automath. In To H. B. Curry: Essays on combinatory logic, lambda calculus and formalism, Academic Press, 606 p., Seldin, J. P. and Hindley, J. R, eds., 1980.

    Google Scholar 

  35. Th. Ehrhard. A categorical semantics of constructions. In Proceedings of the Third Annual Symposium on Logic in Computer Science (LICS ’88), Edinburgh, Scotland, UK, July 5-8, 1988, pages 264–273. IEEE Computer Society, 1988.

    Google Scholar 

  36. Steven Fortune, Daniel Leivant, and Michael O’Donnell. The expressiveness of simple and second-order type structures. J. ACM, 30(1):151–185, 1983.

    Article  MathSciNet  Google Scholar 

  37. G. Frege. Begriffsschrift, eine der arithmetischen nachgebildete Formelsprache des reinen Denkens. Nebert, 1879.

    Google Scholar 

  38. Daniel Fridlender. A proof-irrelevant model of Martin-Löf’s logical framework. Math. Struct. Comput. Sci., 12(6):771–795, 2002.

    Article  MathSciNet  Google Scholar 

  39. R. O. Gandy. On axiomatic systems in mathematics and theories in physics. PhD thesis, 1952. PhD thesis.

    Google Scholar 

  40. Herman Geuvers. Conservativity between logics and typed lambda calculi. In Henk Barendregt and Tobias Nipkow, editors, Types for Proofs and Programs, International Workshop TYPES’93, Nijmegen, The Netherlands, May 24-28, 1993, Selected Papers, volume 806 of Lecture Notes in Computer Science, pages 79–107. Springer, 1993.

    Google Scholar 

  41. Herman Geuvers. Induction is not derivable in second order dependent type theory. In Samson Abramsky, editor, Typed Lambda Calculi and Applications, 5th International Conference, TLCA 2001, Krakow, Poland, May 2-5, 2001, Proceedings, volume 2044 of Lecture Notes in Computer Science, pages 166–181. Springer, 2001.

    Google Scholar 

  42. Herman Geuvers and Benjamin Werner. On the Church-Rosser Property for Expressive Type Systems and its Consequences for their Metatheoretic Study. In Proceedings of the Ninth Annual Symposium on Logic in Computer Science (LICS ’94), Paris, France, July 4-7, 1994, pages 320–329. IEEE Computer Society, 1994.

    Google Scholar 

  43. J.-Y. Girard. Une extension de l’interprétation de Gödel à l’analyse, et son application à l’élimination des coupures dans l’analyse et la théorie des types.(An extension of Gödel’s interpretation to analysis and its application to cut elimination in analysis and type theory). Proc. 2nd Scandinav. Logic Sympos. 1970, Studies Logic Foundations Math. 63, 63-92 (1971)., 1971.

    Google Scholar 

  44. J.-Y. Girard. Interprétation fonctionnelle et élimination des coupures de l’arithmétique d’ordre supérieur, 1972. Thèse de Doctorat d’Etat.

    Google Scholar 

  45. J.-Y. Girard. The system \({\mathcal F}\) of variable types, fifteen years later. Theor. Comput. Sci., 45:159–192, 1986.

    Google Scholar 

  46. Kurt Gödel. Über eine bisher noch nicht benützte Erweiterung des finiten Standpunktes. Dialectica, 12:280–287, 1958.

    Article  MathSciNet  Google Scholar 

  47. G. Gonthier. The Four-Color Theorem. Notices Amer. Math. Soc., 55:1382–1393, 2008.

    MathSciNet  Google Scholar 

  48. G. Gonthier, Andrea Asperti, Jeremy Avigad, Yves Bertot, Cyril Cohen, François Garillot, Stéphane Le Roux, Assia Mahboubi, Russell O’Connor, Sidi Ould Biha, et al. A machine-checked proof of the odd order theorem. In International Conference on Interactive Theorem Proving, pages 163–179. Springer, 2013.

    Google Scholar 

  49. Michael J. C. Gordon, Robin Milner, and Christopher P. Wadsworth. Edinburgh LCF, volume 78 of Lecture Notes in Computer Science. Springer, 1979.

    Google Scholar 

  50. Peter Hancock. Ordinals and Interactive Programs. PhD thesis, University of Edinburgh, 2000.

    Google Scholar 

  51. D. Hilbert. Über das unendliche. Mathematische Annalen, 95:161–190, 1926.

    Article  MathSciNet  Google Scholar 

  52. D. Hilbert. Die Grundlagen der Mathematik. Abhandlungen aus dem Seminar der Hamburgischen Universität, 6:65–85, 1928.

    Article  MathSciNet  Google Scholar 

  53. William A. Howard. The formulae-as-types notion of construction. In J. Hindley and J. Seldin, editors, To H.B. Curry: Essays on Combinatory Logic,\(\lambda \)-calculus and Formalism, pages 479–490. Academic Press, 1980.

    Google Scholar 

  54. D. J. Howe. The Computational Behaviour of Girard’s Paradox. In Proceedings of the Symposium on Logic in Computer Science (LICS ’87), Ithaca, New York, USA, June 22-25, 1987, pages 205–214. IEEE Computer Society, 1987.

    Google Scholar 

  55. Gérard P. Huet. A Mechanization of Type Theory. In Nils J. Nilsson, editor, Proceedings of the 3rd International Joint Conference on Artificial Intelligence. Stanford, CA, USA, August 20-23, 1973, pages 139–146. William Kaufmann, 1973.

    Google Scholar 

  56. Gérard P. Huet. Confluent reductions: Abstract properties and applications to term rewriting systems: Abstract properties and applications to term rewriting systems. J. ACM, 27(4):797–821, 1980.

    Article  Google Scholar 

  57. A. J. C. Hurkens. A simplification of Girard’s paradox. In Mariangiola Dezani-Ciancaglini and Gordon Plotkin, editors, Typed Lambda Calculi and Applications, pages 266–278, Berlin, Heidelberg, 1995. Springer Berlin Heidelberg.

    Google Scholar 

  58. L. S. Jutting. The development of a text in AUT-QE. In P. Braffort et L. Michel, editor, Symposium d’Orsday sur la manipulation des symboles et l’utilisation d’APL, 1973.

    Google Scholar 

  59. G. Kreisel. Church’s thesis: A kind of reducibility axiom for constructive mathematics. In Intuitionism and Proof Theory (Proc. Conf., Buffalo, N.Y., 1968), pages 121–150. North-Holland, Amsterdam, 1970.

    Google Scholar 

  60. J.-L. Krivine. Un algorithme non typable dans le système F. (An algorithm not typable in the system F). C. R. Acad. Sci., Paris, Sér. I, 304:123–126, 1987.

    Google Scholar 

  61. J. Lambek. A fixpoint theorem for complete categories. Math. Z., 103:151–161, 1968.

    Article  MathSciNet  Google Scholar 

  62. Peter J. Landin. Correspondence between ALGOL 60 and Church’s Lambda-notation: part I. Commun. ACM, 8(2):89–101, 1965.

    Article  MathSciNet  Google Scholar 

  63. The Caml Language. A History of Caml, 2005.

    Google Scholar 

  64. X. Leroy. Formal certification of a compiler back-end or: programming a compiler with a proof assistant. In Proceedings of the 33rd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2006, pages 42–54, 2006.

    Google Scholar 

  65. Paul Lorenzen. Einführung in die operative Logik und Mathematik, volume 78 of Grundlehren Math. Wiss. Springer, 1955.

    Google Scholar 

  66. P. Martin-Löf. A Theory of Types. Rep., Dep. Math., Univ. Stockh., 1971.

    Google Scholar 

  67. P. Martin-Löf. On the strength of intuitionistic reasoning. Rep., Dep. Math., Univ. Stockh., 1971.

    Google Scholar 

  68. P. Martin-Löf. An intuitionistic theory of types: Predicative part. In H. E. Rose and J. Sheperdson, editors, Studies in Logic and the Foundations of Mathematics, volume 80, pages 73–118. Elsevier, 1975.

    Google Scholar 

  69. P. Martin-Löf. Syntax and Semantics of Mathematical Language. Notes written by P. Hancock, Rep., Dep. Math., Univ. Stockh., 1975.

    Google Scholar 

  70. P. Martin-Löf. Constructive mathematics and computer programming. Rep., Dep. Math., Univ. Stockh., 1979.

    Google Scholar 

  71. Per Martin-Löf. Hauptsatz for the theory of species. Proc. 2nd Scandinav. Logic Sympos. 1970, Studies Logic Foundations Math. 63, 217-233, 1971.

    Google Scholar 

  72. Per Martin-Löf. Intuitionistic Type Theory, volume 1 of Studies in Proof Theory. Lecture Notes. Bibliopolis, Naples, 1984. Notes by Giovanni Sambin.

    Google Scholar 

  73. Per Martin-Löf. A construction of the provable wellorderings of the theory of species. In Logic, meaning and computation. Essays in memory of Alonzo Church, pages 343–351. Dordrecht: Kluwer Academic Publishers, 2001.

    Google Scholar 

  74. A. R. Meyer and M. B. Reinhold. “Type” Is Not A Type. In Conference Record of the Thirteenth Annual ACM Symposium on Principles of Programming Languages, St. Petersburg Beach, Florida, USA, January 1986, pages 287–295. ACM Press, 1986.

    Google Scholar 

  75. A. Miquel. Le Calcul des Constructions Implicite: Syntaxe et Sémantique. PhD thesis, Université Paris VII, 2001. PhD thesis.

    Google Scholar 

  76. A. Miquel. Lamda-Z: Zermelo’s Set Theory as a PTS with 4 Sorts. In Jean-Christophe Filliâtre, Christine Paulin-Mohring, and Benjamin Werner, editors, Types for Proofs and Programs, International Workshop, TYPES 2004, Jouy-en-Josas, France, December 15-18, 2004, Revised Selected Papers, volume 3839 of Lecture Notes in Computer Science, pages 232–251. Springer, 2004.

    Google Scholar 

  77. J. C. Mitchell and G. D. Plotkin. Abstract types have existential type. In Mary S. Van Deusen, Zvi Galil, and Brian K. Reid, editors, Conference Record of the Twelfth Annual ACM Symposium on Principles of Programming Languages, New Orleans, Louisiana, USA, January 1985, pages 37–51. ACM Press, 1985.

    Google Scholar 

  78. Rob Nederpelt and Herman Geuvers. Type Theory and Formal Proof: An Introduction. Cambridge University Press, USA, 1st edition, 2014.

    Google Scholar 

  79. B. Nordström. Terminating General Recursion. BIT, 28(3):605–619, 1988.

    Article  MathSciNet  Google Scholar 

  80. B. Nordström and K. Petersson. Types and specifications. In R. E. A. Mason, editor, Information Processing 83, Proceedings of the IFIP 9th World Computer Congress, Paris, France, September 19-23, 1983, pages 915–920. North-Holland/IFIP, 1983.

    Google Scholar 

  81. Christine Paulin-Mohring. Algorithm development in the calculus of constructions. In Proceedings of the First Annual IEEE Symposium on Logic in Computer Science, pages 84–91. IEEE Computer Society, 1986.

    Google Scholar 

  82. P.-M. Pédrot and N. Tabareau. Failure is not an option - an exceptional type theory. In Programming Languages and Systems - 27th European Symposium on Programming, ESOP 2018, pages 245–271, 2018.

    Google Scholar 

  83. F. Pfenning and Ch. Paulin-Mohring. Inductively defined types in the calculus of constructions. In Mathematical Foundations of Programming Semantics, 5th International Conference, Tulane University, New Orleans, Louisiana, USA, March 29–April 1, 1989, Proceedings, volume 442 of Lecture Notes in Computer Science, pages 209–228. Springer, 1989.

    Google Scholar 

  84. Frank Pfenning. Unification and anti-unification in the calculus of constructions. In Proceedings of the Sixth Annual Symposium on Logic in Computer Science (LICS ’91), Amsterdam, The Netherlands, July 15-18, 1991, pages 74–85. IEEE Computer Society, 1991.

    Google Scholar 

  85. Henri Poincaré. Les mathématiques et la logique. Revue de métaphysique et de morale, 13:815–835, 1905.

    Google Scholar 

  86. Henri Poincaré. La logique de l’infini. Scientia (Rivista di Scienza), 12(24):1–11, 1912.

    Google Scholar 

  87. Michael Rathjen. Constructive Zermelo–Fraenkel Set Theory, Power Set, and the Calculus of Constructions. In P. Dybjer, S. Lindström, E. Palmgren, and B. G. Sundholm, editors, Epistemology versus Ontology. Essays on the Philosophy and Foundations of Mathematics in Honour of Per Martin-Löf. Springer Netherlands, Dordrecht, 2012.

    Google Scholar 

  88. J. C. Reynolds. Types, abstraction and parametric polymorphism. In R. E. A. Mason, editor, Information Processing 83, Proceedings of the IFIP 9th World Computer Congress, Paris, France, September 19-23, 1983, pages 513–523. North-Holland/IFIP, 1983.

    Google Scholar 

  89. John C. Reynolds. Towards a theory of type structure. In Bernard Robinet, editor, Programming Symposium, Proceedings Colloque sur la Programmation, Paris, France, April 9-11, 1974, volume 19 of Lecture Notes in Computer Science, pages 408–423. Springer, 1974.

    Google Scholar 

  90. John C. Reynolds. Polymorphism is not set-theoretic. In Gilles Kahn, David B. MacQueen, and Gordon D. Plotkin, editors, Semantics of Data Types, International Symposium, Sophia-Antipolis, France, June 27-29, 1984, Proceedings, volume 173 of Lecture Notes in Computer Science, pages 145–156. Springer, 1984.

    Google Scholar 

  91. John C. Reynolds and Gordon D. Plotkin. On functors expressible in the polymorphic typed lambda calculus. Inf. Comput., 105(1):1–29, 1993.

    Article  MathSciNet  Google Scholar 

  92. Bertrand Russell. The Principles of Mathematics. W. W. Norton & Company, Berlin, 2 edition, 1903.

    Google Scholar 

  93. Bertrand Russell. Mathematical logic as based on the theory of types. American Journal of Mathematics, 30(3):222–262, 1908.

    Article  MathSciNet  Google Scholar 

  94. Bertrand Russell. Sur les axiomes de l’infini et du transfini. Bulletin de la Socit́é Mathématique de France, 39:488–501, 1911.

    Google Scholar 

  95. D.S. Scott. Constructive validity. In M. Laudet, D. Lacombe, L. Nolin, and M. Schützenberger, editors, Symposium on Automatic Demonstration, pages 237–275. Springer Berlin Heidelberg, 1970.

    Chapter  Google Scholar 

  96. Morten Heine Sørensen and Paweł Urzyczyn. Lectures on the Curry-Howard isomorphism, volume 149. Amsterdam: Elsevier, 2006.

    Google Scholar 

  97. Thomas Streicher. Semantics of Type Theory. Progress in Theoretical Computer Science. Birkhaeuser Boston, Inc., 1991.

    Book  Google Scholar 

  98. Aaron Stump. The calculus of dependent lambda eliminations. J. Funct. Program., 27:e14, 2017.

    Article  MathSciNet  Google Scholar 

  99. N. Tabareau, E. Tanter, and M. Sozeau. The marriage of univalence and parametricity. J. ACM, 68(1):5:1–5:44, 2021.

    Google Scholar 

  100. W. W. Tait. Intensional interpretations of functionals of finite type. I. J. Symb. Log., 32:198–212, 1967.

    Google Scholar 

  101. G. Takeuti. On the fundamental conjecture of GLC. I, II. J. Math. Soc. Japan, 7:249–275, 394–408, 1955.

    Google Scholar 

  102. Uemura, T.: Cubical assemblies and the independence of the propositional resizing. 24th international conference on types for proofs and programs. TYPES 2018, Braga, Portugal, p. 20, June 18–21, 2019

    Google Scholar 

  103. L.S. van Benthem Jutting. Checking Landau’ “Grundlagen” in the AUTOMATH system. PhD thesis, University of Eindhoven, 1977.

    Google Scholar 

  104. L.S. van Benthem Jutting. Normalization in Coquand’s system, 1986. Internal Report.

    Google Scholar 

  105. Jean van Heijenoort, editor. From Frege to Gödel. A source book in mathematical logic, 1879–1931. Reprint of the 3rd printing of the 1967 original. Cambridge, MA: Harvard University Press, reprint of the 3rd printing of the 1967 original edition, 2002.

    Google Scholar 

  106. V. Voevodsky. The equivalence axiom and univalent models of type theory. Notes from a talk at CMU, 2010.

    Google Scholar 

  107. Vladimir Voevodsky. An experimental library of formalized mathematics based on the univalent foundations. Math. Structures Comput. Sci, 25:1278–1294, 2015.

    Article  MathSciNet  Google Scholar 

  108. Jan von Plato. The great formal machinery works. Princeton University Press, Princeton, NJ, 2017. Theories of deduction and computation at the origins of the digital age.

    Google Scholar 

  109. S. S. Wainer. Slow growing versus fast growing. J. Symb. Log., 54(2):608–614, 1989.

    Article  MathSciNet  Google Scholar 

  110. A. N. Whitehead and B. A. W. Russell. Principia Mathematica; 2nd ed. Cambridge Univ. Press, Cambridge, 1927.

    Google Scholar 

  111. G. C. Wraith. A note on categorical datatypes. In D. H. Pitt, D. E. Rydeheard, P. Dybjer, A. M. Pitts, and A. Poigné, editors, Category Theory and Computer Science, pages 118–127, Berlin, Heidelberg, 1989. Springer Berlin Heidelberg.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thierry Coquand .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Coquand, T. (2024). Some Remarks About Dependent Type Theory. In: Meyer, B. (eds) The French School of Programming. Springer, Cham. https://doi.org/10.1007/978-3-031-34518-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-34518-0_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-34517-3

  • Online ISBN: 978-3-031-34518-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics