Skip to main content

Semantics and Syntax, Between Computer Science and Mathematics

  • Chapter
  • First Online:
The French School of Programming

Abstract

This text recounts my scientific itinerary from the late 1970s up to now, as I view it today, as well as the context in which it took place. The views expressed here are of course quite personal, and extremely partial in regard of the global landscape of research on programming languages in France and in the world. My research takes place mostly on the theoretical end of the spectrum of computer science. As a matter of fact, my scientific journey is now mainly taking place in homotopical algebra and higher category theory, with an eye on their recently unveiled links with type theory.

This text is dedicated to the memory of Gilles Kahn (1946–2006), Maurice Nivat (1937–2017), and Martin Hofmann (1965–2018).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Abadi, L. Cardelli, P.-L. Curien, and J.-J. Lévy, Explicit substitutions, Journal of Functional Programming 1(4), 375–416 (1992).

    Article  MathSciNet  Google Scholar 

  2. S. Abramsky, Domain theory in logical form, Annals of Pure and Applied Logic 51, 1–77 (1991).

    Article  MathSciNet  Google Scholar 

  3. S. Abramsky, R. Jagadeesan, and P. Malacaria, Full abstraction for PCF, Information and Computation 163, 409–470 (2000). (Manuscript circulated since 1994.)

    Google Scholar 

  4. R. Amadio and P.-L. Curien, Domains and Lambda-Calculi, Cambridge University Press (1998).

    Google Scholar 

  5. M. Anel, G. Biedermann, E. Finster, and A. Joyal, A generalized Blakers-Massey theorem, Journal of Topology 13(4), 1521–1553 (2020).

    Article  MathSciNet  Google Scholar 

  6. H. Barendregt, The lambda calculus; its syntax and semantics, North-Holland (1984).

    Google Scholar 

  7. B. van den Berg and R. Garner, Types are weak \(\omega \)-groupoids, Proceedings of London Mathematical Society 102 (2), 370–394 (2011).

    Google Scholar 

  8. G. Berry, Bottom-up computations of recursive programs, RAIRO Informatique théorique 10 (R1), 47–82 (1976).

    Article  MathSciNet  Google Scholar 

  9. G. Berry, Stable models of typed lambda-calculi, Proceedings of ICALP 1978, Springer Lecture Notes in Comp. Science 62 (1978).

    Google Scholar 

  10. G. Berry, Séquentialité de l’évaluation formelle des Lambda-expressions, Proceedings du 3ème Colloque International sur la Programmation, DUNOD, Paris, B. Robinet ed., 67–80 (1978).

    Google Scholar 

  11. G. Berry, Modèles complètement adéquats et stables des lambda-calculs typés, Université Paris VII (Thèse de Doctorat d’Etat) (1979).

    Google Scholar 

  12. G. Berry and P.-L. Curien, Sequential algorithms on concrete data structures, Theoretical Computer Science 20, 265–321 (1982).

    Article  MathSciNet  Google Scholar 

  13. G. Berry and P.-L. Curien, The kernel of the applicative language CDS: theory and practice, Proceedings of the French-US Seminar on the Applications of Algebra to Language Definition and Compilation, Cambridge University Press, 35–87 (1985).

    Google Scholar 

  14. G. Berry and J.-J. Lévy, Minimal and optimal computations of recursive programs, Journal of the ACM 26 (1), 148–175 (1979).

    Article  MathSciNet  Google Scholar 

  15. C. Böhm and A. Berarducci, Automatic synthesis of typed lambda-programs on term algebras, Theoretical Computer Science 39, 135–154 (1985).

    Article  MathSciNet  Google Scholar 

  16. A. Bucciarelli. Another approach to sequentiality : Kleene’s unimonotone functions, Proceedings of Mathematical Foundations of Programming Semantics 1993, Lecture Notes in Computer Science 802, 333–358 (1994).

    Article  MathSciNet  Google Scholar 

  17. A. Bucciarelli and T. Ehrhard, Sequentiality in an extensional framework, Information and Computation 110 (2), 265–296 (1994).

    Article  MathSciNet  Google Scholar 

  18. A. Carayol and O. Serre. Higher-order recursion schemes and their automata models, in Handbook of automata theory, J.-E. Pin (Ed.), Volume 2, European Mathematical Society, 1295–1342 (2021).

    Google Scholar 

  19. R. Cartwright, P.-L. Curien, and M. Felleisen, Fully abstract semantics for observably sequential languages, Information and Computation 111 (2), 297–401 (1994).

    Article  MathSciNet  Google Scholar 

  20. M. Coppo and M. Dezani, A new type assignment for lambda-terms, Archiv. Math. Logik 19, 139–156 (1978).

    Article  MathSciNet  Google Scholar 

  21. T. Coquand and G. Huet, The calculus of constructions, Information and Computation 76 (2/3), 95–120 (1988) (preceded by Constructions: a higher order proof system for mechanizing mathematics, European Conference on Computer Algebra, Linz, Linz, Lecture Notes in Computer Science 203, 151–184 (1985)).

    Google Scholar 

  22. G. Cousineau, P.-L. Curien, and M. Mauny, The categorical abstract machine, Science of Computer Programming 8, 173–202 (1987) (conference version in the Proceedings of Functional Programming and Computer Architecture 1985, Lecture Notes in Computer Science 201).

    Google Scholar 

  23. P.-L. Curien, Categorical combinators, sequential algorithms and functional programming, Pitman (1986) (revised edition, Birkhäuser (1993)).

    Google Scholar 

  24. P.-L. Curien, Substitution up to isomorphism, Fundamenta Informaticae 19 (1–2), 51–86 (1993).

    Article  MathSciNet  Google Scholar 

  25. P.-L. Curien, On the symmetry of sequentiality, Proceedings of Mathematical Foundations of Programming Semantics 1993, Lecture Notes in Computer Science 802, 29–71 (1994).

    Article  Google Scholar 

  26. P.-L. Curien, T. Hardin, and J.-J. Lévy, Weak and strong confluent calculi of explicit substitutions, Journal of the ACM 43 (2) (1996).

    Google Scholar 

  27. P.-L. Curien and H. Herbelin, The duality of computation, Proceedings of International Conference on Functional Programming 2000, Montréal, ACM Press (2000).

    Google Scholar 

  28. P.-L. Curien, R. Garner, and M. Hofmann, Revisiting the categorical interpretation of dependent type theory, Theoretical computer Science 546, 99–119 (special issue in honor of G. Winskel’s 60th birthday) (2014).

    Google Scholar 

  29. V. Danos, J.-B. Joinet, and H. Schellinx, A new deconstructive logic: linear logic, Journal of symbolic logic 62 (3), 755–807 (1997).

    Article  MathSciNet  Google Scholar 

  30. R. David and B. Guillaume, Strong normalization of the typed \(\lambda _{ws}\)-calculus, Proceedings of Computer Science Logic 2003, Lecture Notes in Computer Science 2803, 155–168 (2003).

    Google Scholar 

  31. T. Ehrhard. Hypercoherences: a strongly stable model of linear logic. Mathematical Structures in Computer Science 3, 365–385 (1993).

    Article  MathSciNet  Google Scholar 

  32. T. Ehrhard, A relative PCF-definability result for strongly stable functions and some corollaries, Information and Computation 152 (1), 111–137 (1999).

    Article  MathSciNet  Google Scholar 

  33. W. Felscher, Dialogues as a foundation of intuitionistic logic, Handbook of Phil. Logic 3, 341–372 (1986).

    Article  Google Scholar 

  34. J.-Y. Girard, Interprétation fonctionnelle et élimination des coupures dans l’arithmétique d’ordre supérieur, Université Paris VII, Doctorat d’Etat (1972).

    Google Scholar 

  35. J.-Y. Girard (with the collaboration of Y. Lafont and P. Taylor), Proofs and types, Cambridge University Press (1989).

    Google Scholar 

  36. J.-Y. Girard, Linear logic, Theoretical Computer Science 50, 1–102 (1987).

    Article  MathSciNet  Google Scholar 

  37. J.-Y. Girard, Locus Solum, Mathematical Structures in Computer Science 11, 301–506 (2001).

    Article  Google Scholar 

  38. T. Griffin, A formulae-as-types notion of control, Proceedings of ACM Principles of Programming Languages, ACM Press, 47–58 (1990).

    Google Scholar 

  39. T. Hardin, Résultats de confluence pour les règles fortes de la logique combinatoire catégorique et liens avec les lambda-calculs, PhD thesis, Univ. Paris VII (1987).

    Google Scholar 

  40. T. Hardin, L. Maranget, and B. Pagano, Functional back-ends within the Lambda-sigma calculus, Proceedings of International Conference on Functional Programming 1996, Philadelphia, ACM Press, 25–33 (1996).

    Google Scholar 

  41. H. Herbelin, Séquents qu’on calcule: de l’interprétation du calcul des séquents comme calcul de \(\lambda \)-termes et comme calcul de stratégies gagnantes, PhD thesis, University Paris 7 (1995).

    Google Scholar 

  42. M. Hofmann, On the interpretation of type theory in locally cartesian closed categories, Proceedings of Computer Science Logic (CSL’94), Springer Lecture Notes in Computer Science 933, 427–441 (1994).

    Article  Google Scholar 

  43. W. Howard, The formulas-as-types notion of construction, in Curry Festschrift, Hindley and Seldin eds., 479–490, Academic Press (1980) (manuscript circulated since 1969).

    Google Scholar 

  44. G. Huet and J.J. Lévy, Computations in orthogonal term rewriting systems I and II, In Computational Logic, J.A. Robinson anniversary volume, MIT Press, 395–414 and 415–443 (1991).

    Google Scholar 

  45. M. Hyland and L. Ong, On full abstraction for PCF, Information and Computation 163, 285–408 (2000). (Manuscript circulated since 1994.)

    Google Scholar 

  46. Homotopy Type Theory: Univalent Foundations of Mathematics, Collective book https://homotopytypetheory.org/book (2013).

  47. G. Kahn, The semantics of a simple language for parallel programming, Proceedings of IFIP Congress 1974, 471–475 (1974).

    MathSciNet  Google Scholar 

  48. G. Kahn and D. MacQueen, Coroutines and networks of parallel processes, Proceedings of IFIP Congress 1977, Toronto, 993–998, North Holland (1977).

    Google Scholar 

  49. G. Kahn and G. Plotkin, Concrete domains, Böhm Festschrift, Theoretical Computer Science 121, 187–277 (1993) (and in French TR IRIA-Laboria 336 in 1978).

    Google Scholar 

  50. S. Kleene, Recursive functionals and quantifiers of finite types revisited I, II, III, and IV, in Proceedings of General Recursion Theory II, Fenstad et al. eds., North-Holland (1978), Proceedings of the Kleene Symposium, Barwise et al. eds., North-Holland (1980), Proceedings of Patras Logic Symposium, North Holland (1982), and Proceedings of Symposia in Pure Mathematics 42 (1985), respectively.

    Google Scholar 

  51. J.-L. Krivine, Lambda-calcul, types et modèles, Editions Masson (1990).

    Google Scholar 

  52. J.-L. Krivine, Realizability in classical logic, in Interactive models of computation and program behaviour, Panoramas et synthèses, Société Mathématique de France 27, 197–229 (2009).

    Google Scholar 

  53. Y. Lafont, The linear abstract machine, Theoretical Computer Science 59, 157–180 (1988).

    Article  MathSciNet  Google Scholar 

  54. J.-J. Lévy, Réductions correctes et optimales dans le \(\lambda \)-calcul, Thèse d’Etat, Université Paris VII (1978).

    Google Scholar 

  55. R. Loader, Finitary PCF is not decidable, Theoretical Computer Science 266, 341–364 (2001).

    Article  MathSciNet  Google Scholar 

  56. P. L. Lumsdaine, Weak omega-categories from intensional type theory, Logical Methods in Computer Science 6 (3), 1–19 (2010).

    MathSciNet  Google Scholar 

  57. P.-A. Melliès, Typed lambda-calculi with explicit substitutions may not terminate, Proceedings of Typed Lambda Calculi and Applications 1995, Lecture Notes in Computer Science 902, 328–334 (1995).

    Google Scholar 

  58. P.-A. Melliès, Une étude micrologique de la négation, Habilitation thesis, Université Paris Diderot (2017).

    Google Scholar 

  59. R. Milne and C. Strachey, Theory of programming language semantics (2 volumes), Chapman & Hall (1977).

    Google Scholar 

  60. R. Milner, Fully abstract models of typed lambda-calculi, Theoretical Computer Science 4, 1–23 (1977).

    Article  MathSciNet  Google Scholar 

  61. G. Munch-Maccagnoni, Syntax and models of a non-associative composition of programs and proofs, PhD thesis, Université Paris Diderot (2013) (available from https://guillaume.munch.name/papers/).

  62. J. Myhill, J. and J. Shepherdson, Effective operations on partial recursive functions, Zeitschrift für Mathematische Logik und Grundlagen der Mathematik 1, 310–317 (1955).

    Google Scholar 

  63. R. Platek, Foundations of recursion theory, PhD thesis, Stanford University (1966).

    Google Scholar 

  64. G. Plotkin, LCF as a programming language, Theoretical Computer Science 5, 223–257 (1977).

    Article  MathSciNet  Google Scholar 

  65. G. Plotkin, A structural approach to operational semantics, Aarhus University report DAIMI FN-19 (1981) (available at https://homepages.inf.ed.ac.uk/gdp/publications/sos_jlap.pdf).

  66. J. Reynolds, Towards a theory of type structure, Proceedings of Colloque sur la Programmation 1974, Paris, Lecture Notes in Computer Science 19, 408–423 (1974).

    Article  Google Scholar 

  67. D. Scott, Continuous lattices, Proceedings of Toposes, Algebraic Geometry and Logic, Springer Lecture Notes in Mathematics 274, 97–136 (1972).

    Article  Google Scholar 

  68. D. Scott, Data types as lattices, SIAM Journal of Computing 5, 522–587 (1976).

    Article  MathSciNet  Google Scholar 

  69. D. Scott, A type-theoretical alternative to ISWIM, CUCH, OWHY, Theoretical Computer Science 121, 411–440 (1993) (manuscript circulated since 1969).

    Google Scholar 

  70. J. Vuillemin, Syntaxe, sémantique et axiomatique d’un langage de programmation simple, Thèse d’Etat, Université Paris VII (1974).

    Google Scholar 

  71. G. Winskel, Events in computation, PhD thesis, University of Edinburgh (1980).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre-Louis Curien .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Curien, PL. (2024). Semantics and Syntax, Between Computer Science and Mathematics. In: Meyer, B. (eds) The French School of Programming. Springer, Cham. https://doi.org/10.1007/978-3-031-34518-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-34518-0_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-34517-3

  • Online ISBN: 978-3-031-34518-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics