Skip to main content

Remote Sensing-Based Estimation of Primary Production in the Arabian Sea

  • Chapter
  • First Online:
Dynamics of Planktonic Primary Productivity in the Indian Ocean

Abstract

The key element in regulating the carbon dynamics of the oceans through biological processes is the microscopic free-floating autotrophic phytoplankton and associated rates of primary production. Accurate assessment of large-scale spatiotemporal dynamics of primary production by traditional platforms is frustrating due to limited spatial resolution and undersampling. By the virtue of its broad, synoptic coverage, ocean color imagery provides a two-dimensional window onto the dynamic state of phytoplankton biomass fields indexed as chlorophyll-a concentration. An important application of remotely sensed ocean data is the estimation of oceanic primary production. Compared with high seas, regional seas such as Arabian Sea are characterized by definite geographical boundaries encompassing coastal regions, continental shelves, and current systems. Estimation of primary production in the Arabian Sea from the Indian Ocean color monitor OCM-1 involved the use of a depth-integrated nonspectral model to compute the daily rate of euphotic zone primary production. The model driven by OCM-1derived chlorophyll data was operated with additional information on surface irradiance, light transmission in the water column, day length, and photosynthetic rate parameters, which accounts for the light capture and utilization by the phytoplankton. Euphotic zone primary production maps were generated covering the broad continental shelf, slope, and open ocean waters of the Arabian Sea, and computed values were validated with in situ measured rates of primary production. Statistical analysis indicated that the model explained 70% variance in the in situ dataset with a low negative bias of 3% and an overall uncertainity of 41.8% in the euphotic zone primary production estimates that was within the desired accuracy goal of 45% set by ocean color missions. The optimum performance of the model was due to region-specific chlorophyll algorithm (OC-OCM) for Arabian Sea as input compared to global chlorophyll algorithms such as OC2 and OC4.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Antoine, D., & Morel, A. (1996). Oceanic primary production: I. Adaptation of a spectral light-photosynthesis model in view of application to satellite chlorophyll observations. Global Biogeochemical Cycles, 10, 43–55.

    Google Scholar 

  • Antoine, D., André, J.-M., & Morel, A. (1996). Oceanic primary production 2. Estimation at global scale from satellite (coastal zone color scanner) chlorophyll. Global Biogeochemical Cycles, 10, 57–69.

    Google Scholar 

  • Babenerd, B., & Krey, J. (1974). Indian Ocean: Collected data on primary production, phytoplankton pigments, and some related factors. Institut for Meerskunde an der Universitat Kiel.

    Google Scholar 

  • Bannister, T. T. (1974). A general theory of steady state phytoplankton growth in a nutrient saturated mixed layer. Limnology and Oceanography, 19, 13–30.

    Google Scholar 

  • Banse, K., & Yong, M. (1990). Sources of variability in satellite-derived estimates of phytoplankton production in the Eastern Tropical Pacific. Journal of Geophysical Research, 95, 7201–7215.

    Google Scholar 

  • Behrenfeld, M. J., & Falkowski, P. G. (1997a). Photosynthetic rates derived from satellite-based chlorophyll concentration. Limnology and Oceanography, 42(1), 1–20.

    Google Scholar 

  • Behrenfeld, M. J., & Falkowski, P. G. (1997b). A consumer’s guide to phytoplankton primary productivity models. Limnology and Oceanography, 42(7), 1479–1491.

    Google Scholar 

  • Behrenfeld, M. J., Boss, E., Siegel, D., & Shea, D. M. (2005). Carbon-based ocean productivity and phytoplankton physiology from space. Global Biogeochemical Cycles, 19, GB1006. https://doi.org/10.1029/2004GB002299

    Article  Google Scholar 

  • Bhattathiri, P. M. A., Pant, A., Sawant, S., Gauns, M., Matondkar, S. G. P., & Mohanraju, R. (1996). Phytoplankton production and chlorophyll distribution in the eastern and central Arabian Sea in 1994–95. Current Science, 71, 857–862.

    Google Scholar 

  • Bird, R. E. (1984). A simple, solar spectral model for direct normal and diffuse horizontal irradiance. Solar Energy, 32, 461–471.

    Google Scholar 

  • Bouman, H., Platt, T., Sathyendranath, S., & Stuart, V. (2005). Dependence of light- saturated photosynthesis on temperature and community structure. Deep Sea Research, 52, 1284–1299.

    Google Scholar 

  • Brewer, P. G., Bruland, K. W., Eppley, R. W., & Mccarthy, J. J. (1986). The Global Ocean Flux Study (GOFS): Status of the U.S. JGOFS Program. EOS, 67, 44.

    Google Scholar 

  • Campbell, J. W., Antoine, D., Armstrong, R., Arrigo, K., Balch, W., Barber, R., Behrenfeld, M., Bidigare, R., Bishop, J., et al. (2002). Comparison of algorithms for estimating ocean primary productivity from surface chlorophyll, temperature, and irradiance. Global Biogeochemical Cycles, 16(3). https://doi.org/10.1029/2001GB001444

  • Carr, M.-E., Friedrichs, A. M., Schmeltz, M., Aita, M. N., Antoine, D., Arrigo, K. R., et al. (2006). A comparison of global estimates of marine primary production from ocean color. Deep Sea Research Part II: Topical Studies in Oceanography, 53, 741–770.

    Google Scholar 

  • Chauhan, P. (2005). Interpretation of spectral radiance over open ocean and turbid coastal waters using contemporary ocean colour satellite sensors. PhD. Dissertation, Gujarat University, p. 170.

    Google Scholar 

  • Chauhan, P., & Raman, M. (2017). Satellite remote sensing for ocean biology: An Indian perspective. Proceedings of the National Academy of Sciences, India Section A: Physical Sciences, 87(4), 629–640. https://doi.org/10.1007/s40010-017-0439-5

    Article  Google Scholar 

  • Chauhan, P., Mohan, M., Sarangi, R. K., Kumari, B., Nayak, S. R., & Matondkar, S. G. P. (2002). Surface chlorophyll-a estimation using IRS-P4 OCM data in the Arabian Sea. International Journal of Remote Sensing, 23(8), 1663–1676.

    Google Scholar 

  • Chauhan, P., Sahay, A., Rajawat, A. S., & Nayak, S. R. (2003). Remote sensing of diffuse attenuation coefficient (K490) using IRS P4 Ocean Colour Monitor (OCM) sensor. Indian Journal of Marine Sciences, 32(4), 279–284.

    Google Scholar 

  • Cleveland, J. S., Perry, M. J., Kiefer, D. A., & Talbot, M. C. (1989). Maximal quantum yield of photosynthesis in the north western Sargasso Sea. Journal of Marine Research, 47, 869–886.

    Google Scholar 

  • Colwell, R. N. (1983). Manual of remote sensing (Vol. 1, pp. 19–44). American Society of Photogrammetry.

    Google Scholar 

  • Cullen, J. J. (1982). The deep chlorophyll maximum: Comparing vertical profiles of chlorophyll-a. Canadian Journal of Fisheries and Aquatic Sciences, 39, 791–803.

    Google Scholar 

  • Cullen, J. J., Neale, P. J., & Lesser, M. (1992). Biological weighting function for the inhibition of phytoplankton photosynthesis by ultraviolet radiation. Science, 258, 646–650.

    Google Scholar 

  • Devred, E., Sathyendranath, S., & Platt, T. (2007). Delineation of ecological provinces using ocean colour radiometry. Marine Ecology Progress Series, 346, 1–13.

    Google Scholar 

  • Dietrich, G. (1973). The unique situation in the environment of the Indian Ocean. In B. Zeizschel (Ed.), B (The biology of the Indian Ocean) (pp. 1–6). Springer-Verlag.

    Google Scholar 

  • Dubinsky, Z. (1992). The functional and optical cross sections of phytoplankton photosynthesis. In P. G. Falkowski & A. Woodhead (Eds.), Primary productivity and biogeochemical cycles in the sea (pp. 31–46). Plenum Press.

    Google Scholar 

  • Dugdale, R. C., & Goering, J. J. (1967). Uptake of new and regenerated forms of nitrogen in primary productivity. Limnology and Oceanography, 12, 196–206.

    Google Scholar 

  • Eppley, R. W., Stewart, E., Abbott, M. R., & Heyman, U. (1985). Estimating ocean primary production from satellite chlorophyll: Introduction to regional differences and statistics for the Southern California-Bight. Journal of Plankton Research, 7, 57–70.

    Google Scholar 

  • Falkowski, P. G. (1981). Light-shade adaptation and assimilation numbers. Journal of Plankton Research, 3, 203–216.

    Google Scholar 

  • Falkowski, P. G., & Raven, J. A. (1997). Aquatic photosynthesis (p. 375). Blackwell Science.

    Google Scholar 

  • Goés, J. I., Thoppil, P. G., Gomes, H., Do, R., & Fasullo, J. T. (2005). Warming of the Eurasian landmass is making the Arabian Sea more productive. Science, 308(5721), 545–547.

    Google Scholar 

  • Gordon, H. R., & Mcclune, W. R. (1975). Estimation of depth of sunlight penetration in the sea for remote sensing. Applied Optics, 4, 413–416.

    Google Scholar 

  • Gordon, H. R., & Morel, A. (1983). Remote assessment of ocean colour for interpretation of satellite visible imagery: A review. In R. T. Barber, N. K. Mooers, M. J. Bowman, & B. Zeitzschel (Eds.), Lecture notes on coastal and esturine studies (p. 114). Springer-Verlag.

    Google Scholar 

  • Goyet, C., Millero, F. J., O’sullivan, D. W., Eischeid, G., Mccue, S. J., & Bellerby, R. G. J. (1998). Temporal variations of pCO2 in surface seawater of the Arabian Sea in 1995. Deep-Sea Research Part II, 45, 609–624.

    Google Scholar 

  • Herbland, A., & Voituriez, B. (1979). Hydrological structure analysis for estimating the primary production in the tropical Atlantic Ocean. Journal of Marine Research, 37, 87–101.

    Google Scholar 

  • Hiscock, M. R., Marra, J., Smith, W. O., Jr., Goercke, R., Measures, C., Vink, S., Olson, R. J., Sosik, H. M., & Barber, R. T. (2003). Primary productivity and its regulation in the Pacific Sector of the Southern Ocean. Deep Sea Research Part II: Topical Studies in Oceanography, 50, 533–558.

    Google Scholar 

  • Hirawake, T., Shinmyo, K., Fujiwara, A., & Saitoh, S. (2012). Satellite remote sensing of primary productivity in the Bering and Chukchi Seas using an absorption-based approach. ICES Journal of Marine Science, 112, 175–188.

    Google Scholar 

  • Holm-Hansen, O., Lorenzen, C. J., Holmes, R. W., & Strickland, J. D. H. (1965). Fluorometric determination of chlorophyll. Journal du conseil. Conseil Permanent International Pour l’Exploration de la Mer, 30, 3–15.

    Google Scholar 

  • IOCCG. (2000). Remote sensing of ocean colour in coastal, and other optically-complex, waters. In S. Sathyendranath (Ed.), Reports of the International Ocean-Colour Coordinating Group, No. 3. IOCCG, Dartmouth, Canada.

    Google Scholar 

  • Jerlov, N. G. (1976). Marine optics (2nd ed.). Elsevier Press.

    Google Scholar 

  • Joint, I., & Groom, S. B. (2000). Estimation of phytoplankton production from space: Current status and future potential of satellite remote sensing. Journal of Experimental Marine Biology and Ecology, 250, 233–255.

    Google Scholar 

  • Kirk, J. T. O. (1983). Light and photosynthesis in aquatic ecosystems. Cambridge University Press.

    Google Scholar 

  • Kirk, J. T. O. (1984). Dependence of relationship between inherent and apparent optical properties of water on solar altitude. Limnology and Oceanography, 29, 350–356.

    Google Scholar 

  • Kirk, J. T. O. (1994). Light and photosynthesis in aquatic ecosystems (2nd ed.). Cambridge University Press.

    Google Scholar 

  • Kulk, G., Platt, T., Dingle, J., Jackson, T., Jönsson, B. F., Bouman, H. A., Babin, M., Brewin, R. J. W., Doblin, M., Estrada, M., et al. (2020, 2021). Primary production, an index of climate change in the ocean: Satellite-based estimates over two decades. Remote Sensing, 12, 826. 2021 Remote Sensing, 13, 3462.

    Google Scholar 

  • Longhurst, A. R. (2006). Ecological geography of the sea (p. 560). Academic Press.

    Google Scholar 

  • Longhurst, A. R., & Harrison, W. G. (1989). The biological pump: Profiles of plankton production and consumption in the upper ocean. Progress in Oceanography, 22, 47–123.

    Google Scholar 

  • Longhurst, A., Sathyendranath, S., Platt, T., & Caverhill, C. (1995). An estimate of global primary production in the ocean from satellite radiometer data. Journal of Plankton Research, 17, 1245–1271.

    Google Scholar 

  • Marra, J., Langdon, C., & Knudson, C. (1995). Primary production, water column changes and the demise of a Phaeocystis bloom at the ML-ML site in the Northeast Atlantic Ocean. Journal of Geophysical Research, 100, 6645–6653.

    Google Scholar 

  • Morel, A. (1978). Available, usable, and stored radiant energy in relation to marine photosynthesis. Deep-Sea Research Part I, 25, 673–688.

    Google Scholar 

  • Morel, A. (1988). Optical modeling of the upper ocean in relation to its biogenous matter content (case-I waters). Journal of Geophysical Research, 93(C9), 10749–10768.

    Google Scholar 

  • Morel, A. (1991). Light and marine photosynthesis: A spectral model with geochemical and climatological implications. Progress in Oceanography, 26, 263–306.

    Google Scholar 

  • Morel, A., & Berthon, J. F. (1989). Surface pigments, algal biomass profiles, and potential production of the euphotic layer: Relationships reinvestigated in review of remote-sensing applications. Limnology and Oceanography, 34, 1545–1562.

    Google Scholar 

  • Morel, A., & Prieur, L. (1977). Analysis of variations in ocean color. Limnology and Oceanography, 22(4), 709–722.

    Google Scholar 

  • Mueller, J. L., & Trees, C. C. (1994). Revised SeaWiFS prelaunch algorithm for the diffuse attenuation coefficient K (490). In Case studies for SeaWiFS calibration and validation, Part 4. NASA Tech. Memo. 104566 (Vol. 28).

    Google Scholar 

  • Naqvi, S. W. A. (1991). Geographical extent of denitrification in the Arabian Sea in relation to some physical processes. Oceanologica Acta, 14, 281–290.

    Google Scholar 

  • Navalgund, R. R., & Kiran Kumar A. S. (1999). Ocean Colour Monitor (OCM) IRS-P4, IOCCG web site, http://www.ioccg.org/generate/ocm/ocm.html

  • O’Reilly, J. E., Maritorena, S., Siegel, D., O’Brien, M., Toole, D., Mitchell, B. G., Kahru, M., Chavez, F., Strutton, P., Cota, G., Hooker, S., Mcclain, C., Carder, K., Muller-Karger, F., Harding, L., Magnuson, A., Phinney, D., Moore, G., Aiken, J., Arrigo, K., Letelier, R., & Culver, M. (2000). Ocean color chlorophyll a algorithms for SeaWiFS, OC2, and OC4: Version 4. In S. B. Hooker & E. R. Firestone (Eds.), SeaWiFS postlaunch calibration and validation analyses, part 3. NASA Tech. Memo. 2000-206892 (Vol. 11, pp. 9–23). NASA GSFC Greenbelt, MD.

    Google Scholar 

  • Parthasarathy, B., Munot, A. A., & Kothawale, D. R. (1995). Monthly and seasonal rainfall series for all-india homogeneous regions and meteorological subdivisions, 1871–1994. Indian Institute of Tropical Meteorology.

    Google Scholar 

  • Platt, T. (1986). Primary production of the ocean water column as a function of surface light intensity, algorithms for remote sensing. Deep Sea Research Part A. Oceanographic Research Papers, 33, 149–163.

    Google Scholar 

  • Platt, T., & Jassby, A. D. (1976). The relationship between photosynthesis and light for natural assemblages of coastal marine phytoplankton. Journal of Phycology, 12, 421–430.

    Google Scholar 

  • Platt, T., & Sathyendranath, S. (1988). Oceanic primary production: Estimation by remote sensing at local and regional scales. Science, 241, 1613–1620.

    Google Scholar 

  • Platt, T., & Sathyendranath, S. (1991). Biological production models as elements of coupled, atmosphere-ocean models for climate research. Journal of Geophysical Research, 96, 2585–2592.

    Google Scholar 

  • Platt, T., & Sathyendranath, S. (1993). Estimators of primary production for interpretation of remotely sensed data on ocean color. Journal of Geophysical Research, 98, 14561–14576.

    Google Scholar 

  • Platt, T., & Sathyendranath, S. (1999). Spatial structure of pelagic ecosystem processes in the global ocean. Ecosystems, 2, 384–394.

    Google Scholar 

  • Platt, T., Gallegos, C. L., & Harrison, W. G. (1980). Photo inhibition of photo synthesis in natural assemblages of marine phytoplankton. Journal of Marine Research, 38, 687–701.

    Google Scholar 

  • Platt, T., Sathyendranath, S., Caverhill, C., & Lewis, M. R. (1988). Ocean primary production and available light: Further algorithms for remote sensing. Deep Sea Research, 35, 855–879.

    Google Scholar 

  • Platt, T., Sathyendranath, S., & Ravindran, P. (1990). Primary production by phytoplankton: Analytic solutions for daily rates per unit area of water surface. Proceedings of the Royal Society of London. Series B, 241, 101–111.

    Google Scholar 

  • Platt, T., Sathyendranath, S., & Ulloa, O. (1992). Nutrient control of phytoplankton photosynthesis in the Western North Atlantic. Nature, 356, 229–231.

    Google Scholar 

  • Platt, T., Sathyendranath, S., White, G. N., III, & Ravindran, P. (1994). Attenuation of visible light by phytoplankton in a vertically-structured ocean: Solutions and applications. Journal of Plankton Research, 16, 1461–1487.

    Google Scholar 

  • Platt, T., Sathyendranath, S., & Longhurst, A. (1995). Remote sensing of primary production in the ocean: Promise and fulfillment. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 348, 191–202.

    Google Scholar 

  • Raman, M. (2013). Estimating primary production in the Arabian Sea using satellite derived data. PhD. Dissertation, Mangalore University, p. 223.

    Google Scholar 

  • Raman, A. V., & Prakash, K. P. (1989). Phytoplankton in relation to pollution in Visakhapatnam harbour, east coast of India. Indian Journal of Marine Sciences, 18, 33–36.

    Google Scholar 

  • Raman, M., Rajan, R., & Ajai. (2016). Identification and mapping of ocean biological deserts using satellite data. Indian Journal of Marine Sciences, 6(50), 1–9.

    Google Scholar 

  • Ryther, J. H., & Yentsch, C. S. (1957). The estimation of phytoplankton production in the ocean from chlorophyll and light data. Limnology and Oceanography, 2, 281–286.

    Google Scholar 

  • Saji, N. H., Goswami, B. N., Vinayachandran, P. N., & Yamagata, T. (1999). A dipole mode in the tropical Indian Ocean. Nature, 401, 360–363.

    Google Scholar 

  • Sakshaug, E., Andresen, K., & Kiefer, D. A. (1989). A steady state description of growth and light absorption in the marine planktonic diatom, Skeletonema costatum. Limnology and Oceanography, 34, 198–205.

    Google Scholar 

  • Sanwlani, N., Chauhan, P., & Navalgund, R. R. (2011). Atmospheric correction using 1240 and 2130 nm combination of MODIS SWIR channels. Asian Journal of Geoinformatics, 11, 1–10.

    Google Scholar 

  • Sarma, V. V. S. S., Kumar, M. D., & George, M. D. (1998). The central and eastern Arabian Sea as a perennial source for atmospheric carbon dioxide. Tellus B: Chemical and Physical Meteorology, 50, 179–184.

    Google Scholar 

  • Sarmiento, J. L., Orr, J. C., & Siegenthaler, U. (1992). A perturbation simulationof CO2 uptake in an ocean general circulation model. Journal of Geophysical Research, 97, 3621–3645.

    Google Scholar 

  • Sathyendranath, S., & Platt, T. (1988). The spectral irradiance field at the surface and in the interior of the ocean: A model for applications in oceanography and remote sensing. Journal of Geophysical Research, 93(C8), 9270–9280.

    Google Scholar 

  • Sathyendranath, S., & Platt, T. (1989). Remote sensing of ocean chlorophyll: Consequence of non-uniform pigment profile. Applied Optics, 28, 490–495.

    Google Scholar 

  • Sathyendranath, S., & Platt, T. (1991). Angular distribution of the submarine light: Modification by multiple scattering. Proceedings of the Royal Society of London. Series A, 433, 287–297.

    Google Scholar 

  • Sathyendranath, S., & Platt, T. (1993). Remote sensing of water-column primary production. In W. K. W. Li & S. Y. Maestrini (Eds.), Measurement of primary production from the molecular to the global scale (Vol. 197, pp. 236–243). ICES Marine Science Symposia.

    Google Scholar 

  • Sathyendranath, S., & Platt, T. (2007). Spectral effects in bio-optical control on the ocean system. Oceanologia, 49(1), 5–39.

    Google Scholar 

  • Sathyendranath, S., Lazzara, L., & Prieur, L. (1987). Variations in the spectral values of specific absorption of phytoplankton. Limnology and Oceanography, 32, 403–415.

    Google Scholar 

  • Sathyendranath, S., Platt, T., Caverhill, C. M., Warnock, R. E., & Lewis, M. R. (1989a). Remote sensing of oceanic primary production: Computations using a spectral model. Deep Sea Research Part A. Oceanographic Research Papers, 36, 431–453.

    Google Scholar 

  • Sathyendranath, S., Prieur, L., & Morel, A. (1989b). A three-component model of ocean colour and its application to remote sensing of phytoplankton pigments in coastal waters. International Journal of Remote Sensing, 10, 1373–1394.

    Google Scholar 

  • Sengupta, R., Rajagopal, M. D., & Qasim, S. Z. (1976). Relationship between dissolved oxygen and nutrients in the Northwest Indian Ocean. Indian Journal of Marine Sciences, 5, 201–211.

    Google Scholar 

  • Smith, R. C., & Tyler, J. E. (1967). Optical properties of clear natural water. Journal of the Optical Society of America, 57, 589–595.

    Google Scholar 

  • Somasunder, K., Rajendran, A., Kumar, M. D., & Sen Gupta, R. (1990). Carbon and nitrogen budgets of the Arabian Sea. Marine Chemistry, 30, 363–377.

    Google Scholar 

  • Steemann Nielsen, E. (1952). The use of radio-active carbon (14C) for measuring organic production in the sea. Journal du Conseil/Conseil Permanent International pour l’Exploration de la Mer, 18(2), 117–140.

    Google Scholar 

  • Stramski, D., Reynolds, R. A., Kahru, M., & Mitchell, B. G. (1999). Estimation of particulate organic carbon in the ocean from satellite remote sensing. Science, 285, 239–242.

    Google Scholar 

  • Subrahmanyan, R. (1959). Studies on phytoplankton of the west coast of India. Proceedings of the Indian Academy of Sciences, L (3) Section B, 50, 113–187.

    Google Scholar 

  • Subrahmanyan, R., & Sarma, A. H. V. (1960). Studies on phytoplankton of the west coast of India III. Seasonal variations of the phytoplankters and environmental factors. Indian Journal of Fisheries, 7, 307–336.

    Google Scholar 

  • Westberry, T., Behrenfeld, M. J., Siegel, D. A., & Boss, E. (2008). Carbon-based primary productivity modeling with vertically resolved photoacclimation. Global Biogeochemical Cycles, 22(GB2024), 1–18.

    Google Scholar 

  • Wyrtki, K. (1973). Physical oceanography of the Indian Ocean. In B. Zeitzschel (Ed.), The biology of the Indian Ocean (pp. 18–36). Springer Verlag.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mini Raman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Raman, M., Nayak, S. (2023). Remote Sensing-Based Estimation of Primary Production in the Arabian Sea. In: Tripathy, S.C., Singh, A. (eds) Dynamics of Planktonic Primary Productivity in the Indian Ocean. Springer, Cham. https://doi.org/10.1007/978-3-031-34467-1_11

Download citation

Publish with us

Policies and ethics