Abstract
Tropical (or min-plus) convolution is a well-studied algorithmic primitive in fine-grained complexity. We exhibit a novel connection between polyhedral formulations and tropical convolution, through which we arrive at a dual variant of tropical convolution. We show this dual operation to be equivalent to primal convolutions. This leads us to considering the geometric objects that arise from dual tropical convolution as a new approach to algorithms and lower bounds for tropical convolutions. In particular, we initiate the study of their extended formulations.
C. Brand was supported by the Austrian Science Fund (FWF, Project Y1329: ParAI). M. Koutecký was partially supported by Charles University project UNCE/SCI/004 and by the project 22-22997S of GA ČR. A. Lassota was supported by the Swiss National Science Foundation within the project Complexity of integer Programming (207365).
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsReferences
Aprile, M., Fiorini, S., Huynh, T., Joret, G., Wood, D. R.: Smaller extended formulations for spanning tree polytopes in minor-closed classes and beyond. Electron. J. Comb. 28(4) (2021)
Bellman, R., Karush, W.: Mathematical programming and the maximum transform. J Soc. Ind. Appl. Math. 10(3), 550–567 (1962)
Bremner, D., et al.: Necklaces, convolutions, and X+Y. Algorithmica 69(2), 294–314 (2014)
Bussieck, M.R., Hassler, H., Woeginger, G.J., Zimmermann, U.T.: Fast algorithms for the maximum convolution problem. Oper. Res. Lett. 15(3), 133–141 (1994)
Chan, T.M., Lewenstein, M.: Clustered Integer 3SUM via Additive Combinatorics. In: Servedio, A.R., Rubinfeld, R. (eds.) ACM, pp. 31–40 (2015)
Cygan, M., Mucha, M., Wegrzycki, K., Wlodarczyk. , M.: On problems equivalent to (min, +)-convolution. ACM Trans. Algorithms 15(1), 14:1–14:25 (2019)
Fenchel, W., Blackett, W.D.: Convex cones, sets, and functions. Dept. Math. Logistics Res. Proj. (1953). Princeton University
Fiorini, S., Huynh, T., Joret, G., Pashkovich, K.: Smaller extended formulations for the spanning tree polytope of bounded-genus graphs. Discrete Comput. Geom. 57(3), 757–761 (2017). https://doi.org/10.1007/s00454-016-9852-9
Fiorini, S., Massar, S., Pokutta, S., Tiwary, H. R., De Wolf, R.: Exponential Lower Bounds for Polytopes in Combinatorial Optimization. J. ACM 62(2), 17:1–17:23 (2015)
Impagliazzo, R., Paturi, R., Zane, F.: Which problems have strongly exponential complexity? J. Comput. Syst. Sci. 63(4), 512–530 (2001)
Künnemann, M., Paturi, R., Schneider, S.: On the fine-grained complexity of one-dimensional dynamic programming. In: Chatzigiannakis, i., Indyk, P., Kuhn, F., Muscholl, A. (eds.) 44th International Colloquium on Automata, Languages, and Programming, ICALP 2017, 10–14 July 2017, Warsaw, Poland, vol. 80. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, pp. 21:1–21:15 (2017)
Martin, R.K., Rardin, R.L., Campbell, B.A.: Polyhedral characterization of discrete dynamic programming. Oper. Res. 38(1), 127–138 (1990)
Rothvoss, T.: The matching polytope has exponential extension complexity. J. ACM 64(6), 41:1–41:19 (2017)
Williams, R.R.: Faster all-pairs shortest paths via circuit complexity. SIAM J. Comput. 47(5), 1965–1985 (2018)
Williams, R.: A new algorithm for optimal 2-constraint satisfaction and its implications. Theor. Comput. Sci. 348(2–3), 357–365 (2005)
Williams, V.V., Williams, R.R.: Subcubic equivalences between path, matrix, and triangle problems. J. ACM 65(5), 27:1–27:38 (2018)
Yannakakis, M.: Expressing combinatorial optimization problems by linear programs. J. Comput. Syst. Sci. 43(3), 441–466 (1991)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Brand, C., Koutecký, M., Lassota, A. (2023). A Polyhedral Perspective on Tropical Convolutions. In: Hsieh, SY., Hung, LJ., Lee, CW. (eds) Combinatorial Algorithms. IWOCA 2023. Lecture Notes in Computer Science, vol 13889. Springer, Cham. https://doi.org/10.1007/978-3-031-34347-6_10
Download citation
DOI: https://doi.org/10.1007/978-3-031-34347-6_10
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-34346-9
Online ISBN: 978-3-031-34347-6
eBook Packages: Computer ScienceComputer Science (R0)