Skip to main content

Ranking of Survival-Related Gene Sets Through Integration of Single-Sample Gene Set Enrichment and Survival Analysis

  • Conference paper
  • First Online:
Artificial Intelligence in Medicine (AIME 2023)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13897))

Included in the following conference series:

Abstract

The onset and progression of a disease are often associated with changes in the expression of groups of genes from a particular molecular pathway. Gene set enrichment analysis has thus become a widely used tool in studying disease expression data; however, it has scarcely been utilized in the domain of survival analysis. Here we propose a computational approach to gene set enrichment analysis tailored to survival data. Our technique computes a single-sample gene set enrichment score for a particular gene set, separates the samples into an enriched and non-enriched cohort, and evaluates the separation according to the difference in survival of the cohorts. Using our method on the data from The Cancer Genome Atlas and Molecular Signatures Database Hallmark gene set collection, we successfully identified the gene sets whose enrichment is predictive of survival in particular cancer types. We show that the results of our method are supported by the empirical literature, where genes in the top-ranked gene sets are associated with survival prognosis. Our approach presents the potential of applying gene set enrichment to the domain of survival analysis, linking the disease-related changes in molecular pathways to survival prognosis.

Supported by the Slovenian Research Agency grants P2-0209 and L2-3170.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Alavi, S., Stewart, A.J., Kefford, R.F., Lim, S.Y., Shklovskaya, E., Rizos, H.: Interferon signaling is frequently downregulated in melanoma. Front. Immunol. 9, 1414 (2018)

    Article  Google Scholar 

  2. Altman, D.G.: Prognostic models: a methodological framework and review of models for breast cancer. Cancer Invest. 27(3), 235–243 (2009)

    Article  Google Scholar 

  3. Barbie, D.A., et al.: Systematic RNA interference reveals that oncogenic KRAS-driven cancers require TBK1. Nature 462(7269), 108–112 (2009)

    Article  Google Scholar 

  4. Cheng, C., Yan, X., Sun, F., Li, L.M.: Inferring activity changes of transcription factors by binding association with sorted expression profiles. BMC Bioinf. 8(1), 1–12 (2007)

    Article  Google Scholar 

  5. Du, W., et al.: HIF drives lipid deposition and cancer in CCRCC via repression of fatty acid metabolism. Nat. Commun. 8(1), 1–12 (2017)

    Article  Google Scholar 

  6. Dwivedi, B., Mumme, H., Satpathy, S., Bhasin, S.S., Bhasin, M.: Survival genie, a web platform for survival analysis across pediatric and adult cancers. Sci. Rep. 12(1), 3069 (2022)

    Article  Google Scholar 

  7. Frezza, C., et al.: Haem oxygenase is synthetically lethal with the tumour suppressor fumarate hydratase. Nature 477(7363), 225–228 (2011)

    Article  Google Scholar 

  8. Jackson, S., Storey, A.: E6 proteins from diverse cutaneous HPV types inhibit apoptosis in response to UV damage. Oncogene 19(4), 592–598 (2000)

    Article  Google Scholar 

  9. Kirkwood, J.M., Strawderman, M.H., Ernstoff, M.S., Smith, T.J., Borden, E.C., Blum, R.H.: Interferon alfa-2b adjuvant therapy of high-risk resected cutaneous melanoma: the eastern cooperative oncology group trial EST 1684. J. Clin. Oncol. 14(1), 7–17 (1996)

    Article  Google Scholar 

  10. Kumar, D.: Regulation of glycolysis in head and neck squamous cell carcinoma. Postdoc J.: J. Postdoctoral Res. Postdoctoral Affairs 5(1), 14 (2017)

    Article  Google Scholar 

  11. Liberzon, A., Subramanian, A., Pinchback, R., Thorvaldsdóttir, H., Tamayo, P., Mesirov, J.P.: Molecular signatures database (MSigdDB) 3.0. Bioinformatics 27(12), 1739–1740 (2011)

    Google Scholar 

  12. Maleki, F., Ovens, K., Hogan, D.J., Kusalik, A.J.: Gene set analysis: challenges, opportunities, and future research. Front. Genet. 11, 654 (2020)

    Article  Google Scholar 

  13. Marinov, M., Fischer, B., Arcaro, A.: Targeting mTOR signaling in lung cancer. Crit. Rev. Oncol. Hematol. 63(2), 172–182 (2007)

    Article  Google Scholar 

  14. Namani, A., Rahaman, M., Chen, M., Tang, X., et al.: Gene-expression signature regulated by the keap1-nrf2-cul3 axis is associated with a poor prognosis in head and neck squamous cell cancer. BMC Cancer 18(1), 1–11 (2018)

    Article  Google Scholar 

  15. Noordhuis, M.G., et al.: Expression of epidermal growth factor receptor (EGFR) and activated EGFR predict poor response to (chemo) radiation and survival in cervical cancerthe EGFR pathway in advanced-stage cervical cancer. Clin. Cancer Res. 15(23), 7389–7397 (2009)

    Article  Google Scholar 

  16. Plate, K.H., Risau, W.: Angiogenesis in malignant gliomas. Glia 15(3), 339–347 (1995)

    Article  Google Scholar 

  17. Rahman, M., Jackson, L.K., Johnson, W.E., Li, D.Y., Bild, A.H., Piccolo, S.R.: Alternative preprocessing of RNA-sequencing data in the cancer genome atlas leads to improved analysis results. Bioinformatics 31(22), 3666–3672 (2015)

    Article  Google Scholar 

  18. Rong, Y., Post, D.E., Pieper, R.O., Durden, D.L., Van Meir, E.G., Brat, D.J.: PTEN and hypoxia regulate tissue factor expression and plasma coagulation by glioblastoma. Can. Res. 65(4), 1406–1413 (2005)

    Article  Google Scholar 

  19. Salem, A., et al.:: Targeting hypoxia to improve non-small cell lung cancer outcome. JNCI: J. Nat. Cancer Instit. 110(1), 14–30 (2018)

    Google Scholar 

  20. Shen, S., et al.: Development and validation of an immune gene-set based prognostic signature in ovarian cancer. EBioMedicine 40, 318–326 (2019)

    Article  Google Scholar 

  21. Simpson, D.R., Mell, L.K., Cohen, E.E.: Targeting the PI3K/AKT/mTOR pathway in squamous cell carcinoma of the head and neck. Oral Oncol. 51(4), 291–298 (2015)

    Article  Google Scholar 

  22. Subramanian, A., et al.: Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. 102(43), 15545–15550 (2005)

    Article  Google Scholar 

  23. Tao, C., Huang, K., Shi, J., Hu, Q., Li, K., Zhu, X.: Genomics and prognosis analysis of epithelial-mesenchymal transition in glioma. Front. Oncol. 10, 183 (2020)

    Article  Google Scholar 

  24. Tomao, F., et al.: Angiogenesis and antiangiogenic agents in cervical cancer. Onco. Targets. Ther. 7, 2237 (2014)

    Article  Google Scholar 

  25. Varn, F.S., Ung, M.H., Lou, S.K., Cheng, C.: Integrative analysis of survival-associated gene sets in breast cancer. BMC Med. Genomics 8(1), 1–16 (2015)

    Article  Google Scholar 

  26. Zhang, L., Zhang, Z., Yu, Z.: Identification of a novel glycolysis-related gene signature for predicting metastasis and survival in patients with lung adenocarcinoma. J. Transl. Med. 17(1), 1–13 (2019)

    Article  Google Scholar 

  27. Zhao, H., Leppert, J.T., Peehl, D.M.: A protective role for androgen receptor in clear cell renal cell carcinoma based on mining TCGA data. PLoS ONE 11(1), e0146505 (2016)

    Article  Google Scholar 

  28. Špendl, M., Kokošar, J.: biolab/aime-2023-paper: Version 1.0 (2023). https://doi.org/10.5281/zenodo.7572951

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Blaž Zupan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Špendl, M., Kokošar, J., Praznik, E., Ausec, L., Zupan, B. (2023). Ranking of Survival-Related Gene Sets Through Integration of Single-Sample Gene Set Enrichment and Survival Analysis. In: Juarez, J.M., Marcos, M., Stiglic, G., Tucker, A. (eds) Artificial Intelligence in Medicine. AIME 2023. Lecture Notes in Computer Science(), vol 13897. Springer, Cham. https://doi.org/10.1007/978-3-031-34344-5_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-34344-5_39

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-34343-8

  • Online ISBN: 978-3-031-34344-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics