Skip to main content

Just Tell Me: Prompt Engineering in Business Process Management

  • Conference paper
  • First Online:
Enterprise, Business-Process and Information Systems Modeling (BPMDS 2023, EMMSAD 2023)

Abstract

GPT-3 and several other language models (LMs) can effectively address various natural language processing (NLP) tasks, including machine translation and text summarization. Recently, they have also been successfully employed in the business process management (BPM) domain, e.g., for predictive process monitoring and process extraction from text. This, however, typically requires fine-tuning the employed LM, which, among others, necessitates large amounts of suitable training data. A possible solution to this problem is the use of prompt engineering, which leverages pre-trained LMs without fine-tuning them. Recognizing this, we argue that prompt engineering can help bring the capabilities of LMs to BPM research. We use this position paper to develop a research agenda for the use of prompt engineering for BPM research by identifying the associated potentials and challenges.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. van der Aa, H., Carmona, J., Leopold, H., Mendling, J., Padró, L.: Challenges and opportunities of applying natural language processing in business process management. In: COLING, pp. 2791–2801 (2018)

    Google Scholar 

  2. Bellan, P., Dragoni, M., Ghidini, C.: Extracting business process entities and relations from text using pre-trained language models and in-context learning. In: Enterprise Design, Operations, and Computing, pp. 182–199 (2022)

    Google Scholar 

  3. Brown, T., et al.: Language models are few-shot learners. NeurIPS 33, 1877–1901 (2020)

    Google Scholar 

  4. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: NAACL-HLT, pp. 4171–4186 (2019)

    Google Scholar 

  5. Galanti, R., Coma-Puig, B., de Leoni, M., Carmona, J., Navarin, N.: Explainable predictive process monitoring. In: ICPM, pp. 1–8 (2020)

    Google Scholar 

  6. Käppel, M., Jablonski, S., Schönig, S.: Evaluating predictive business process monitoring approaches on small event logs. In: Paiva, A.C.R., Cavalli, A.R., Ventura Martins, P., Pérez-Castillo, R. (eds.) QUATIC 2021. CCIS, vol. 1439, pp. 167–182. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-85347-1_13

    Chapter  Google Scholar 

  7. Kojima, T., Gu, S.S., Reid, M., Matsuo, Y., Iwasawa, Y.: Large language models are zero-shot reasoners. In: ICML Workshop KRLM (2022)

    Google Scholar 

  8. Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H., Neubig, G.: Pre-train, prompt, and predict: a systematic survey of prompting methods in natural language processing. ACM Comput. Surv. 55(9), 1–35 (2023)

    Article  Google Scholar 

  9. Liu, V., Chilton, L.B.: Design guidelines for prompt engineering text-to-image generative models. In: CHI, pp. 1–23 (2022)

    Google Scholar 

  10. Liu, Y., Lapata, M.: Text summarization with pretrained encoders. In: EMNLP-IJCNLP, pp. 3730–3740. Association for Computational Linguistics (2019)

    Google Scholar 

  11. Mendling, J., Leopold, H., Pittke, F.: 25 challenges of semantic process modeling. IJISEBC 1(1), 78–94 (2015)

    Google Scholar 

  12. Perez, E., Kiela, D., Cho, K.: True few-shot learning with language models. NeurIPS 34, 11054–11070 (2021)

    Google Scholar 

  13. Raffel, C., et al.: Exploring the limits of transfer learning with a unified text-to-text transformer. J. Mach. Learn. Res. 21(1), 5485–5551 (2020)

    MathSciNet  MATH  Google Scholar 

  14. Schick, T., Schütze, H.: Exploiting cloze-questions for few-shot text classification and natural language inference. In: EACL, pp. 255–269 (2021)

    Google Scholar 

  15. Schick, T., Schütze, H.: It’s not just size that matters: small language models are also few-shot learners. In: NAACL-HLT, pp. 2339–2352 (2021)

    Google Scholar 

  16. Shin, T., Razeghi, Y., Logan IV, R.L., Wallace, E., Singh, S.: Autoprompt: eliciting knowledge from language models with automatically generated prompts. In: EMNLP, pp. 4222–4235 (2020)

    Google Scholar 

  17. Sola, D., van der Aa, H., Meilicke, C., Stuckenschmidt, H.: Activity recommendation for business process modeling with pre-trained language models. In: ESWC. Springer, Cham (2023)

    Google Scholar 

  18. Sola, D., Meilicke, C., van der Aa, H., Stuckenschmidt, H.: A rule-based recommendation approach for business process modeling. In: La Rosa, M., Sadiq, S., Teniente, E. (eds.) CAiSE 2021. LNCS, vol. 12751, pp. 328–343. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-79382-1_20

    Chapter  Google Scholar 

  19. Vaswani, A., et al.: Attention is all you need. NeurIPS 30 (2017)

    Google Scholar 

  20. Wang, Q., et al.: Learning deep transformer models for machine translation. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 1810–1822 (2019)

    Google Scholar 

  21. Wei, J., et al.: Chain of thought prompting elicits reasoning in large language models. arXiv preprint arXiv:2201.11903 (2022)

  22. Zhao, Z., Wallace, E., Feng, S., Klein, D., Singh, S.: Calibrate before use: improving few-shot performance of language models. In: ICML, pp. 12697–12706 (2021)

    Google Scholar 

  23. Zhou, X., Zhang, Y., Cui, L., Huang, D.: Evaluating commonsense in pre-trained language models. In: AAAI, vol. 34, pp. 9733–9740 (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kiran Busch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Busch, K., Rochlitzer, A., Sola, D., Leopold, H. (2023). Just Tell Me: Prompt Engineering in Business Process Management. In: van der Aa, H., Bork, D., Proper, H.A., Schmidt, R. (eds) Enterprise, Business-Process and Information Systems Modeling. BPMDS EMMSAD 2023 2023. Lecture Notes in Business Information Processing, vol 479. Springer, Cham. https://doi.org/10.1007/978-3-031-34241-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-34241-7_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-34240-0

  • Online ISBN: 978-3-031-34241-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics