Skip to main content

Roles and Sources of Calcium in Synaptic Exocytosis

  • Chapter
  • First Online:
Molecular Mechanisms of Neurotransmitter Release

Part of the book series: Advances in Neurobiology ((NEUROBIOL,volume 33))

  • 654 Accesses

Abstract

Calcium ions (Ca2+) play a critical role in triggering neurotransmitter release. The rate of release is directly related to the concentration of Ca2+ at the presynaptic site, with a supralinear relationship. There are two main sources of Ca2+ that trigger synaptic vesicle fusion: influx through voltage-gated Ca2+ channels in the plasma membrane and release from the endoplasmic reticulum via ryanodine receptors. This chapter will cover the sources of Ca2+ at the presynaptic nerve terminal, the relationship between neurotransmitter release rate and Ca2+ concentration, and the mechanisms that achieve the necessary Ca2+ concentrations for triggering synaptic exocytosis at the presynaptic site.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Locke FS. Notiz uber den einfluss physiologischer kochsalz-losung auf die elektrische erregbarkeit von muskel und nerv. Zbl Physiol. 1894;8:166–7.

    Google Scholar 

  2. Harvey AM, Macintosh FC. Calcium and synaptic transmission in a sympathetic ganglion. J Physiol. 1940;97:408–16. https://doi.org/10.1113/jphysiol.1940.sp003818.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Del Castillo J, Stark L. The effect of calcium ions on the motor end-plate potentials. J Physiol. 1952;116:507–15. https://doi.org/10.1113/jphysiol.1952.sp004720.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Dodge FA Jr, Rahamimoff R. Co-operative action a calcium ions in transmitter release at the neuromuscular junction. J Physiol. 1967;193:419–32. https://doi.org/10.1113/jphysiol.1967.sp008367.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Katz B, Miledi R. The effect of calcium on acetylcholine release from motor nerve terminals. Proc R Soc Lond B Biol Sci. 1965;161:496–503. https://doi.org/10.1098/rspb.1965.0017.

    Article  CAS  PubMed  Google Scholar 

  6. Verkhratsky A. The endoplasmic reticulum and neuronal calcium signalling. Cell Calcium. 2002;32:393–404. https://doi.org/10.1016/s0143416002001896.

    Article  CAS  PubMed  Google Scholar 

  7. Berridge MJ. Neuronal calcium signaling. Neuron. 1998;21:13–26. https://doi.org/10.1016/s0896-6273(00)80510-3.

    Article  CAS  PubMed  Google Scholar 

  8. Schneggenburger R, Neher E. Intracellular calcium dependence of transmitter release rates at a fast central synapse. Nature. 2000;406:889–93. https://doi.org/10.1038/35022702.

    Article  CAS  PubMed  Google Scholar 

  9. Heidelberger R, Heinemann C, Neher E, Matthews G. Calcium dependence of the rate of exocytosis in a synaptic terminal. Nature. 1994;371:513–5. https://doi.org/10.1038/371513a0.

    Article  CAS  PubMed  Google Scholar 

  10. Lando L, Zucker RS. Ca2+ cooperativity in neurosecretion measured using photolabile Ca2+ chelators. J Neurophysiol. 1994;72:825–30. https://doi.org/10.1152/jn.1994.72.2.825.

    Article  CAS  PubMed  Google Scholar 

  11. Bollmann JH, Sakmann B, Borst JG. Calcium sensitivity of glutamate release in a calyx-type terminal. Science. 2000;289:953–7. https://doi.org/10.1126/science.289.5481.953.

    Article  CAS  PubMed  Google Scholar 

  12. Fernandez-Chacon R, Konigstorfer A, Gerber SH, Garcia J, Matos MF, Stevens CF, et al. Synaptotagmin I functions as a calcium regulator of release probability. Nature. 2001;410:41–9. https://doi.org/10.1038/35065004.

    Article  CAS  PubMed  Google Scholar 

  13. Yoshihara M, Littleton JT. Synaptotagmin I functions as a calcium sensor to synchronize neurotransmitter release. Neuron. 2002;36:897–908. https://doi.org/10.1016/s0896-6273(02)01065-6.

    Article  CAS  PubMed  Google Scholar 

  14. Broadie K, Bellen HJ, DiAntonio A, Littleton JT, Schwarz TL. Absence of synaptotagmin disrupts excitation-secretion coupling during synaptic transmission. Proc Natl Acad Sci U S A. 1994;91:10727–31. https://doi.org/10.1073/pnas.91.22.10727.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Rickman C, Hu K, Carroll J, Davletov B. Self-assembly of SNARE fusion proteins into star-shaped oligomers. Biochem J. 2005;388:75–9. https://doi.org/10.1042/BJ20041818.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Stewart BA, Mohtashami M, Trimble WS, Boulianne GL. SNARE proteins contribute to calcium cooperativity of synaptic transmission. Proc Natl Acad Sci U S A. 2000;97:13955–60. https://doi.org/10.1073/pnas.250491397.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Augustine GJ, Adler EM, Charlton MP. The calcium signal for transmitter secretion from presynaptic nerve terminals. Ann N Y Acad Sci. 1991;635:365–81. https://doi.org/10.1111/j.1749-6632.1991.tb36505.x.

    Article  CAS  PubMed  Google Scholar 

  18. Felmy F, Neher E, Schneggenburger R. Probing the intracellular calcium sensitivity of transmitter release during synaptic facilitation. Neuron. 2003;37:801–11. https://doi.org/10.1016/s0896-6273(03)00085-0.

    Article  CAS  PubMed  Google Scholar 

  19. Liu Q, Chen B, Ge Q, Wang ZW. Presynaptic Ca2+/calmodulin-dependent protein kinase II modulates neurotransmitter release by activating BK channels at Caenorhabditis elegans neuromuscular junction. J Neurosci. 2007;27:10404–13. https://doi.org/10.1523/JNEUROSCI.5634-06.2007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Gentile L, Stanley EF. A unified model of presynaptic release site gating by calcium channel domains. Eur J Neurosci. 2005;21:278–82. https://doi.org/10.1111/j.1460-9568.2004.03841.x.

    Article  PubMed  Google Scholar 

  21. Kuno M, Takahashi T. Effects of calcium and magnesium on transmitter release at Ia synapses of rat spinal motoneurones in vitro. J Physiol. 1986;376:543–53. https://doi.org/10.1113/jphysiol.1986.sp016169.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Eshra A, Schmidt H, Eilers J, Hallermann S. Calcium dependence of neurotransmitter release at a high fidelity synapse. elife. 2021;10 https://doi.org/10.7554/eLife.70408.

  23. Lou X, Scheuss V, Schneggenburger R. Allosteric modulation of the presynaptic Ca2+ sensor for vesicle fusion. Nature. 2005;435:497–501. https://doi.org/10.1038/nature03568.

    Article  CAS  PubMed  Google Scholar 

  24. Hubbard JI, Jones SF, Landau EM. On the mechanism by which calcium and magnesium affect the release of transmitter by nerve impulses. J Physiol. 1968;196:75–86. https://doi.org/10.1113/jphysiol.1968.sp008495.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Shimosawa T, Takano K, Ando K, Fujita T. Magnesium inhibits norepinephrine release by blocking N-type calcium channels at peripheral sympathetic nerve endings. Hypertension. 2004;44:897–902. https://doi.org/10.1161/01.HYP.0000146536.68208.84.

    Article  CAS  PubMed  Google Scholar 

  26. Zhang A, Fan SH, Cheng TP, Altura BT, Wong RK, Altura BM. Extracellular Mg2+ modulates intracellular Ca2+ in acutely isolated hippocampal CA1 pyramidal cells of the Guinea-pig. Brain Res. 1996;728:204–8. https://doi.org/10.1016/0006-8993(96)00401-5.

    Article  CAS  PubMed  Google Scholar 

  27. Shi J, Krishnamoorthy G, Yang Y, Hu L, Chaturvedi N, Harilal D, et al. Mechanism of magnesium activation of calcium-activated potassium channels. Nature. 2002;418:876–80. https://doi.org/10.1038/nature00941.

    Article  CAS  PubMed  Google Scholar 

  28. Shi J, Cui J. Intracellular Mg(2+) enhances the function of BK-type Ca(2+)-activated K(+) channels. J Gen Physiol. 2001;118:589–606. https://doi.org/10.1085/jgp.118.5.589.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zhang X, Solaro CR, Lingle CJ. Allosteric regulation of BK channel gating by Ca(2+) and Mg(2+) through a nonselective, low affinity divalent cation site. J Gen Physiol. 2001;118:607–36. https://doi.org/10.1085/jgp.118.5.607.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Robitaille R, Garcia ML, Kaczorowski GJ, Charlton MP. Functional colocalization of calcium and calcium-gated potassium channels in control of transmitter release. Neuron. 1993;11:645–55. https://doi.org/10.1016/0896-6273(93)90076-4.

    Article  CAS  PubMed  Google Scholar 

  31. Wang ZW, Saifee O, Nonet ML, Salkoff L. SLO-1 potassium channels control quantal content of neurotransmitter release at the C. elegans neuromuscular junction. Neuron. 2001;32:867–81. https://doi.org/10.1016/s0896-6273(01)00522-0.

    Article  CAS  PubMed  Google Scholar 

  32. Adler EM, Augustine GJ, Duffy SN, Charlton MP. Alien intracellular calcium chelators attenuate neurotransmitter release at the squid giant synapse. J Neurosci. 1991;11:1496–507. https://doi.org/10.1523/JNEUROSCI.11-06-01496.1991.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Tandon A, Bannykh S, Kowalchyk JA, Banerjee A, Martin TF, Balch WE. Differential regulation of exocytosis by calcium and CAPS in semi-intact synaptosomes. Neuron. 1998;21:147–54. https://doi.org/10.1016/s0896-6273(00)80522-x.

    Article  CAS  PubMed  Google Scholar 

  34. Wolfel M, Schneggenburger R. Presynaptic capacitance measurements and Ca2+ uncaging reveal submillisecond exocytosis kinetics and characterize the Ca2+ sensitivity of vesicle pool depletion at a fast CNS synapse. J Neurosci. 2003;23:7059–68. https://doi.org/10.1523/JNEUROSCI.23-18-07059.2003.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Augustine GJ, Santamaria F, Tanaka K. Local calcium signaling in neurons. Neuron. 2003;40:331–46. https://doi.org/10.1016/s0896-6273(03)00639-1.

    Article  CAS  PubMed  Google Scholar 

  36. Fogelson AL, Zucker RS. Presynaptic calcium diffusion from various arrays of single channels. Implications for transmitter release and synaptic facilitation. Biophys J. 1985;48:1003–17. https://doi.org/10.1016/S0006-3495(85)83863-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Simon SM, Llinas RR. Compartmentalization of the submembrane calcium activity during calcium influx and its significance in transmitter release. Biophys J. 1985;48:485–98. https://doi.org/10.1016/S0006-3495(85)83804-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wang LY, Augustine GJ. Presynaptic nanodomains: a tale of two synapses. Front Cell Neurosci. 2014;8:455. https://doi.org/10.3389/fncel.2014.00455.

    Article  PubMed  Google Scholar 

  39. Neher E, Sakaba T. Multiple roles of calcium ions in the regulation of neurotransmitter release. Neuron. 2008;59:861–72. https://doi.org/10.1016/j.neuron.2008.08.019.

    Article  CAS  PubMed  Google Scholar 

  40. Llinas R, Sugimori M, Silver RB. Microdomains of high calcium concentration in a presynaptic terminal. Science. 1992;256:677–9. https://doi.org/10.1126/science.1350109.

    Article  CAS  PubMed  Google Scholar 

  41. Beaumont V, Llobet A, Lagnado L. Expansion of calcium microdomains regulates fast exocytosis at a ribbon synapse. Proc Natl Acad Sci U S A. 2005;102:10700–5. https://doi.org/10.1073/pnas.0501961102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Yazejian B, Sun XP, Grinnell AD. Tracking presynaptic Ca2+ dynamics during neurotransmitter release with Ca2+-activated K+ channels. Nat Neurosci. 2000;3:566–71. https://doi.org/10.1038/75737.

    Article  CAS  PubMed  Google Scholar 

  43. DiGregorio DA, Peskoff A, Vergara JL. Measurement of action potential-induced presynaptic calcium domains at a cultured neuromuscular junction. J Neurosci. 1999;19:7846–59. https://doi.org/10.1523/JNEUROSCI.19-18-07846.1999.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Demuro A, Parker I. Imaging single-channel calcium microdomains. Cell Calcium. 2006;40:413–22. https://doi.org/10.1016/j.ceca.2006.08.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Zenisek D, Davila V, Wan L, Almers W. Imaging calcium entry sites and ribbon structures in two presynaptic cells. J Neurosci. 2003;23:2538–48. https://doi.org/10.1523/JNEUROSCI.23-07-02538.2003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Heidelberger R, Matthews G. Calcium influx and calcium current in single synaptic terminals of goldfish retinal bipolar neurons. J Physiol. 1992;447:235–56. https://doi.org/10.1113/jphysiol.1992.sp019000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Neves G, Lagnado L. The kinetics of exocytosis and endocytosis in the synaptic terminal of goldfish retinal bipolar cells. J Physiol. 1999;515(Pt 1):181–202. https://doi.org/10.1111/j.1469-7793.1999.181ad.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Zenisek D, Matthews G. The role of mitochondria in presynaptic calcium handling at a ribbon synapse. Neuron. 2000;25:229–37. https://doi.org/10.1016/s0896-6273(00)80885-5.

    Article  CAS  PubMed  Google Scholar 

  49. Harlow ML, Ress D, Stoschek A, Marshall RM, McMahan UJ. The architecture of active zone material at the frog's neuromuscular junction. Nature. 2001;409:479–84. https://doi.org/10.1038/35054000.

    Article  CAS  PubMed  Google Scholar 

  50. Meinrenken CJ, Borst JG, Sakmann B. Calcium secretion coupling at calyx of Held governed by nonuniform channel-vesicle topography. J Neurosci. 2002;22:1648–67. https://doi.org/10.1523/JNEUROSCI.22-05-01648.2002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Tsien RY. New calcium indicators and buffers with high selectivity against magnesium and protons: design, synthesis, and properties of prototype structures. Biochemistry. 1980;19:2396–404. https://doi.org/10.1021/bi00552a018.

    Article  CAS  PubMed  Google Scholar 

  52. Eggermann E, Bucurenciu I, Goswami SP, Jonas P. Nanodomain coupling between Ca(2)(+) channels and sensors of exocytosis at fast mammalian synapses. Nat Rev Neurosci. 2011;13:7–21. https://doi.org/10.1038/nrn3125.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Swandulla D, Hans M, Zipser K, Augustine GJ. Role of residual calcium in synaptic depression and posttetanic potentiation: fast and slow calcium signaling in nerve terminals. Neuron. 1991;7:915–26. https://doi.org/10.1016/0896-6273(91)90337-y.

    Article  CAS  PubMed  Google Scholar 

  54. Burrone J, Neves G, Gomis A, Cooke A, Lagnado L. Endogenous calcium buffers regulate fast exocytosis in the synaptic terminal of retinal bipolar cells. Neuron. 2002;33:101–12. https://doi.org/10.1016/s0896-6273(01)00565-7.

    Article  CAS  PubMed  Google Scholar 

  55. von Gersdorff H, Matthews G. Dynamics of synaptic vesicle fusion and membrane retrieval in synaptic terminals. Nature. 1994;367:735–9. https://doi.org/10.1038/367735a0.

    Article  Google Scholar 

  56. Fedchyshyn MJ, Wang LY. Developmental transformation of the release modality at the calyx of Held synapse. J Neurosci. 2005;25:4131–40. https://doi.org/10.1523/JNEUROSCI.0350-05.2005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Borst JG, Sakmann B. Calcium influx and transmitter release in a fast CNS synapse. Nature. 1996;383:431–4. https://doi.org/10.1038/383431a0.

    Article  CAS  PubMed  Google Scholar 

  58. Ohana O, Sakmann B. Transmitter release modulation in nerve terminals of rat neocortical pyramidal cells by intracellular calcium buffers. J Physiol. 1998;513(Pt 1):135–48. https://doi.org/10.1111/j.1469-7793.1998.135by.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Rozov A, Burnashev N, Sakmann B, Neher E. Transmitter release modulation by intracellular Ca2+ buffers in facilitating and depressing nerve terminals of pyramidal cells in layer 2/3 of the rat neocortex indicates a target cell-specific difference in presynaptic calcium dynamics. J Physiol. 2001;531:807–26. https://doi.org/10.1111/j.1469-7793.2001.0807h.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Mintz IM, Sabatini BL, Regehr WG. Calcium control of transmitter release at a cerebellar synapse. Neuron. 1995;15:675–88. https://doi.org/10.1016/0896-6273(95)90155-8.

    Article  CAS  PubMed  Google Scholar 

  61. Schneggenburger R, Neher E. Presynaptic calcium and control of vesicle fusion. Curr Opin Neurobiol. 2005;15:266–74. https://doi.org/10.1016/j.conb.2005.05.006.

    Article  CAS  PubMed  Google Scholar 

  62. Bucurenciu I, Kulik A, Schwaller B, Frotscher M, Jonas P. Nanodomain coupling between Ca2+ channels and Ca2+ sensors promotes fast and efficient transmitter release at a cortical GABAergic synapse. Neuron. 2008;57:536–45. https://doi.org/10.1016/j.neuron.2007.12.026.

    Article  CAS  PubMed  Google Scholar 

  63. Schmidt H, Brachtendorf S, Arendt O, Hallermann S, Ishiyama S, Bornschein G, et al. Nanodomain coupling at an excitatory cortical synapse. Curr Biol. 2013;23:244–9. https://doi.org/10.1016/j.cub.2012.12.007.

    Article  CAS  PubMed  Google Scholar 

  64. Arai I, Jonas P. Nanodomain coupling explains Ca(2)(+) independence of transmitter release time course at a fast central synapse. elife. 2014;3 https://doi.org/10.7554/eLife.04057.

  65. Lacinova L. Voltage-dependent calcium channels. Gen Physiol Biophys. 2005;24(Suppl 1):1–78.

    CAS  PubMed  Google Scholar 

  66. Gao S, Yao X, Yan N. Structure of human Ca(v)2.2 channel blocked by the painkiller ziconotide. Nature. 2021;596:143–7. https://doi.org/10.1038/s41586-021-03699-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Zhao Y, Huang G, Wu Q, Wu K, Li R, Lei J, et al. Cryo-EM structures of apo and antagonist-bound human Ca(v)3.1. Nature. 2019;576:492–7. https://doi.org/10.1038/s41586-019-1801-3.

    Article  CAS  PubMed  Google Scholar 

  68. Wu J, Yan Z, Li Z, Yan C, Lu S, Dong M, et al. Structure of the voltage-gated calcium channel Cav1.1 complex. Science. 2015;350:aad2395. https://doi.org/10.1126/science.aad2395.

    Article  CAS  PubMed  Google Scholar 

  69. Gao S, Yan N. Structural basis of the modulation of the voltage-gated calcium ion channel Ca(v) 1.1 by Dihydropyridine compounds*. Angew Chem Int Ed Engl. 2021;60:3131–7. https://doi.org/10.1002/anie.202011793.

    Article  CAS  PubMed  Google Scholar 

  70. Zhao Y, Huang G, Wu J, Wu Q, Gao S, Yan Z, et al. Molecular basis for ligand modulation of a mammalian voltage-gated Ca(2+) channel. Cell. 2019;177:1495–506 e12. https://doi.org/10.1016/j.cell.2019.04.043.

    Article  CAS  Google Scholar 

  71. Wu J, Yan Z, Li Z, Qian X, Lu S, Dong M, et al. Structure of the voltage-gated calcium channel Ca(v)1.1 at 3.6 A resolution. Nature. 2016;537:191–6. https://doi.org/10.1038/nature19321.

    Article  CAS  PubMed  Google Scholar 

  72. Catterall WA, Perez-Reyes E, Snutch TP, Striessnig J, International Union of Pharmacology. XLVIII. Nomenclature and structure-function relationships of voltage-gated calcium channels. Pharmacol Rev. 2005;57:411–25. https://doi.org/10.1124/pr.57.4.5.

    Article  CAS  PubMed  Google Scholar 

  73. Randall A, Tsien RW. Pharmacological dissection of multiple types of Ca2+ channel currents in rat cerebellar granule neurons. J Neurosci. 1995;15:2995–3012. https://doi.org/10.1523/JNEUROSCI.15-04-02995.1995.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Birnbaumer L, Campbell KP, Catterall WA, Harpold MM, Hofmann F, Horne WA, et al. The naming of voltage-gated calcium channels. Neuron. 1994;13:505–6. https://doi.org/10.1016/0896-6273(94)90021-3.

    Article  CAS  PubMed  Google Scholar 

  75. Ertel EA, Campbell KP, Harpold MM, Hofmann F, Mori Y, Perez-Reyes E, et al. Nomenclature of voltage-gated calcium channels. Neuron. 2000;25:533–5. https://doi.org/10.1016/s0896-6273(00)81057-0.

    Article  CAS  PubMed  Google Scholar 

  76. Wheeler DB, Randall A, Tsien RW. Roles of N-type and Q-type Ca2+ channels in supporting hippocampal synaptic transmission. Science. 1994;264:107–11. https://doi.org/10.1126/science.7832825.

    Article  CAS  PubMed  Google Scholar 

  77. Wu LG, Saggau P. Pharmacological identification of two types of presynaptic voltage-dependent calcium channels at CA3-CA1 synapses of the hippocampus. J Neurosci. 1994;14:5613–22. https://doi.org/10.1523/JNEUROSCI.14-09-05613.1994.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Takahashi T, Momiyama A. Different types of calcium channels mediate central synaptic transmission. Nature. 1993;366:156–8. https://doi.org/10.1038/366156a0.

    Article  CAS  PubMed  Google Scholar 

  79. Luebke JI, Dunlap K, Turner TJ. Multiple calcium channel types control glutamatergic synaptic transmission in the hippocampus. Neuron. 1993;11:895–902. https://doi.org/10.1016/0896-6273(93)90119-c.

    Article  CAS  PubMed  Google Scholar 

  80. Turner TJ, Adams ME, Dunlap K. Multiple Ca2+ channel types coexist to regulate synaptosomal neurotransmitter release. Proc Natl Acad Sci U S A. 1993;90:9518–22. https://doi.org/10.1073/pnas.90.20.9518.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Uchitel OD, Protti DA, Sanchez V, Cherksey BD, Sugimori M, Llinas R. P-type voltage-dependent calcium channel mediates presynaptic calcium influx and transmitter release in mammalian synapses. Proc Natl Acad Sci U S A. 1992;89:3330–3. https://doi.org/10.1073/pnas.89.8.3330.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Protti DA, Reisin R, Mackinley TA, Uchitel OD. Calcium channel blockers and transmitter release at the normal human neuromuscular junction. Neurology. 1996;46:1391–6. https://doi.org/10.1212/wnl.46.5.1391.

    Article  CAS  PubMed  Google Scholar 

  83. Protti DA, Sanchez VA, Cherksey BD, Sugimori M, Llinas R, Uchitel OD. Mammalian neuromuscular transmission blocked by funnel web toxin. Ann N Y Acad Sci. 1993;681:405–7. https://doi.org/10.1111/j.1749-6632.1993.tb22921.x.

    Article  CAS  PubMed  Google Scholar 

  84. Bowersox SS, Miljanich GP, Sugiura Y, Li C, Nadasdi L, Hoffman BB, et al. Differential blockade of voltage-sensitive calcium channels at the mouse neuromuscular junction by novel omega-conopeptides and omega-agatoxin-IVA. J Pharmacol Exp Ther. 1995;273:248–56.

    CAS  PubMed  Google Scholar 

  85. Araque A, Clarac F, Buno W. P-type Ca2+ channels mediate excitatory and inhibitory synaptic transmitter release in crayfish muscle. Proc Natl Acad Sci U S A. 1994;91:4224–8. https://doi.org/10.1073/pnas.91.10.4224.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Wu LG, Westenbroek RE, Borst JG, Catterall WA, Sakmann B. Calcium channel types with distinct presynaptic localization couple differentially to transmitter release in single calyx-type synapses. J Neurosci. 1999;19:726–36. https://doi.org/10.1523/JNEUROSCI.19-02-00726.1999.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Pan ZH, Hu HJ, Perring P, Andrade R. T-type Ca(2+) channels mediate neurotransmitter release in retinal bipolar cells. Neuron. 2001;32:89–98. https://doi.org/10.1016/s0896-6273(01)00454-8.

    Article  CAS  PubMed  Google Scholar 

  88. Tachibana M, Okada T, Arimura T, Kobayashi K, Piccolino M. Dihydropyridine-sensitive calcium current mediates neurotransmitter release from bipolar cells of the goldfish retina. J Neurosci. 1993;13:2898–909. https://doi.org/10.1523/JNEUROSCI.13-07-02898.1993.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Mochida S, Westenbroek RE, Yokoyama CT, Itoh K, Catterall WA. Subtype-selective reconstitution of synaptic transmission in sympathetic ganglion neurons by expression of exogenous calcium channels. Proc Natl Acad Sci U S A. 2003;100:2813–8. https://doi.org/10.1073/pnas.262787299.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Mueller BD, Merrill SA, Watanabe S, Liu P, Niu LG, Singh A, et al. CaV1 and CaV2 calcium channels mediate the release of distinct pools of synaptic vesicles. elife. 2023;12 https://doi.org/10.7554/eLife.81407.

  91. Tong XJ, Lopez-Soto EJ, Li L, Liu H, Nedelcu D, Lipscombe D, et al. Retrograde synaptic inhibition is mediated by alpha-Neurexin binding to the alpha2delta subunits of N-type calcium channels. Neuron. 2017;95:326–40 e5. https://doi.org/10.1016/j.neuron.2017.06.018.

    Article  CAS  Google Scholar 

  92. Iwasaki S, Momiyama A, Uchitel OD, Takahashi T. Developmental changes in calcium channel types mediating central synaptic transmission. J Neurosci. 2000;20:59–65. https://doi.org/10.1523/JNEUROSCI.20-01-00059.2000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Iwasaki S, Takahashi T. Developmental changes in calcium channel types mediating synaptic transmission in rat auditory brainstem. J Physiol. 1998;509(Pt 2):419–23. https://doi.org/10.1111/j.1469-7793.1998.419bn.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Urbano FJ, Piedras-Renteria ES, Jun K, Shin HS, Uchitel OD, Tsien RW. Altered properties of quantal neurotransmitter release at endplates of mice lacking P/Q-type Ca2+ channels. Proc Natl Acad Sci U S A. 2003;100:3491–6. https://doi.org/10.1073/pnas.0437991100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Pardo NE, Hajela RK, Atchison WD. Acetylcholine release at neuromuscular junctions of adult tottering mice is controlled by N-(cav2.2) and R-type (cav2.3) but not L-type (cav1.2) Ca2+ channels. J Pharmacol Exp Ther. 2006;319:1009–20. https://doi.org/10.1124/jpet.106.108670.

    Article  CAS  PubMed  Google Scholar 

  96. Kaja S, Van de Ven RC, Ferrari MD, Frants RR, Van den Maagdenberg AM, Plomp JJ. Compensatory contribution of Cav2.3 channels to acetylcholine release at the neuromuscular junction of tottering mice. J Neurophysiol. 2006;95:2698–704. https://doi.org/10.1152/jn.01221.2005.

    Article  CAS  PubMed  Google Scholar 

  97. Inchauspe CG, Martini FJ, Forsythe ID, Uchitel OD. Functional compensation of P/Q by N-type channels blocks short-term plasticity at the calyx of Held presynaptic terminal. J Neurosci. 2004;24:10379–83. https://doi.org/10.1523/JNEUROSCI.2104-04.2004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Ishikawa T, Kaneko M, Shin HS, Takahashi T. Presynaptic N-type and P/Q-type Ca2+ channels mediating synaptic transmission at the calyx of Held of mice. J Physiol. 2005;568:199–209. https://doi.org/10.1113/jphysiol.2005.089912.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Tsukita S, Ishikawa H. Three-dimensional distribution of smooth endoplasmic reticulum in myelinated axons. J Electron Microsc. 1976;25:141–9.

    CAS  Google Scholar 

  100. Hartter DE, Burton PR, Laveri LA. Distribution and calcium-sequestering ability of smooth endoplasmic reticulum in olfactory axon terminals of frog brain. Neuroscience. 1987;23:371–86. https://doi.org/10.1016/0306-4522(87)90297-1.

    Article  CAS  PubMed  Google Scholar 

  101. Lindsey JD, Ellisman MH. The neuronal endomembrane system. I. Direct links between rough endoplasmic reticulum and the cis element of the Golgi apparatus. J Neurosci. 1985;5:3111–23. https://doi.org/10.1523/JNEUROSCI.05-12-03111.1985.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. McGraw CF, Somlyo AV, Blaustein MP. Localization of calcium in presynaptic nerve terminals. An ultrastructural and electron microprobe analysis. J Cell Biol. 1980;85:228–41. https://doi.org/10.1083/jcb.85.2.228.

    Article  CAS  PubMed  Google Scholar 

  103. Singh N, Bartol T, Levine H, Sejnowski T, Nadkarni S. Presynaptic endoplasmic reticulum regulates short-term plasticity in hippocampal synapses. Commun Biol. 2021;4:241. https://doi.org/10.1038/s42003-021-01761-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Yalcin B, Zhao L, Stofanko M, O'Sullivan NC, Kang ZH, Roost A, et al. Modeling of axonal endoplasmic reticulum network by spastic paraplegia proteins. elife. 2017;6 https://doi.org/10.7554/eLife.23882.

  105. Villegas R, Martinez NW, Lillo J, Pihan P, Hernandez D, Twiss JL, et al. Calcium release from intra-axonal endoplasmic reticulum leads to axon degeneration through mitochondrial dysfunction. J Neurosci. 2014;34:7179–89. https://doi.org/10.1523/JNEUROSCI.4784-13.2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Bouchard R, Pattarini R, Geiger JD. Presence and functional significance of presynaptic ryanodine receptors. Prog Neurobiol. 2003;69:391–418. https://doi.org/10.1016/s0301-0082(03)00053-4.

    Article  CAS  PubMed  Google Scholar 

  107. Berridge MJ. The endoplasmic reticulum: a multifunctional signaling organelle. Cell Calcium. 2002;32:235–49. https://doi.org/10.1016/s0143416002001823.

    Article  CAS  PubMed  Google Scholar 

  108. Chi X, Gong D, Ren K, Zhou G, Huang G, Lei J, et al. Molecular basis for allosteric regulation of the type 2 ryanodine receptor channel gating by key modulators. Proc Natl Acad Sci U S A. 2019;116:25575–82. https://doi.org/10.1073/pnas.1914451116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Melville Z, Kim K, Clarke OB, Marks AR. High-resolution structure of the membrane-embedded skeletal muscle ryanodine receptor. Structure. 2022;30:172–80 e3. https://doi.org/10.1016/j.str.2021.08.001.

    Article  CAS  Google Scholar 

  110. Woll KA, Haji-Ghassemi O, Van Petegem F. Pathological conformations of disease mutant Ryanodine Receptors revealed by cryo-EM. Nat Commun. 2021;12:807. https://doi.org/10.1038/s41467-021-21141-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Yan Z, Bai X, Yan C, Wu J, Li Z, Xie T, et al. Structure of the rabbit ryanodine receptor RyR1 at near-atomic resolution. Nature. 2015;517:50–5. https://doi.org/10.1038/nature14063.

    Article  CAS  PubMed  Google Scholar 

  112. Zalk R, Clarke OB, des Georges A, Grassucci RA, Reiken S, Mancia F, et al. Structure of a mammalian ryanodine receptor. Nature. 2015;517:44–9. https://doi.org/10.1038/nature13950.

    Article  CAS  PubMed  Google Scholar 

  113. Bai XC, Yan Z, Wu J, Li Z, Yan N. The Central domain of RyR1 is the transducer for long-range allosteric gating of channel opening. Cell Res. 2016;26:995–1006. https://doi.org/10.1038/cr.2016.89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Chirasani VR, Pasek DA, Meissner G. Structural and functional interactions between the Ca(2+)-, ATP-, and caffeine-binding sites of skeletal muscle ryanodine receptor (RyR1). J Biol Chem. 2021;297:101040. https://doi.org/10.1016/j.jbc.2021.101040.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Peng W, Shen H, Wu J, Guo W, Pan X, Wang R, et al. Structural basis for the gating mechanism of the type 2 ryanodine receptor RyR2. Science. 2016;354:aah5324. https://doi.org/10.1126/science.aah5324.

    Article  CAS  PubMed  Google Scholar 

  116. des Georges A, Clarke OB, Zalk R, Yuan Q, Condon KJ, Grassucci RA, et al. Structural basis for gating and activation of RyR1. Cell. 2016;167:145–57 e17. https://doi.org/10.1016/j.cell.2016.08.075.

    Article  CAS  Google Scholar 

  117. Samso M, Shen X, Allen PD. Structural characterization of the RyR1-FKBP12 interaction. J Mol Biol. 2006;356:917–27. https://doi.org/10.1016/j.jmb.2005.12.023.

    Article  CAS  PubMed  Google Scholar 

  118. Samso M, Wagenknecht T, Allen PD. Internal structure and visualization of transmembrane domains of the RyR1 calcium release channel by cryo-EM. Nat Struct Mol Biol. 2005;12:539–44. https://doi.org/10.1038/nsmb938.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Efremov RG, Leitner A, Aebersold R, Raunser S. Architecture and conformational switch mechanism of the ryanodine receptor. Nature. 2015;517:39–43. https://doi.org/10.1038/nature13916.

    Article  CAS  PubMed  Google Scholar 

  120. Gong D, Chi X, Wei J, Zhou G, Huang G, Zhang L, et al. Modulation of cardiac ryanodine receptor 2 by calmodulin. Nature. 2019;572:347–51. https://doi.org/10.1038/s41586-019-1377-y.

    Article  CAS  PubMed  Google Scholar 

  121. Ogawa H, Kurebayashi N, Yamazawa T, Murayama T. Regulatory mechanisms of ryanodine receptor/Ca(2+) release channel revealed by recent advancements in structural studies. J Muscle Res Cell Motil. 2021;42:291–304. https://doi.org/10.1007/s10974-020-09575-6.

    Article  CAS  PubMed  Google Scholar 

  122. Kugler G, Weiss RG, Flucher BE, Grabner M. Structural requirements of the dihydropyridine receptor alpha1S II-III loop for skeletal-type excitation-contraction coupling. J Biol Chem. 2004;279:4721–8. https://doi.org/10.1074/jbc.M307538200.

    Article  CAS  PubMed  Google Scholar 

  123. Nakai J, Tanabe T, Konno T, Adams B, Beam KG. Localization in the II-III loop of the dihydropyridine receptor of a sequence critical for excitation-contraction coupling. J Biol Chem. 1998;273:24983–6. https://doi.org/10.1074/jbc.273.39.24983.

    Article  CAS  PubMed  Google Scholar 

  124. Takekura H, Paolini C, Franzini-Armstrong C, Kugler G, Grabner M, Flucher BE. Differential contribution of skeletal and cardiac II-III loop sequences to the assembly of dihydropyridine-receptor arrays in skeletal muscle. Mol Biol Cell. 2004;15:5408–19. https://doi.org/10.1091/mbc.e04-05-0414.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Protasi F, Takekura H, Wang Y, Chen SR, Meissner G, Allen PD, et al. RYR1 and RYR3 have different roles in the assembly of calcium release units of skeletal muscle. Biophys J. 2000;79:2494–508. https://doi.org/10.1016/S0006-3495(00)76491-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Yamazawa T, Takeshima H, Sakurai T, Endo M, Iino M. Subtype specificity of the ryanodine receptor for Ca2+ signal amplification in excitation-contraction coupling. EMBO J. 1996;15:6172–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Rios E. Calcium-induced release of calcium in muscle: 50 years of work and the emerging consensus. J Gen Physiol. 2018;150:521–37. https://doi.org/10.1085/jgp.201711959.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Furuichi T, Furutama D, Hakamata Y, Nakai J, Takeshima H, Mikoshiba K. Multiple types of ryanodine receptor/Ca2+ release channels are differentially expressed in rabbit brain. J Neurosci. 1994;14:4794–805. https://doi.org/10.1523/JNEUROSCI.14-08-04794.1994.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Mori F, Fukaya M, Abe H, Wakabayashi K, Watanabe M. Developmental changes in expression of the three ryanodine receptor mRNAs in the mouse brain. Neurosci Lett. 2000;285:57–60. https://doi.org/10.1016/s0304-3940(00)01046-6.

    Article  CAS  PubMed  Google Scholar 

  130. Giannini G, Conti A, Mammarella S, Scrobogna M, Sorrentino V. The ryanodine receptor/calcium channel genes are widely and differentially expressed in murine brain and peripheral tissues. J Cell Biol. 1995;128:893–904. https://doi.org/10.1083/jcb.128.5.893.

    Article  CAS  PubMed  Google Scholar 

  131. Nakanishi S, Kuwajima G, Mikoshiba K. Immunohistochemical localization of ryanodine receptors in mouse central nervous system. Neurosci Res. 1992;15:130–42. https://doi.org/10.1016/0168-0102(92)90026-9.

    Article  CAS  PubMed  Google Scholar 

  132. Hakamata Y, Nakai J, Takeshima H, Imoto K. Primary structure and distribution of a novel ryanodine receptor/calcium release channel from rabbit brain. FEBS Lett. 1992;312:229–35. https://doi.org/10.1016/0014-5793(92)80941-9.

    Article  CAS  PubMed  Google Scholar 

  133. Murayama T, Ogawa Y. Properties of Ryr3 ryanodine receptor isoform in mammalian brain. J Biol Chem. 1996;271:5079–84. https://doi.org/10.1074/jbc.271.9.5079.

    Article  CAS  PubMed  Google Scholar 

  134. Lai FA, Dent M, Wickenden C, Xu L, Kumari G, Misra M, et al. Expression of a cardiac Ca(2+)-release channel isoform in mammalian brain. Biochem J. 1992;288(Pt 2):553–64. https://doi.org/10.1042/bj2880553.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Wu B, Yamaguchi H, Lai FA, Shen J. Presenilins regulate calcium homeostasis and presynaptic function via ryanodine receptors in hippocampal neurons. Proc Natl Acad Sci U S A. 2013;110:15091–6. https://doi.org/10.1073/pnas.1304171110.

    Article  PubMed  PubMed Central  Google Scholar 

  136. Adasme T, Haeger P, Paula-Lima AC, Espinoza I, Casas-Alarcon MM, Carrasco MA, et al. Involvement of ryanodine receptors in neurotrophin-induced hippocampal synaptic plasticity and spatial memory formation. Proc Natl Acad Sci U S A. 2011;108:3029–34. https://doi.org/10.1073/pnas.1013580108.

    Article  PubMed  PubMed Central  Google Scholar 

  137. Del Prete D, Checler F, Chami M. Ryanodine receptors: physiological function and deregulation in Alzheimer disease. Mol Neurodegener. 2014;9:21. https://doi.org/10.1186/1750-1326-9-21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. De Crescenzo V, Fogarty KE, Zhuge R, Tuft RA, Lifshitz LM, Carmichael J, et al. Dihydropyridine receptors and type 1 ryanodine receptors constitute the molecular machinery for voltage-induced Ca2+ release in nerve terminals. J Neurosci. 2006;26:7565–74. https://doi.org/10.1523/JNEUROSCI.1512-06.2006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Velazquez-Marrero C, Custer EE, Marrero H, Ortiz-Miranda S, Lemos JR. Voltage-induced Ca(2+) release by ryanodine receptors causes neuropeptide secretion from nerve terminals. J Neuroendocrinol. 2020;32:e12840. https://doi.org/10.1111/jne.12840.

    Article  CAS  PubMed  Google Scholar 

  140. Kim S, Yun HM, Baik JH, Chung KC, Nah SY, Rhim H. Functional interaction of neuronal Cav1.3 L-type calcium channel with ryanodine receptor type 2 in the rat hippocampus. J Biol Chem. 2007;282:32877–89. https://doi.org/10.1074/jbc.M701418200.

    Article  CAS  PubMed  Google Scholar 

  141. Llano I, Gonzalez J, Caputo C, Lai FA, Blayney LM, Tan YP, et al. Presynaptic calcium stores underlie large-amplitude miniature IPSCs and spontaneous calcium transients. Nat Neurosci. 2000;3:1256–65. https://doi.org/10.1038/81781.

    Article  CAS  PubMed  Google Scholar 

  142. Sutko JL, Airey JA, Welch W, Ruest L. The pharmacology of ryanodine and related compounds. Pharmacol Rev. 1997;49:53–98.

    CAS  PubMed  Google Scholar 

  143. Sharma G, Vijayaraghavan S. Modulation of presynaptic store calcium induces release of glutamate and postsynaptic firing. Neuron. 2003;38:929–39. https://doi.org/10.1016/s0896-6273(03)00322-2.

    Article  CAS  PubMed  Google Scholar 

  144. Liu Q, Chen B, Yankova M, Morest DK, Maryon E, Hand AR, et al. Presynaptic ryanodine receptors are required for normal quantal size at the Caenorhabditis elegans neuromuscular junction. J Neurosci. 2005;25:6745–54. https://doi.org/10.1523/JNEUROSCI.1730-05.2005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Chen B, Liu P, Hujber EJ, Li Y, Jorgensen EM, Wang ZW. AIP limits neurotransmitter release by inhibiting calcium bursts from the ryanodine receptor. Nat Commun. 2017;8:1380. https://doi.org/10.1038/s41467-017-01704-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Galante M, Marty A. Presynaptic ryanodine-sensitive calcium stores contribute to evoked neurotransmitter release at the basket cell-Purkinje cell synapse. J Neurosci. 2003;23:11229–34. https://doi.org/10.1523/JNEUROSCI.23-35-11229.2003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Emptage NJ, Reid CA, Fine A. Calcium stores in hippocampal synaptic boutons mediate short-term plasticity, store-operated Ca2+ entry, and spontaneous transmitter release. Neuron. 2001;29:197–208. https://doi.org/10.1016/s0896-6273(01)00190-8.

    Article  CAS  PubMed  Google Scholar 

  148. Shimizu H, Fukaya M, Yamasaki M, Watanabe M, Manabe T, Kamiya H. Use-dependent amplification of presynaptic Ca2+ signaling by axonal ryanodine receptors at the hippocampal mossy fiber synapse. Proc Natl Acad Sci U S A. 2008;105:11998–2003. https://doi.org/10.1073/pnas.0802175105.

    Article  PubMed  PubMed Central  Google Scholar 

  149. Unni VK, Zakharenko SS, Zablow L, DeCostanzo AJ, Siegelbaum SA. Calcium release from presynaptic ryanodine-sensitive stores is required for long-term depression at hippocampal CA3-CA3 pyramidal neuron synapses. J Neurosci. 2004;24:9612–22. https://doi.org/10.1523/JNEUROSCI.5583-03.2004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Narita K, Akita T, Hachisuka J, Huang S, Ochi K, Kuba K. Functional coupling of Ca(2+) channels to ryanodine receptors at presynaptic terminals. Amplification of exocytosis and plasticity. J Gen Physiol. 2000;115:519–32. https://doi.org/10.1085/jgp.115.4.519.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. De Crescenzo V, ZhuGe R, Velazquez-Marrero C, Lifshitz LM, Custer E, Carmichael J, et al. Ca2+ syntillas, miniature Ca2+ release events in terminals of hypothalamic neurons, are increased in frequency by depolarization in the absence of Ca2+ influx. J Neurosci. 2004;24:1226–35. https://doi.org/10.1523/JNEUROSCI.4286-03.2004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Zhang C, Wu B, Beglopoulos V, Wines-Samuelson M, Zhang D, Dragatsis I, et al. Presenilins are essential for regulating neurotransmitter release. Nature. 2009;460:632–6. https://doi.org/10.1038/nature08177.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Kuijpers M, Kochlamazashvili G, Stumpf A, Puchkov D, Swaminathan A, Lucht MT, et al. Neuronal autophagy regulates presynaptic neurotransmission by controlling the axonal endoplasmic reticulum. Neuron. 2021;109:299–313 e9. https://doi.org/10.1016/j.neuron.2020.10.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Bardo S, Robertson B, Stephens GJ. Presynaptic internal Ca2+ stores contribute to inhibitory neurotransmitter release onto mouse cerebellar Purkinje cells. Br J Pharmacol. 2002;137:529–37. https://doi.org/10.1038/sj.bjp.0704901.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Carter AG, Vogt KE, Foster KA, Regehr WG. Assessing the role of calcium-induced calcium release in short-term presynaptic plasticity at excitatory central synapses. J Neurosci. 2002;22:21–8. https://doi.org/10.1523/JNEUROSCI.22-01-00021.2002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Lim R, Oleskevich S, Few AP, Leao RN, Walmsley B. Glycinergic mIPSCs in mouse and rat brainstem auditory nuclei: modulation by ruthenium red and the role of calcium stores. J Physiol. 2003;546:691–9. https://doi.org/10.1113/jphysiol.2002.035071.

    Article  CAS  PubMed  Google Scholar 

  157. Savic N, Sciancalepore M. Intracellular calcium stores modulate miniature GABA-mediated synaptic currents in neonatal rat hippocampal neurons. Eur J Neurosci. 1998;10:3379–86. https://doi.org/10.1046/j.1460-9568.1998.00342.x.

    Article  CAS  PubMed  Google Scholar 

  158. Simkus CR, Stricker C. The contribution of intracellular calcium stores to mEPSCs recorded in layer II neurones of rat barrel cortex. J Physiol. 2002;545:521–35. https://doi.org/10.1113/jphysiol.2002.022103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Laughlin SB. Energy as a constraint on the coding and processing of sensory information. Curr Opin Neurobiol. 2001;11:475–80. https://doi.org/10.1016/s0959-4388(00)00237-3.

    Article  CAS  PubMed  Google Scholar 

  160. Rizzuto R, Duchen MR, Pozzan T. Flirting in little space: the ER/mitochondria Ca2+ liaison. Sci STKE. 2004;2004:re1. https://doi.org/10.1126/stke.2152004re1.

    Article  PubMed  Google Scholar 

  161. Colegrove SL, Albrecht MA, Friel DD. Dissection of mitochondrial Ca2+ uptake and release fluxes in situ after depolarization-evoked [Ca2+](i) elevations in sympathetic neurons. J Gen Physiol. 2000;115:351–70. https://doi.org/10.1085/jgp.115.3.351.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. David G, Barrett JN, Barrett EF. Evidence that mitochondria buffer physiological Ca2+ loads in lizard motor nerve terminals. J Physiol. 1998;509(Pt 1):59–65. https://doi.org/10.1111/j.1469-7793.1998.059bo.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Billups B, Forsythe ID. Presynaptic mitochondrial calcium sequestration influences transmission at mammalian central synapses. J Neurosci. 2002;22:5840–7. https://doi.org/10.1523/JNEUROSCI.22-14-05840.2002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Talbot JD, David G, Barrett EF. Inhibition of mitochondrial Ca2+ uptake affects phasic release from motor terminals differently depending on external [Ca2+]. J Neurophysiol. 2003;90:491–502. https://doi.org/10.1152/jn.00012.2003.

    Article  CAS  PubMed  Google Scholar 

  165. Tang Y, Zucker RS. Mitochondrial involvement in post-tetanic potentiation of synaptic transmission. Neuron. 1997;18:483–91. https://doi.org/10.1016/s0896-6273(00)81248-9.

    Article  CAS  PubMed  Google Scholar 

  166. Saitoe M, Schwarz TL, Umbach JA, Gundersen CB, Kidokoro Y. Absence of junctional glutamate receptor clusters in Drosophila mutants lacking spontaneous transmitter release. Science. 2001;293:514–7. https://doi.org/10.1126/science.1061270.

    Article  CAS  PubMed  Google Scholar 

  167. Barria A, Malinow R. Subunit-specific NMDA receptor trafficking to synapses. Neuron. 2002;35:345–53. https://doi.org/10.1016/s0896-6273(02)00776-6.

    Article  CAS  PubMed  Google Scholar 

  168. Sutton MA, Wall NR, Aakalu GN, Schuman EM. Regulation of dendritic protein synthesis by miniature synaptic events. Science. 2004;304:1979–83. https://doi.org/10.1126/science.1096202.

    Article  CAS  PubMed  Google Scholar 

  169. Sutton MA, Ito HT, Cressy P, Kempf C, Woo JC, Schuman EM. Miniature neurotransmission stabilizes synaptic function via tonic suppression of local dendritic protein synthesis. Cell. 2006;125:785–99. https://doi.org/10.1016/j.cell.2006.03.040.

    Article  CAS  PubMed  Google Scholar 

  170. McKinney RA, Capogna M, Durr R, Gahwiler BH, Thompson SM. Miniature synaptic events maintain dendritic spines via AMPA receptor activation. Nat Neurosci. 1999;2:44–9. https://doi.org/10.1038/4548.

    Article  CAS  PubMed  Google Scholar 

  171. Carter AG, Regehr WG. Quantal events shape cerebellar interneuron firing. Nat Neurosci. 2002;5:1309–18. https://doi.org/10.1038/nn970.

    Article  CAS  PubMed  Google Scholar 

  172. Sara Y, Virmani T, Deak F, Liu X, Kavalali ET. An isolated pool of vesicles recycles at rest and drives spontaneous neurotransmission. Neuron. 2005;45:563–73. https://doi.org/10.1016/j.neuron.2004.12.056.

    Article  CAS  PubMed  Google Scholar 

  173. Geppert M, Goda Y, Hammer RE, Li C, Rosahl TW, Stevens CF, et al. Synaptotagmin I: a major Ca2+ sensor for transmitter release at a central synapse. Cell. 1994;79:717–27. https://doi.org/10.1016/0092-8674(94)90556-8.

    Article  CAS  PubMed  Google Scholar 

  174. Pang ZP, Sun J, Rizo J, Maximov A, Sudhof TC. Genetic analysis of synaptotagmin 2 in spontaneous and Ca2+−triggered neurotransmitter release. EMBO J. 2006;25:2039–50. https://doi.org/10.1038/sj.emboj.7601103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Maximov A, Shin OH, Liu X, Sudhof TC. Synaptotagmin-12, a synaptic vesicle phosphoprotein that modulates spontaneous neurotransmitter release. J Cell Biol. 2007;176:113–24. https://doi.org/10.1083/jcb.200607021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Katz E, Ferro PA, Cherksey BD, Sugimori M, Llinas R, Uchitel OD. Effects of Ca2+ channel blockers on transmitter release and presynaptic currents at the frog neuromuscular junction. J Physiol. 1995;486(Pt 3):695–706. https://doi.org/10.1113/jphysiol.1995.sp020845.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Bao J, Li JJ, Perl ER. Differences in Ca2+ channels governing generation of miniature and evoked excitatory synaptic currents in spinal laminae I and II. J Neurosci. 1998;18:8740–50. https://doi.org/10.1523/JNEUROSCI.18-21-08740.1998.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Losavio A, Muchnik S. Spontaneous acetylcholine release in mammalian neuromuscular junctions. Am J Phys. 1997;273:C1835–41. https://doi.org/10.1152/ajpcell.1997.273.6.C1835.

    Article  CAS  Google Scholar 

  179. Schoch S, Deak F, Konigstorfer A, Mozhayeva M, Sara Y, Sudhof TC, et al. SNARE function analyzed in synaptobrevin/VAMP knockout mice. Science. 2001;294:1117–22. https://doi.org/10.1126/science.1064335.

    Article  CAS  PubMed  Google Scholar 

  180. Washbourne P, Thompson PM, Carta M, Costa ET, Mathews JR, Lopez-Bendito G, et al. Genetic ablation of the t-SNARE SNAP-25 distinguishes mechanisms of neuroexocytosis. Nat Neurosci. 2002;5:19–26. https://doi.org/10.1038/nn783.

    Article  CAS  PubMed  Google Scholar 

  181. Littleton JT, Stern M, Schulze K, Perin M, Bellen HJ. Mutational analysis of Drosophila synaptotagmin demonstrates its essential role in Ca(2+)-activated neurotransmitter release. Cell. 1993;74:1125–34. https://doi.org/10.1016/0092-8674(93)90733-7.

    Article  CAS  PubMed  Google Scholar 

  182. Rosenmund C, Stevens CF. Definition of the readily releasable pool of vesicles at hippocampal synapses. Neuron. 1996;16:1197–207. https://doi.org/10.1016/s0896-6273(00)80146-4.

    Article  CAS  PubMed  Google Scholar 

  183. Sudhof TC. The synaptic vesicle cycle: a cascade of protein-protein interactions. Nature. 1995;375:645–53. https://doi.org/10.1038/375645a0.

    Article  CAS  PubMed  Google Scholar 

  184. Capogna M, Gahwiler BH, Thompson SM. Presynaptic inhibition of calcium-dependent and -independent release elicited with ionomycin, gadolinium, and alpha-latrotoxin in the hippocampus. J Neurophysiol. 1996;75:2017–28. https://doi.org/10.1152/jn.1996.75.5.2017.

    Article  CAS  PubMed  Google Scholar 

  185. Richmond JE, Davis WS, Jorgensen EM. UNC-13 is required for synaptic vesicle fusion in C. elegans. Nat Neurosci. 1999;2:959–64. https://doi.org/10.1038/14755.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Han MH, Kawasaki A, Wei JY, Barnstable CJ. Miniature postsynaptic currents depend on Ca2+ released from internal stores via PLC/IP3 pathway. Neuroreport. 2001;12:2203–7. https://doi.org/10.1097/00001756-200107200-00032.

    Article  CAS  PubMed  Google Scholar 

  187. Hajos N, Katona I, Naiem SS, MacKie K, Ledent C, Mody I, et al. Cannabinoids inhibit hippocampal GABAergic transmission and network oscillations. Eur J Neurosci. 2000;12:3239–49. https://doi.org/10.1046/j.1460-9568.2000.00217.x.

    Article  CAS  PubMed  Google Scholar 

  188. Silinsky EM. On the mechanism by which adenosine receptor activation inhibits the release of acetylcholine from motor nerve endings. J Physiol. 1984;346:243–56. https://doi.org/10.1113/jphysiol.1984.sp015019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Scanziani M, Capogna M, Gahwiler BH, Thompson SM. Presynaptic inhibition of miniature excitatory synaptic currents by baclofen and adenosine in the hippocampus. Neuron. 1992;9:919–27. https://doi.org/10.1016/0896-6273(92)90244-8.

    Article  CAS  PubMed  Google Scholar 

  190. Scholz KP, Miller RJ. Inhibition of quantal transmitter release in the absence of calcium influx by a G protein-linked adenosine receptor at hippocampal synapses. Neuron. 1992;8:1139–50. https://doi.org/10.1016/0896-6273(92)90134-y.

    Article  CAS  PubMed  Google Scholar 

  191. Fatt P, Katz B. Spontaneous subthreshold activity at motor nerve endings. J Physiol. 1952;117:109–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Abenavoli A, Forti L, Bossi M, Bergamaschi A, Villa A, Malgaroli A. Multimodal quantal release at individual hippocampal synapses: evidence for no lateral inhibition. J Neurosci. 2002;22:6336–46. https://doi.org/10.1523/JNEUROSCI.22-15-06336.2002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Yang YM, Chung JM, Rhim H. Cellular action of cholecystokinin-8S-mediated excitatory effects in the rat periaqueductal gray. Life Sci. 2006;79:1702–11. https://doi.org/10.1016/j.lfs.2006.05.027.

    Article  CAS  PubMed  Google Scholar 

  194. Meinrenken CJ, Borst JG, Sakmann B. Local routes revisited: the space and time dependence of the Ca2+ signal for phasic transmitter release at the rat calyx of Held. J Physiol. 2003;547:665–89. https://doi.org/10.1113/jphysiol.2002.032714.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Xu J, Wu LG. The decrease in the presynaptic calcium current is a major cause of short-term depression at a calyx-type synapse. Neuron. 2005;46:633–45. https://doi.org/10.1016/j.neuron.2005.03.024.

    Article  CAS  PubMed  Google Scholar 

  196. Augustine GJ. How does calcium trigger neurotransmitter release? Curr Opin Neurobiol. 2001;11:320–6. https://doi.org/10.1016/s0959-4388(00)00214-2.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

This study was supported by the US National Institute of Health grants R01MN085927 (ZWW) and R01NS109388 (ZWW).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhao-Wen Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wang, ZW., Riaz, S., Niu, L. (2023). Roles and Sources of Calcium in Synaptic Exocytosis. In: Wang, ZW. (eds) Molecular Mechanisms of Neurotransmitter Release. Advances in Neurobiology, vol 33. Springer, Cham. https://doi.org/10.1007/978-3-031-34229-5_6

Download citation

Publish with us

Policies and ethics