Skip to main content

Synthetic Data for Machine Learning on Embedded Systems in Precision Agriculture

  • Conference paper
  • First Online:
Designing Modern Embedded Systems: Software, Hardware, and Applications (IESS 2022)

Part of the book series: IFIP Advances in Information and Communication Technology ((IFIPAICT,volume 669))

Included in the following conference series:

  • 180 Accesses

Abstract

Embedded systems are used in precision agriculture for data collection via sensors and for the control of actuators such as sprayers based on machine learning models. For plant classification and monitoring, it is easier to collect data of healthy plants than it is to collect data of plants that are infected by various diseases, because they are simply more common. Sufficient data are therefore often lacking for the accurate detection of diseased plants. In this paper, we outline an approach for the generation of synthetic data of infected plants that can be used to train a machine learning model for the classification of sugar beets. We use image augmentation techniques to build a pipeline that can automatically overlay diseased areas on healthy areas of leaf images.

This research is supported by a grant from the Ministry of Economic Affairs, Industry, Climate Action and Energy of the State of North Rhine-Westphalia (MWIDE) as part of the 5G-Landwirtschaft-ML project in the context of the program 5G. NRW (01.05.2022–31.12.2024, grant number 005-2108-0039).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Auernhammer, H.: Precision farming-the environmental challenge. Comput. Electron. Agric. 30(1–3), 31–43 (2001)

    Article  Google Scholar 

  2. Barreto, A., Paulus, S., Varrelmann, M., Mahlein, A.K.: Hyperspectral imaging of symptoms induced by Rhizoctonia Solani in sugar beet: comparison of input data and different machine learning algorithms. J. Plant Dis. Prot. 127(4), 441–451 (2020)

    Article  Google Scholar 

  3. Björklund, T., Fiandrotti, A., Annarumma, M., Francini, G., Magli, E.: Robust license plate recognition using neural networks trained on synthetic images. Pattern Recogn. 93, 134–146 (2019)

    Article  Google Scholar 

  4. Draycott, A.P.: Sugar Beet (2008)

    Google Scholar 

  5. Food and Agriculture Organization of the United Nations: The State of Food and Agriculture: Paying Farmers for Environmental Services (2007)

    Google Scholar 

  6. Giselsson, T.M., Jørgensen, R.N., Jensen, P.K., Dyrmann, M., Midtiby, H.S.: A public image database for benchmark of plant seedling classification algorithms. arXiv preprint arXiv:1711.05458 (2017)

  7. Green, R.E., Cornell, S.J., Scharlemann, J.P., Balmford, A.: Farming and the fate of wild nature. Science 307(5709), 550–555 (2005)

    Google Scholar 

  8. Han, C., et al.: Gan-based synthetic brain MR image generation. In: 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), pp. 734–738. IEEE (2018)

    Google Scholar 

  9. Howard, J., Gugger, S.: fastai: a layered API for deep learning. Information 11(2) (2020). https://doi.org/10.3390/info11020108. https://www.mdpi.com/2078-2489/11/2/108

  10. Hughes, D., Salathé, M., et al.: An open access repository of images on plant health to enable the development of mobile disease diagnostics. arXiv preprint arXiv:1511.08060 (2015)

  11. Lu, J., Tan, L., Jiang, H.: Review on convolutional neural network (CNN) applied to plant leaf disease classification. Agriculture 11(8), 707 (2021)

    Article  Google Scholar 

  12. Ondoua, R.N.: Precision agriculture advances and limitations: lessons to the stakeholders (2017)

    Google Scholar 

  13. Otero, N., Vitoria, L., Soler, A., Canals, A.: Fertiliser characterisation: major, trace and rare earth elements. Appl. Geochem. 20(8), 1473–1488 (2005)

    Article  Google Scholar 

  14. Ozguven, M.M., Adem, K.: Automatic detection and classification of leaf spot disease in sugar beet using deep learning algorithms. Physica A 535, 122537 (2019)

    Article  Google Scholar 

  15. Pawlak, K., Kołodziejczak, M.: The role of agriculture in ensuring food security in developing countries: considerations in the context of the problem of sustainable food production. Sustainability 12(13), 5488 (2020)

    Article  Google Scholar 

  16. Prokopenko, D., Stadelmann, J.V., Schulz, H., Renisch, S., Dylov, D.V.: Unpaired synthetic image generation in radiology using GANs. In: Nguyen, D., Xing, L., Jiang, S. (eds.) AIRT 2019. LNCS, vol. 11850, pp. 94–101. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32486-5_12

    Chapter  Google Scholar 

  17. Rukundo, O.: Effects of image size on deep learning. arXiv preprint arXiv:2101.11508 (2021)

  18. da Silva, L.A., Bressan, P.O., Gonçalves, D.N., Freitas, D.M., Machado, B.B., Gonçalves, W.N.: Estimating soybean leaf defoliation using convolutional neural networks and synthetic images. Comput. Electron. Agric. 156, 360–368 (2019)

    Article  Google Scholar 

  19. Silvano, G., et al.: Synthetic image generation for training deep learning-based automated license plate recognition systems on the brazilian mercosur standard. Des. Autom. Embed. Syst. 25(2), 113–133 (2021)

    Article  Google Scholar 

  20. Sujatha, R., Chatterjee, J.M., Jhanjhi, N., Brohi, S.N.: Performance of deep learning vs machine learning in plant leaf disease detection. Microprocess. Microsyst. 80, 103615 (2021)

    Article  Google Scholar 

  21. Svoboda, D., Ulman, V.: MitoGen: a framework for generating 3D synthetic time-lapse sequences of cell populations in fluorescence microscopy. IEEE Trans. Med. Imaging 36(1), 310–321 (2016)

    Article  Google Scholar 

  22. Ward, D., Moghadam, P., Hudson, N.: Deep leaf segmentation using synthetic data. arXiv preprint arXiv:1807.10931 (2018)

  23. Yang, R., Tian, H., Kan, J.: Classification of sugar beets based on hyperspectral and extreme learning machine methods. Appl. Eng. Agric. 34(6), 891–897 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kristian Rother .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 IFIP International Federation for Information Processing

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Alao, O.B., Rother, K., Henkler, S. (2023). Synthetic Data for Machine Learning on Embedded Systems in Precision Agriculture. In: Henkler, S., Kreutz, M., Wehrmeister, M.A., Götz, M., Rettberg, A. (eds) Designing Modern Embedded Systems: Software, Hardware, and Applications. IESS 2022. IFIP Advances in Information and Communication Technology, vol 669. Springer, Cham. https://doi.org/10.1007/978-3-031-34214-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-34214-1_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-34213-4

  • Online ISBN: 978-3-031-34214-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics