Skip to main content

Live Image-Based Neurosurgical Guidance and Roadmap Generation Using Unsupervised Embedding

  • Conference paper
  • First Online:
Information Processing in Medical Imaging (IPMI 2023)

Abstract

Advanced minimally invasive neurosurgery navigation relies mainly on Magnetic Resonance Imaging (MRI) guidance. MRI guidance, however, only provides pre-operative information in the majority of the cases. Once the surgery begins, the value of this guidance diminishes to some extent because of the anatomical changes due to surgery. Guidance with live image feedback coming directly from the surgical device, e.g., endoscope, can complement MRI-based navigation or be an alternative if MRI guidance is not feasible. With this motivation, we present a method for live image-only guidance leveraging a large data set of annotated neurosurgical videos. First, we report the performance of a deep learning-based object detection method, YOLO, on detecting anatomical structures in neurosurgical images. Second, we present a method for generating neurosurgical roadmaps using unsupervised embedding without assuming exact anatomical matches between patients, presence of an extensive anatomical atlas, or the need for simultaneous localization and mapping. A generated roadmap encodes the common anatomical paths taken in surgeries in the training set. At inference, the roadmap can be used to map a surgeon’s current location using live image feedback on the path to provide guidance by being able to predict which structures should appear going forward or backward, much like a mapping application. Even though the embedding is not supervised by position information, we show that it is correlated to the location inside the brain and on the surgical path. We trained and evaluated the proposed method with a data set of 166 transsphenoidal adenomectomy procedures.

Partially supported by the EANS 2021 Leica Research Grant.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Berkmann, S., Schlaffer, S., Nimsky, C., Fahlbusch, R., Buchfelder, M.: Intraoperative high-field MRI for transsphenoidal reoperations of nonfunctioning pituitary adenoma. J. Neurosurg. 121(5), 1166–1175 (2014)

    Article  Google Scholar 

  2. Burkhardt, J.K., et al.: High-frequency intra-operative ultrasound-guided surgery of superficial intra-cerebral lesions via a single-burr-hole approach. Ultrasound Med. Biol. 40(7), 1469–1475 (2014)

    Article  Google Scholar 

  3. De Witt Hamer, P.C., Robles, S.G., Zwinderman, A.H., Duffau, H., Berger, M.S.: Impact of intraoperative stimulation brain mapping on glioma surgery outcome: a meta-analysis. J. Clin. Oncol.: Official J. Am. Soc. Clin. Oncol. 30(20), 2559–2565 (2012)

    Article  Google Scholar 

  4. Ismail Fawaz, H., Forestier, G., Weber, J., Idoumghar, L., Muller, P.-A.: Evaluating surgical skills from kinematic data using convolutional neural networks. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11073, pp. 214–221. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00937-3_25

    Chapter  Google Scholar 

  5. Grasa, O.G., Bernal, E., Casado, S., Gil, I., Montiel, J.M.: Visual SLAM for handheld monocular endoscope. IEEE Trans. Med. Imaging 33(1), 135–146 (2014)

    Article  Google Scholar 

  6. Grasa, O.G., Civera, J., Montiel, J.M.: EKF monocular SLAM with relocalization for laparoscopic sequences. In: Proceedings of the IEEE International Conference on Robotics and Automation, pp. 4816–4821 (2011)

    Google Scholar 

  7. Hadjipanayis, C.G., Widhalm, G., Stummer, W.: What is the surgical benefit of utilizing 5-aminolevulinic acid for fluorescence-guided surgery of malignant gliomas? Neurosurgery 77(5), 663–673 (2015)

    Article  Google Scholar 

  8. Härtl, R., Lam, K.S., Wang, J., Korge, A., Kandziora, F., Audigé, L.: Worldwide survey on the use of navigation in spine surgery. World Neurosurg. 79(1), 162–172 (2013)

    Article  Google Scholar 

  9. Hervey-Jumper, S.L., et al.: Awake craniotomy to maximize glioma resection: methods and technical nuances over a 27-year period. J. Neurosurg. 123(2), 325–339 (2015)

    Article  Google Scholar 

  10. Iversen, D.H., Wein, W., Lindseth, F., Unsgård, G., Reinertsen, I.: Automatic intraoperative correction of brain shift for accurate neuronavigation. World Neurosurg. 120, e1071–e1078 (2018)

    Article  Google Scholar 

  11. Leonard, S., et al.: Evaluation and stability analysis of video-based navigation system for functional endoscopic sinus surgery on in vivo clinical data. IEEE Trans. Med. Imaging 37(10), 2185–2195 (2018)

    Article  Google Scholar 

  12. Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019 (2017)

    Google Scholar 

  13. Luongo, F., Hakim, R., Nguyen, J.H., Anandkumar, A., Hung, A.J.: Deep learning-based computer vision to recognize and classify suturing gestures in robot-assisted surgery. Surgery 169(5), 1240–1244 (2021)

    Article  Google Scholar 

  14. Mahmoud, N., et al.: ORBSLAM-based endoscope tracking and 3D reconstruction. In: Peters, T., et al. (eds.) CARE 2016. LNCS, vol. 10170, pp. 72–83. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-54057-3_7

    Chapter  Google Scholar 

  15. Orringer, D.A., Golby, A., Jolesz, F.: Neuronavigation in the surgical management of brain tumors: current and future trends. Expert Rev. Med. Dev. 9(5), 491–500 (2012)

    Article  Google Scholar 

  16. Ozyoruk, K.B., et al.: EndoSLAM dataset and an unsupervised monocular visual odometry and depth estimation approach for endoscopic videos. Med. Image Anal. 71, 102058 (2021)

    Article  Google Scholar 

  17. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-time object detection. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 779–788 (2015)

    Google Scholar 

  18. Rivas-Blanco, I., Perez-Del-Pulgar, C.J., Garcia-Morales, I., Munoz, V.F., Rivas-Blanco, I.: A review on deep learning in minimally invasive surgery. IEEE Access 9, 48658–48678 (2021)

    Article  Google Scholar 

  19. Sanai, N., Mirzadeh, Z., Berger, M.S.: Functional outcome after language mapping for glioma resection. N. Engl. J. Med. 358(1), 18–27 (2008)

    Article  Google Scholar 

  20. Sarikaya, D., Corso, J.J., Guru, K.A.: Detection and localization of robotic tools in robot-assisted surgery videos using deep neural networks for region proposal and detection. IEEE Trans. Med. Imaging 36(7), 1542–1549 (2017)

    Article  Google Scholar 

  21. Staartjes, V.E., et al.: Machine learning in neurosurgery: a global survey. Acta Neurochir. 162(12), 3081–3091 (2020)

    Article  Google Scholar 

  22. Staartjes, V.E., Volokitin, A., Regli, L., Konukoglu, E., Serra, C.: Machine vision for real-time intraoperative anatomic guidance: a proof-of-concept study in endoscopic pituitary surgery. Oper. Neurosurg. (Hagerstown, Md.) 21(4), 242–247 (2021)

    Google Scholar 

  23. Stienen, M.N., Fierstra, J., Pangalu, A., Regli, L., Bozinov, O.: The Zurich checklist for safety in the intraoperative magnetic resonance imaging suite: technical note. Oper. Neurosurg. (Hagerstown, Md.) 16(6), 756–765 (2019)

    Google Scholar 

  24. Stummer, W., Stepp, H., Wiestler, O.D., Pichlmeier, U.: Randomized, prospective double-blinded study comparing 3 different doses of 5-aminolevulinic acid for fluorescence-guided resections of malignant gliomas. Neurosurgery 81(2), 230–239 (2017)

    Article  Google Scholar 

  25. Thananjeyan, B., Garg, A., Krishnan, S., Chen, C., Miller, L., Goldberg, K.: Multilateral surgical pattern cutting in 2D orthotropic gauze with deep reinforcement learning policies for tensioning (2017)

    Google Scholar 

  26. Ulrich, N.H., Burkhardt, J.K., Serra, C., Bernays, R.L., Bozinov, O.: Resection of pediatric intracerebral tumors with the aid of intraoperative real-time 3-D ultrasound. Child’s Nervous Syst.: ChNS: Official J. Int. Soc. Pediatr. Neurosurg. 28(1), 101–109 (2012)

    Article  Google Scholar 

  27. Wang, C.Y., Bochkovskiy, A., Liao, H.Y.M.: YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors (2022)

    Google Scholar 

  28. Wang, S., Raju, A., Huang, J.: Deep learning based multi-label classification for surgical tool presence detection in laparoscopic videos, pp. 620–623 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gary Sarwin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sarwin, G. et al. (2023). Live Image-Based Neurosurgical Guidance and Roadmap Generation Using Unsupervised Embedding. In: Frangi, A., de Bruijne, M., Wassermann, D., Navab, N. (eds) Information Processing in Medical Imaging. IPMI 2023. Lecture Notes in Computer Science, vol 13939. Springer, Cham. https://doi.org/10.1007/978-3-031-34048-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-34048-2_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-34047-5

  • Online ISBN: 978-3-031-34048-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics