Skip to main content

mSPD-NN: A Geometrically Aware Neural Framework for Biomarker Discovery from Functional Connectomics Manifolds

Part of the Lecture Notes in Computer Science book series (LNCS,volume 13939)

Abstract

Connectomics has emerged as a powerful tool in neuroimaging and has spurred recent advancements in statistical and machine learning methods for connectivity data. Despite connectomes inhabiting a matrix manifold, most analytical frameworks ignore the underlying data geometry. This is largely because simple operations, such as mean estimation, do not have easily computable closed-form solutions. We propose a geometrically aware neural framework for connectomes, i.e., the mSPD-NN, designed to estimate the geodesic mean of a collections of symmetric positive definite (SPD) matrices. The mSPD-NN is comprised of bilinear fully connected layers with tied weights and utilizes a novel loss function to optimize the matrix-normal equation arising from Fréchet mean estimation. Via experiments on synthetic data, we demonstrate the efficacy of our mSPD-NN against common alternatives for SPD mean estimation, providing competitive performance in terms of scalability and robustness to noise. We illustrate the real-world flexibility of the mSPD-NN in multiple experiments on rs-fMRI data and demonstrate that it uncovers stable biomarkers associated with subtle network differences among patients with ADHD-ASD comorbidities and healthy controls.

Keywords

  • Functional Connectomics
  • SPD Manifolds
  • Fréchet Mean Estimation
  • Geometry-Aware Neural Networks

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Banerjee, M., Chakraborty, R., Ofori, E., Vaillancourt, D., Vemuri, B.C.: Nonlinear regression on Riemannian manifolds and its applications to neuro-image analysis. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9349, pp. 719–727. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24553-9_88

    CrossRef  Google Scholar 

  2. Bessadok, A., Mahjoub, M.A., Rekik, I.: Graph neural networks in network neuroscience. IEEE Trans. Pattern Anal. Mach. Intell. 45, 5833–5848 (2022)

    CrossRef  Google Scholar 

  3. Congedo, M., Afsari, B., Barachant, A., Moakher, M.: Approximate joint diagonalization and geometric mean of symmetric positive definite matrices. PLoS ONE 10(4), e0121423 (2015)

    Google Scholar 

  4. Congedo, M., Barachant, A., Koopaei, E.K.: Fixed point algorithms for estimating power means of positive definite matrices. IEEE Trans. Signal Process. 65(9), 2211–2220 (2017)

    CrossRef  MathSciNet  MATH  Google Scholar 

  5. Dong, Z., et al.: Deep manifold learning of symmetric positive definite matrices with application to face recognition. In: Thirty-First AAAI Conference on Artificial Intelligence (2017)

    Google Scholar 

  6. Duerden, E.G., Tannock, R., Dockstader, C.: Altered cortical morphology in sensorimotor processing regions in adolescents and adults with attention-deficit/hyperactivity disorder. Brain Res. 1445, 82–91 (2012)

    CrossRef  Google Scholar 

  7. D’Souza, N.S., Nebel, M.B., Wymbs, N., Mostofsky, S., Venkataraman, A.: Integrating neural networks and dictionary learning for multidimensional clinical characterizations from functional connectomics data. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11766, pp. 709–717. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32248-9_79

    CrossRef  Google Scholar 

  8. D’Souza, N.S., et al.: A joint network optimization framework to predict clinical severity from resting state functional MRI data. Neuroimage 206, 116314 (2020)

    CrossRef  Google Scholar 

  9. D’Souza, N.S., Nebel, M.B., Crocetti, D., Robinson, J., Mostofsky, S., Venkataraman, A.: A matrix autoencoder framework to align the functional and structural connectivity manifolds as guided by behavioral phenotypes. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12907, pp. 625–636. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87234-2_59

    CrossRef  Google Scholar 

  10. Fornito, A., Zalesky, A., Breakspear, M.: Graph analysis of the human connectome: promise, progress, and pitfalls. Neuroimage 80, 426–444 (2013)

    CrossRef  Google Scholar 

  11. Fox, M.D., et al.: Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat. Rev. Neuro. 8(9), 700 (2007)

    CrossRef  Google Scholar 

  12. Jeuris, B.: Riemannian optimization for averaging positive definite matrices (2015)

    Google Scholar 

  13. Jolliffe, I.T., Cadima, J.: Principal component analysis: a review and recent developments. Philos. Trans. R. Soc. A: Math. Phys. Eng. Sci. 374(2065), 20150202 (2016)

    Google Scholar 

  14. Khosla, M., et al.: Machine learning in resting-state fMRI analysis. Magn. Reson. Imaging 64, 101–121 (2019)

    CrossRef  Google Scholar 

  15. Leitner, Y.: The co-occurrence of autism and attention deficit hyperactivity disorder in children-what do we know? Front. Hum. Neurosci. 8, 268 (2014)

    CrossRef  Google Scholar 

  16. Lindquist, M.A.: The statistical analysis of fMRI data. Stat. Sci. 23(4), 439–464 (2008)

    CrossRef  MathSciNet  MATH  Google Scholar 

  17. Moakher, M.: A differential geometric approach to the geometric mean of symmetric positive-definite matrices. SIAM J. Matrix Anal. Appl. 26(3), 735–747 (2005)

    CrossRef  MathSciNet  MATH  Google Scholar 

  18. Nandakumar, N., et al.: A multi-task deep learning framework to localize the eloquent cortex in brain tumor patients using dynamic functional connectivity. In: Kia, S.M., et al. (eds.) MLCN/RNO-AI -2020. LNCS, vol. 12449, pp. 34–44. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-66843-3_4

    CrossRef  Google Scholar 

  19. Nguyen, X.S., et al.: A neural network based on SPD manifold learning for skeleton-based hand gesture recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12036–12045 (2019)

    Google Scholar 

  20. Pennec, X., Fillard, P., Ayache, N.: A Riemannian framework for tensor computing. Int. J. Comput. Vision 66(1), 41–66 (2006)

    CrossRef  MATH  Google Scholar 

  21. Pham, D.T.: Joint approximate diagonalization of positive definite Hermitian matrices. SIAM J. Matrix Anal. Appl. 22(4), 1136–1152 (2001)

    CrossRef  MathSciNet  MATH  Google Scholar 

  22. Pouw, L.B., et al.: The link between emotion regulation, social functioning, and depression in boys with ASD. Res. Autism Spectr. Disord. 7(4), 549–556 (2013)

    CrossRef  Google Scholar 

  23. Schirmer, M.D., et al.: Neuropsychiatric disease classification using functional connectomics-results of the connectomics in neuroimaging transfer learning challenge. Med. Image Anal. 70, 101972 (2021)

    CrossRef  Google Scholar 

  24. Zalesky, A., Fornito, A., Bullmore, E.T.: Network-based statistic: identifying differences in brain networks. Neuroimage 53(4), 1197–1207 (2010)

    CrossRef  Google Scholar 

  25. Zhang, T.: A majorization-minimization algorithm for the karcher mean of positive definite matrices. arXiv preprint arXiv:1312.4654 (2013)

Download references

Acknowledgements

This work is supported by the National Science Foundation CAREER award 1845430 (PI Venkataraman), the National Institute of Health R01HD108790 (PI Venkataraman) and R01EB029977 (PI Caffo).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Niharika S. D’Souza .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

D’Souza, N.S., Venkataraman, A. (2023). mSPD-NN: A Geometrically Aware Neural Framework for Biomarker Discovery from Functional Connectomics Manifolds. In: Frangi, A., de Bruijne, M., Wassermann, D., Navab, N. (eds) Information Processing in Medical Imaging. IPMI 2023. Lecture Notes in Computer Science, vol 13939. Springer, Cham. https://doi.org/10.1007/978-3-031-34048-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-34048-2_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-34047-5

  • Online ISBN: 978-3-031-34048-2

  • eBook Packages: Computer ScienceComputer Science (R0)