Skip to main content

Human-Machine Interactive Tissue Prototype Learning for Label-Efficient Histopathology Image Segmentation

  • Conference paper
  • First Online:
Information Processing in Medical Imaging (IPMI 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13939))

Included in the following conference series:

  • 2015 Accesses

Abstract

Deep learning have greatly advanced histopathology image segmentation but usually require abundant annotated data. However, due to the gigapixel scale of whole slide images and pathologists’ heavy daily workload, obtaining pixel-level labels for supervised learning in clinical practice is often infeasible. Alternatively, weakly-supervised segmentation methods have been explored with less laborious image-level labels, but their performance is unsatisfactory due to the lack of dense supervision. Inspired by the recent success of self-supervised learning, we present a label-efficient tissue prototype dictionary building pipeline and propose to use the obtained prototypes to guide histopathology image segmentation. Particularly, taking advantage of self-supervised contrastive learning, an encoder is trained to project the unlabeled histopathology image patches into a discriminative embedding space where these patches are clustered to identify the tissue prototypes by efficient pathologists’ visual examination. Then, the encoder is used to map the images into the embedding space and generate pixel-level pseudo tissue masks by querying the tissue prototype dictionary. Finally, the pseudo masks are used to train a segmentation network with dense supervision for better performance. Experiments on two public datasets demonstrate that our method can achieve comparable segmentation performance as the fully-supervised baselines with less annotation burden and outperform other weakly-supervised methods. Codes are available at https://github.com/WinterPan2017/proto2seg.

W. Pan, J. Yan and H. Chen—contributed equally.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Amgad, M., Elfandy, H., et al.: Structured crowdsourcing enables convolutional segmentation of histology images. Bioinformatics 35(18), 3461–3467 (2019)

    Article  Google Scholar 

  2. Arthur, D., Vassilvitskii, S.: K-means++: the advantages of careful seeding. In: SODA, pp. 1027–1035 (2007)

    Google Scholar 

  3. Bejnordi, B.E., et al.: Diagnostic assessment of deep learning algorithms for detection of lymph node metastases in women with breast cancer. JAMA 318(22), 2199–2210 (2017)

    Article  Google Scholar 

  4. Chan, L., Hosseini, M.S., Rowsell, C., et al.: HistoSegNet: semantic segmentation of histological tissue type in whole slide images. In: ICCV, pp. 10662–10671 (2019)

    Google Scholar 

  5. Chattopadhay, A., Sarkar, A., et al.: Grad-CAM++: generalized gradient-based visual explanations for deep convolutional networks. In: WACV, pp. 839–847 (2018)

    Google Scholar 

  6. Chaurasia, A., Culurciello, E.: LinkNet: exploiting encoder representations for efficient semantic segmentation. In: VCIP, pp. 1–4 (2017)

    Google Scholar 

  7. Chen, T., Kornblith, S., Norouzi, M., Hinton, G.: A simple framework for contrastive learning of visual representations. In: ICML, pp. 1597–1607 (2020)

    Google Scholar 

  8. Ester, M., Kriegel, H.P., Sander, J., et al.: A density-based algorithm for discovering clusters in large spatial databases with noise. In: KDD, vol. 96, pp. 226–231 (1996)

    Google Scholar 

  9. Grill, J.B., Strub, F., Altché, F., et al.: Bootstrap your own latent-a new approach to self-supervised learning. In: NeurIPS, pp. 21271–21284 (2020)

    Google Scholar 

  10. He, K., Fan, H., Wu, Y., Xie, S., Girshick, R.: Momentum contrast for unsupervised visual representation learning. In: CVPR, pp. 9729–9738 (2020)

    Google Scholar 

  11. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR, pp. 770–778 (2016)

    Google Scholar 

  12. Ilse, M., Tomczak, J., Welling, M.: Attention-based deep multiple instance learning. In: ICML, pp. 2127–2136 (2018)

    Google Scholar 

  13. Liu, F., Deng, Y.: Determine the number of unknown targets in open world based on elbow method. IEEE Trans. Fuzzy Syst. 29(5), 986–995 (2020)

    Article  Google Scholar 

  14. Lu, M.Y., et al.: Data-efficient and weakly supervised computational pathology on whole-slide images. Nat. Biomed. Eng. 5(6), 555–570 (2021)

    Article  Google Scholar 

  15. Sarfraz, S., Sharma, V., Stiefelhagen, R.: Efficient parameter-free clustering using first neighbor relations. In: CVPR, pp. 8934–8943 (2019)

    Google Scholar 

  16. Selvaraju, R.R., Cogswell, M., Das, A., et al.: Grad-CAM: visual explanations from deep networks via gradient-based localization. In: ICCV, pp. 618–626 (2017)

    Google Scholar 

  17. Xu, G., Song, Z., Sun, Z., et al.: CAMEL: a weakly supervised learning framework for histopathology image segmentation. In: CVPR, pp. 10682–10691 (2019)

    Google Scholar 

  18. Xu, Z., Lu, D., Luo, J., et al.: Anti-interference from noisy labels: mean-teacher-assisted confident learning for medical image segmentation. IEEE Trans. Med. Imaging 41(11), 3062–3073 (2022)

    Article  Google Scholar 

  19. Xu, Z., et al.: Noisy labels are treasure: mean-teacher-assisted confident learning for hepatic vessel segmentation. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12901, pp. 3–13. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87193-2_1

    Chapter  Google Scholar 

  20. Xu, Z., et al.: Denoising for relaxing: unsupervised domain adaptive fundus image segmentation without source data. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) MICCAI 2022. LNCS, vol. 13435, pp. 214–224. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16443-9_21

    Chapter  Google Scholar 

  21. Yan, J., Chen, H., Li, X., Yao, J.: Deep contrastive learning based tissue clustering for annotation-free histopathology image analysis. Comput. Med. Imaging Graph. 97, 102053 (2022)

    Google Scholar 

  22. Yang, J., et al.: Towards better understanding and better generalization of low-shot classification in histology images with contrastive learning. In: ICLR (2022)

    Google Scholar 

  23. Yang, P., Hong, Z., Yin, X., Zhu, C., Jiang, R.: Self-supervised visual representation learning for histopathological images. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12902, pp. 47–57. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87196-3_5

    Chapter  Google Scholar 

  24. Zhou, B., Khosla, A., Lapedriza, A., Oliva, A., Torralba, A.: Learning deep features for discriminative localization. In: CVPR, pp. 2921–2929 (2016)

    Google Scholar 

Download references

Acknowledgement

This research was partly supported by the National Key R &D Program of China (Grant No. 2020AAA0108303), Shenzhen Science and Technology Project (Grant No. JCYJ20200109143041798), Shenzhen Stable Supporting Program (Grant No. WDZC20200820200655001), and Shenzhen Key Lab of next generation interactive media innovative technology (Grant No. ZDSY S20210623092001004).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jiangpeng Yan , Xiu Li or Jianhua Yao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pan, W. et al. (2023). Human-Machine Interactive Tissue Prototype Learning for Label-Efficient Histopathology Image Segmentation. In: Frangi, A., de Bruijne, M., Wassermann, D., Navab, N. (eds) Information Processing in Medical Imaging. IPMI 2023. Lecture Notes in Computer Science, vol 13939. Springer, Cham. https://doi.org/10.1007/978-3-031-34048-2_52

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-34048-2_52

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-34047-5

  • Online ISBN: 978-3-031-34048-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics