Skip to main content

UPL-TTA: Uncertainty-Aware Pseudo Label Guided Fully Test Time Adaptation for Fetal Brain Segmentation

  • Conference paper
  • First Online:
Information Processing in Medical Imaging (IPMI 2023)

Abstract

Test Time Adaptation (TTA) is promising to improve a deep learning model’s robustness when encountering images from an unseen domain. Existing TTA methods are with low performance due to the insufficient supervision signal from unannotated target domain images, or limited by specific requirements on the pre-training strategy and network structure in the source domain. We aim to separate the pre-training in the source domain and adaptation in the target domain, in order to achieve high-performance and more generalizable TTA without assumptions on the pre-training strategy. To solve this problem, we propose UPL-TTA, an Uncertainty-aware Pseudo Label guided fully Test Time Adaptation method. Specifically, we introduce Test Time Growing (TTG) to duplicate the prediction head of the source model with perturbations at image and feature levels in the target domain. The different predictions obtained in these duplicated prediction heads are used to obtain pseudo labels for the unlabeled target domain images as well as their uncertainty maps, which can identify reliable pseudo labels. Pixels with unreliable pseudo labels are regularized by imposing entropy minimization on the mean prediction of the multiple heads. UPL-TTA was validated bidirectionally on a cross-modality fetal brain segmentation dataset. Compared with no adaptation, it significantly improved the average Dice in the two different target domains by 3.95% and 6.12%, respectively, and outperformed several state-of-the-art TTA methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chen, C., Dou, Q., Chen, H., Qin, J., Heng, P.A.: Synergistic image and feature adaptation: towards cross-modality domain adaptation for medical image segmentation. In: AAAI, pp. 865–872 (2019)

    Google Scholar 

  2. Fleuret, F., et al.: Uncertainty reduction for model adaptation in semantic segmentation. In: CVPR, pp. 9613–9623 (2021)

    Google Scholar 

  3. Gu, R., Zhang, J., Huang, R., Lei, W., Wang, G., Zhang, S.: Domain composition and attention for unseen-domain generalizable medical image segmentation. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12903, pp. 241–250. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87199-4_23

    Chapter  Google Scholar 

  4. Hang, W., et al.: Local and global structure-aware entropy regularized mean teacher model for 3D left atrium segmentation. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12261, pp. 562–571. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59710-8_55

    Chapter  Google Scholar 

  5. He, Y., Carass, A., Zuo, L., Dewey, B.E., Prince, J.L.: Autoencoder based self-supervised test-time adaptation for medical image analysis. Med. Image Anal. 72, 102136 (2021)

    Article  Google Scholar 

  6. Hu, M., et al.: Fully test-time adaptation for image segmentation. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12903, pp. 251–260. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87199-4_24

    Chapter  Google Scholar 

  7. Karani, N., Chaitanya, K., Baumgartner, C., Konukoglu, E.: A lifelong learning approach to brain MR segmentation across scanners and protocols. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11070, pp. 476–484. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00928-1_54

    Chapter  Google Scholar 

  8. Karani, N., Erdil, E., Chaitanya, K., Konukoglu, E.: Test-time adaptable neural networks for robust medical image segmentation. Med. Image Anal. 68, 101907 (2021)

    Article  Google Scholar 

  9. Lee, J., Jung, D., Yim, J., Yoon, S.: Confidence score for source-free unsupervised domain adaptation. In: ICML, pp. 12365–12377. PMLR (2022)

    Google Scholar 

  10. Li, X., et al.: A free lunch for unsupervised domain adaptive object detection without source data. In: AAAI, vol. 35, pp. 8474–8481 (2021)

    Google Scholar 

  11. Litjens, G., et al.: A survey on deep learning in medical image analysis. Med. Image Anal. 42, 60–88 (2017)

    Article  Google Scholar 

  12. Nado, Z., Padhy, S., Sculley, D., D’Amour, A., Lakshminarayanan, B., Snoek, J.: Evaluating prediction-time batch normalization for robustness under covariate shift. arXiv preprint arXiv:2006.10963 (2020)

  13. Niu, S., Wu, J., Zhang, Y., Chen, Y., Zheng, S., Zhao, P., Tan, M.: Efficient test-time model adaptation without forgetting. arXiv preprint arXiv:2204.02610 (2022)

  14. Pei, C., Wu, F., Huang, L., Zhuang, X.: Disentangle domain features for cross-modality cardiac image segmentation. Med. Image Anal. 71, 102078 (2021)

    Article  Google Scholar 

  15. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  16. Singh, R., Rani, R.: Semantic segmentation using deep convolutional neural network: a review. In: ICICC (2020)

    Google Scholar 

  17. Sun, Y., Wang, X., Liu, Z., Miller, J., Efros, A., Hardt, M.: Test-time training with self-supervision for generalization under distribution shifts. In: International Conference on Machine Learning, pp. 9229–9248. PMLR (2020)

    Google Scholar 

  18. Tomar, D., Vray, G., Thiran, J.P., Bozorgtabar, B.: OptTTA: learnable test-time augmentation for source-free medical image segmentation under domain shift. In: Medical Imaging with Deep Learning (2021)

    Google Scholar 

  19. Varsavsky, T., Orbes-Arteaga, M., Sudre, C.H., Graham, M.S., Nachev, P., Cardoso, M.J.: Test-time unsupervised domain adaptation. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12261, pp. 428–436. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59710-8_42

    Chapter  Google Scholar 

  20. Wang, D., Shelhamer, E., Liu, S., Olshausen, B., Darrell, T.: Tent: fully test-time adaptation by entropy minimization. In: ICLR (2021)

    Google Scholar 

  21. Wang, G., Li, W., Aertsen, M., Deprest, J., Ourselin, S., Vercauteren, T.: Aleatoric uncertainty estimation with test-time augmentation for medical image segmentation with convolutional neural networks. Neurocomputing 338, 34–45 (2019)

    Article  Google Scholar 

  22. Wu, J., Gu, R., Dong, G., Wang, G., Zhang, S.: FPL-UDA: filtered pseudo label-based unsupervised cross-modality adaptation for vestibular schwannoma segmentation. In: ISBI, pp. 1–5. IEEE (2022)

    Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (No. 62271115).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guotai Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wu, J., Gu, R., Lu, T., Zhang, S., Wang, G. (2023). UPL-TTA: Uncertainty-Aware Pseudo Label Guided Fully Test Time Adaptation for Fetal Brain Segmentation. In: Frangi, A., de Bruijne, M., Wassermann, D., Navab, N. (eds) Information Processing in Medical Imaging. IPMI 2023. Lecture Notes in Computer Science, vol 13939. Springer, Cham. https://doi.org/10.1007/978-3-031-34048-2_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-34048-2_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-34047-5

  • Online ISBN: 978-3-031-34048-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics