Keywords

1 Introduction

Rangeland and wildlife professionals manage renewable natural resources valued by society. Early rangeland management was rooted in animal agriculture and centered on stabilizing rangelands to maximize the production of meat (Stoddart and Smith 1943). Wildlife management was developed in response to declining populations of game animals (Trefethen and Corbin 1975). Many species promoted by wildlife biologists were viewed as competitors with livestock on rangelands, naturally leading to some conflicts between professions. Conversely, livestock grazing was often blamed for degrading wildlife habitat for a broad array of taxa (du Toit et al. 2010; Dettenmaier et al. 2017). One of the legacies of this conflict has been the lack of integration between the disciplines. Early rangeland management academic programs were often housed in animal science departments and agricultural colleges. In contrast, early wildlife programs were most often associated with biology and zoology departments. The academic programming of both disciplines influenced their distinct approaches to natural resource management problems and these ecologically interrelated disciplines likely contributed to professional biases, tribalism, and competing “schools of thought”. For example, many early grouse publications cited livestock grazing as a potential contributing factor in population declines; however, little empirical data demonstrated a direct linkage between livestock grazing and grouse vital rates until recently (McNew et al. 2015; Dettenmaier et al. 2017; Milligan et al. 2020). Although rangeland management was initially developed to address the negative impacts of overgrazing, in some cases, rangeland managers have overemphasized livestock grazing as a potential tool to fix everything. For example, Twidwell et al. (2013) found that grazing was often the cause of degradation, while also being the cure suggesting rangeland management professionals may have an inherent grazing bias. It is true that grazing management can mitigate some rangeland problems while causing others; thus, livestock grazing can be both the disease and the cure, depending on the problem (Strand et al. 2014).

Unfortunately, these two professions have had limited collaboration, despite the intrinsic dependency of animal-plant relationships for both livestock and wildlife. Although some conflicts have been resolved, there remains a need to increase collaboration and build understanding between rangeland and wildlife disciplines and professionals. Our purpose for this chapter is to (1) provide an in-depth view of the linkages between the rangeland and wildlife professions, (2) demonstrate a much higher degree of commonality and parallelism than most in either camp may have realized, and (3) identify where disparity remains, and (4) offer suggestions for overcoming differences and increasing collaboration that will be needed to meet future challenges facing both disciplines.

2 History

The rangeland and wildlife professions emerged in the early twentieth century due to human-induced resource scarcity in the form of rangeland forage and wildlife game species. These plant and animal-focused professions developed independently, driven by seemingly different values and management priorities. Despite the initial distinctions in origination, the developmental trajectory of these disciplines exhibited strong parallels. Early rangeland managers worked to increase forage availability by planting vegetation, adding water sources, and/or fencing to maintain or increase grazing opportunities. This often resulted in direct or indirect impacts that conflicted with wildlife management priorities (Beck and Mitchell 2000). Early European explorers described North American rangelands and wildlife as “inexhaustible, vast, and innumerable” (Trefethen and Corbin 1975). Viewing resources with such descriptors led to over-exploitation by Euro-American colonizers, such that, by the late 1800s, certain game populations were becoming scarce under unregulated market hunting. For example, population estimates of the American bison (Bison bison) suggest 40–60 million prior to Euro-American settlement, but bison were nearly extirpated by the 1880s (Roe 1951; Trefethen and Corbin 1975). This extraordinary crash was precipitated by unregulated market hunting and federal policies designed to cripple Native Americans who relied on bison (Irving 2019). Prairie chickens (Tympanuchus spp.), another rangeland-dependent species, suffered a similar fate. Early accounts suggested that populations were seemingly unlimited but within a few decades, overharvest and continued loss of rangelands to agriculture resulted in rapid declines in the early 1900s (Grange 1948; Stempel and Rodgers 1961).

During this same period, western rangelands were experiencing significant pressure from increasing numbers of domestic livestock to meet the demand for red meat in the markets of mining boom towns of the West and growing industrial cities in the eastern U.S. Newly constructed railroads linked expanding eastern communities to western suppliers, which allowed livestock operations to move from local subsistence markets to nationwide consumers (Holechek et al. 2011). However, as livestock numbers increased, arid and semi-arid rangelands of the West began to show signs of degradation. By the turn of the twentieth century, livestock numbers were peaking, and drought combined with severe winters resulted in significant livestock die-offs across western rangelands of the US. This led to dramatic swings in the livestock markets, with consequential realizations of the limits to soil fertility and forage availability (Holechek et al. 2011). Despite shocks to agricultural markets, there were no regulatory structures or ecological knowledge for managing livestock grazing on arid rangelands of western North America (Sayre 2017).

In the early twentieth century, many marketable wildlife resources had been depleted, causing increased organizational and political lobbying by recreational hunters to regulate hunting and eliminate wildlife markets. Lobbying efforts led to the passage of wildlife regulations that controlled and limited harvest and set up funding mechanisms to support wildlife management and recovery. The result of the lobbying efforts was that federal and state laws outlawing market hunting and restricting harvest were enacted to conserve wildlife populations as renewable resources (Brown 2010; Trefethen and Corbin 1975). Rangeland management dealt with the overexploitation of western rangelands in principally the same manner, by enacting regulatory mechanisms that limited livestock numbers, especially on public lands. Federal agencies encouraged moderating livestock numbers to manage rangelands properly on private lands. In the West, public land grazing permits were linked to local private lands and rural communities through the Taylor Grazing Act of 1934. The recognition that science-based management was needed resulted in the establishment of The Wildlife Society (TWS) in 1937 and the Society for Range Management (SRM) in 1948. These national societies cemented the professions and formalized the creation of curricula for public universities to produce formal education and training for rangeland and wildlife managers. As a result, rangeland and wildlife disciplines benefited from an increased understanding of science-based management principles. This coupled with federal and state regulations, gave the budding professions the tools needed for the management of rangeland and wildlife resources.

3 Parallels

Although developing in relative isolation from each other, similar progressions in ideas, knowledge, and tools led to parallel trajectories of policy and management in both professions. Realizing the widespread degradation of resources but lacking the information or tools to implement management actions, early rangeland and wildlife professionals were focused on stopping the hemorrhaging by enforcing new regulations to curb the over-harvest of resources (Sparling 2014). Over-exploitation of rangeland resources was more pronounced on lands in the public domain and was often motivated by short-term economic incentives by residents of the sparsely populated western rural counties (Rowley 1985). Likewise, the first wildlife legislation and policies in North America regulated harvest, including season dates and bag limits, at the state level (Trefethen and Corbin 1975; Brown 2010). Similar regulatory approaches were used to limit the harvest of forage by creating seasons of use, stocking rates, and grazing allotments on public lands, culminating in the passage of the Taylor Grazing Act (Stoddart and Smith 1943).

Harvest management continues to be one of the most significant focuses for both professions, and there are striking, though not exact, parallels in each discipline's approach to harvest management. As early rangeland and wildlife management continued to develop, harvest regulations assumed that an available surplus (i.e., individual animals or forage) could be removed, and the unharvested stock would provide resource sustainability and produce future surplus available for harvest. In wildlife management, this was first described as “doomed surplus” and later conceptualized within compensatory harvest mortality, theoretically resulting in no net loss to the harvested resource (Errington and Hamerstrom 1935; Errington 1945, 1956). For example, a game bird population might experience limited habitat and food availability during the winter (i.e., winter bottleneck), allowing only a portion of the population to survive to the following breeding season (Errington 1956). Therefore, that portion of the fall population in excess of the limited capacity of the winter bottleneck could be considered a “doomed” surplus that would have been lost with or without hunter harvest and, thus, harvesting the surplus would have no impact on the breeding population. As long as the amount of harvest did not exceed the doomed surplus, mortality due to hunter harvest was considered compensatory and thus sustainable (Reese et al. 2005; Dahlgren et al. 2021). Conversely, additive harvest mortality occurs when loss due to harvested resources are in addition to other natural sources of mortality, resulting in an overall decline of the breeding population. In general, wildlife harvest management continued through the mid-20th Century with the assumption of an available surplus. However, research in the last few decades, specifically for waterfowl and big game, has shown that most harvest impacts fall along a continuum between fully compensatory and fully additive, and harvest management regulations have been adjusted accordingly (Burnham and Anderson 1984; Burnham et al. 1984; Bartmann et al. 1992; Bowyer et al. 2020). Nevertheless, upland game harvest management has largely continued to use an assumption of compensatory harvest mortality with relatively infrequent adjustments to regulations (Reese et al. 2005; Dahlgren et al. 2018, 2021).

Similar harvest principles developed independently within rangeland management. Analogous to doomed surplus, remaining forage at the end of the grazing season was often viewed as wasted. Early range management called for moderate stocking rates that were intended to maintain enough above-ground plant material to support proper root function and plant reproduction, resulting in a general “take half, leave half” approach to grazing management (Shoop and McIlvain 1971; Van Poollen and Lacey 1979; Holechek et al. 1999). Conceptually, leaving half of the available forage is similar to maintaining a wildlife breeding population. Conversely, suppose grazing utilization (i.e., the amount of forage consumed by an herbivore; Chap. 3) exceeds the take-half rule. In that case, it is assumed that grazing has resulted in additive impacts because it may be limiting the ability of plants to maintain adequate root function and could reduce forage biomass and the ability of the plant to reproduce the following growing season (Trlica et al. 1977; Lyons and Hanselka 2001; Sayre 2001). However, if grazing is managed by taking up to some appropriate portion of the above-ground biomass (i.e., analogous to doomed surplus), it is assumed that the plant can compensate for the fraction removed through grazing (Lyons and Hanselka 2001).

For some cases in both disciplines, such as public land grazing and upland game harvest, rigorous evaluations of the assumption of compensatory harvest are currently lacking (Bartolome 1993; Dahlgren et al. 2021). For example, the monitoring of rangelands for livestock grazing on both public and private lands often uses utilization estimates for individual plants of specific “key” species within plant communities and does not evaluate forage availability or what portion of the available forage is harvested. Furthermore, assessment of year-to-year impacts of livestock grazing on forage availability has rarely occurred (Veblen et al. 2014). Uncannily akin to only monitoring forage utilization, the only assessment of harvest for most upland game birds in North America has been post-season hunter surveys (i.e., only monitoring the harvest; Dahlgren et al. 2021).

When considering the similarities between livestock grazing and upland game harvest, the impact of harvest rate on the base resource is often not accounted for. Therefore, there is little understanding of overall harvest impacts, let alone accounting for interactions with environmental variation to inform and adapt future harvest management (Bartolome 1993). Rather, for most of the last century, grazing and upland game management have implemented harvest using a “conservative harvest” approach combined with the assumption of compensatory harvest (Bartolome 1993; Dahlgren et al. 2018). Overall, this approach seems to have successfully provided a more sustainable use of renewable plant and animal resources. However, additional pressures, including anthropogenic development, invasive species, altered fire regimes, competing uses, climate change, and societal tolerance for consumptive uses have created increasing contextual constraints on our rangeland and wildlife resources. It is also likely that confounding factors are often not considered when analyzing and modifying harvest rates. Although the assumption of an available surplus may have been useful as wildlife and rangeland disciplines developed, future management of increasingly dynamic rangeland vegetation communities and associated wildlife will likely require both professions to implement more rigorous scientific evaluations of harvest. Advances in harvest management for other resources, such as waterfowl and fisheries, have used an adaptive harvest management approach, which requires resource assessments based on rigorous scientific methods to help identify more appropriate harvest targets (Hilborn and Sibert 1988; Nichols et al. 2007). Pope and Powell (2021) recognized that new paradigms for wildlife harvest management are needed for sustainable management into the future.

The wildlife profession has expanded from a primary focus on game management to a broader emphasis on wildlife communities and ecosystems (Decker et al. 1992). Contemporary wildlife management has moved toward the conservation of all wildlife species, with a particular focus on maintaining or increasing biodiversity. Conceptually similar, the rangeland profession has moved from managing for maximized livestock production to understanding and sustaining rangelands and their vegetation communities, whether they are grazed by domestic livestock or not (Briske et al. 2017). While each profession has broadened its focus, they both retained harvest management as a central tenant, even though some harvest management approaches have relied on outdated research.

Ultimately, rangeland and wildlife professions would benefit from an interdisciplinary approach to harvest management in the future because they (1) share many ecological underpinnings (e.g., carrying capacity, compensatory harvest assumptions), and (2) manage inextricably interconnected natural resources (e.g., wildlife harvest can be constrained by habitat conditions and land management; wildlife can affect rangeland resources and grazing management through a variety of mechanisms). The wildlife discipline has a comparatively strong background in population ecology, whereas rangeland management has a strong background in vegetation community dynamics and nutrition. The strengths within both professions are needed to assess and guide future harvest management for livestock grazing and wildlife in the context of our rapidly changing environments and contemporary societal values.

4 Disparities

Although rangeland and wildlife professions have striking parallels, their independent developments have also led to fundamental differences (Fig. 29.1). Such disparities have given rise to potential conflicts between the professions and are potentially rooted in the genesis of each profession. Because of the profession’s agrarian foundation, rangeland managers have been prone to view wildlife issues as stumbling blocks to livestock production or other rangeland management objectives (Stoddart and Smith 1943; du Toit et al. 2017). Conversely, wildlife management originated to stop declines in wildlife populations, and grazing has often been implicated as a detrimental factor to game populations (Trefethen and Corbin 1975; du Toit et al. 2017). We propose that these fundamental differences arise from differing values that helped drive the creation of the disciplines, and the legacy of those differences can still be seen presently.

Fig. 29.1
A text box contains 5 quotes uttered by anonymous rangeland or wildlife professionals. The first quote reads, you should be leery of information produced by any biologist who has focused only 1 wildlife species for their life's work.

Quotes collected to illustrate some of the disparities and tribalism between rangeland and wildlife management

4.1 Terminology

In addition to the fundamental disparities between the rangeland and wildlife professions, terminology can add to the disparity and create barriers to understanding. Terminology is a critical but often unexamined foundation for any profession, especially the intended and interpreted underlying meanings. Every profession, whether related to physics, music or natural resources, has a unique vocabulary with specific connotations and implications (Brunson 1992). As members of each profession are educated, they attune to the terminology and its explicit and implicit discipline-based meanings. Brunson (1992) used the word “rotation” as an example. He found that rangeland managers, foresters, and farmers use the term rotation to describe specific management actions, but each has a profession-specific meaning for the term rotation. Rangeland managers rotate livestock grazing among sites/pastures while the managed resource (i.e., forage) remains the same. Farmers rotate by moving the managed resource (i.e., crops) while the sites (i.e., crop fields) stay the same. For foresters, however, the managed resources and sites do not change, but rotation occurs by removing individual plants and restarting growth. Differences in word use and interpretation can lead to confusion, misunderstandings, and inadvertently exercising educational biases (Brunson 1992). Educational biases can become most pronounced when someone communicates within their profession's jargon. Without clear comprehension of the terminology and the specific underlying connotations, communication between professionals from different disciplines can be problematic and lead to misunderstanding, even intense discord, and erroneous conclusions. One of the more challenging issues for the integration of rangeland and wildlife disciplines is using the same terms but with distinctively different meanings. The following are some common, but not exhaustive, examples of shared terms with rangeland and wildlife profession-specific meanings.

4.1.1 Habitat

At first consideration, habitat seems like a simple and easily conceptualized term. For the layperson, habitat is simply the characteristics of where something, usually a plant or animal, lives. However, for a wildlife professional, habitat has a much more specialized meaning. Within the wildlife profession, Hall et al. (1997) inextricably linked habitat with one or more wildlife species and includes a time period or season of use for that species. For example, a wildlife biologist could use the term mule deer (Odocoileus hemionus) winter “habitat” when describing the environmental conditions used by mule deer during the winter. Although sagebrush (Artemesia spp.) is often an important component of mule deer winter habitat, referring to this as “sagebrush habitat” is confusing and meaningless within a professional wildlife context. Conversely, within rangeland science, “sagebrush habitat” is acceptable terminology that refers to the vegetation community present within the focal ecosystem and is not related to a specific wildlife species but to the vegetation type (Daubenmire 1984). So, when a wildlife person hears the term “habitat,” they want to know about the wildlife species and season of use, whereas when a rangeland person hears the term “habitat” they want to know what vegetation type is being referred.

On the surface, the differences between disciplines when using the term “habitat” may seem unimportant and inconsequential. However, consider the following hypothetical situation. Several rangeland and wildlife professionals are meeting to discuss management actions to conserve sage-grouse (Centrocercus spp.) in their resource area. One of the rangeland professionals says they are considering an area of sagebrush rangeland where the shrub canopy cover has become too high, and they desire to reduce the shrub canopy within the sagebrush habitat to enhance forage for livestock. One of the wildlife biologists then asks about the sage-grouse seasonal habitat(s) included in the sagebrush treatment area. The rangeland manager, unfamiliar with defining habitat as having seasonality for a wildlife species, has difficulty conceptualizing how a vegetation community can be described as seasonal when that vegetation community is always in place and functioning regardless of the time of year. Likely inadvertently and subconsciously based on their own educational bias, the rangeland manager understandably begins to question the validity of the biologist's knowledge about sagebrush ecosystems (Brunson 1992). On the other hand, the wildlife biologist may wonder how the rangeland manager can seemingly ignore the seasonal habitat requirements of sage-grouse using the area, such as the need for higher shrub canopy cover during nesting and wintering periods. In the above scenario, how each profession defines the term “habitat” unintentionally led to misunderstandings and misjudgments between the rangeland manager and biologist. The unfortunate result is that neither person was in error, both had value to add to the management approach, and both misjudged the other based on their own frame of reference and professional bias.

4.1.2 Cover

Another term used commonly by both professions is “cover,” but with different underlying meanings. In rangeland management, there are multiple definitions related to the term “cover,” though generally cover is used to reflect the amount of substrate, most often soil surface, covered by plant or other materials (rocks, litter, etc., Table 29.1). Wildlife management commonly uses the term “cover” to describe wildlife habitat (i.e., vegetation or other structure) as a reflection of hiding or escape cover, meaning covering the animal (Kopp et al.1998; Connelly et al. 2003). Simply put, for the term “cover” wildlife professionals want to know how much structure is available to conceal wildlife, and rangeland professionals want to know how much of the soil is covered, often with the intent of minimizing erosion. The unacknowledged underlying assumptions of these professionally based meanings for the same term “cover” can become problematic when rangeland and wildlife professionals work together.

Table 29.1 Definitions of different types of “cover” used in range management

Greater sage-grouse (C. urophasianus) inhabit sagebrush rangelands across western North America. Of necessity, conservation for this species has caused rangeland and wildlife professionals to work closely together and provides an example of differences in discipline-specific meanings of the term “cover.” Sagebrush cover is a critical component of sage-grouse habitat because it is used by sage-grouse throughout their life cycle (Connelly et al. 2000a, b; Crawford et al. 2004; Knick and Connelly 2011). Although various methods exist for measuring shrub canopy cover, in reference to sage-grouse habitat, sagebrush canopy cover has largely been assessed using line intercept with the Canfield Method; a method developed within the rangeland discipline (Canfield 1941; Connelly et al. 2000a, b, 2003; Stiver 2006). Sage-grouse biologists have consistently used this method to provide an assessment of available sagebrush cover, in other words to provide hiding cover for sage-grouse (Connelly et al. 2003; Stiver et al. 2006). In this example, the term “cover” seems to work well for both disciplines. After all, sagebrush canopy cover does provide structure for both covering the soil and concealing the grouse. However, considering the discipline-specific intent for the term “cover” may help explain why there is controversy over specific practices in sage-grouse and sagebrush habitat management between rangeland and wildlife professionals. Concerned with the immediate loss of hiding cover for sage-grouse seasonal habitat needs, sage-grouse biologists have implicated sagebrush cover reduction as a rangeland management practice that has a high probability of being detrimental to sage-grouse (Braun et al. 1977; Connelly and Braun 1997; Beck and Mitchell et al. 2000). This view is understandable given historical large-scale sagebrush loss (Vale 1974) and associated sage-grouse population declines (Braun et al. 1977; Connelly and Braun 1997; Braun 1998; Aldridge et al. 2008; Wisdom et al. 2011). For most rangeland ecologists, when sagebrush canopy cover is reduced, the understory herbaceous vegetation remains and often increases, providing the needed ground cover to protect the soil. Rangeland professionals tend to view sagebrush removal as a management tool that has potential benefits for sagebrush communities broadly, with the added advantage of increasing forage for livestock (Vallentine 1971; Crawford et al. 2004).

To further illustrate these underlying meanings for cover and the implications for management approaches, consider two publications meant to provide broad guidance on sage-grouse habitat management; Connelly et al. (2000a, b; authorship with primarily wildlife backgrounds and published in a wildlife journal) and Crawford et al. (2004; authorship with primarily rangeland backgrounds and published in a rangeland science journal). While both publications acknowledge the critical importance of sagebrush cover to sage-grouse, Crawford et al. (2004) emphasize potential benefits when addressing management geared toward reductions in sagebrush cover, and Connelly et al. (2000a, b) focus on maintaining sagebrush cover with strong cautions towards “range management treatments” that reduce sagebrush cover. We suggest that the polarity in the management approach to sagebrush and sage-grouse habitat is related, at least partly, to the discipline-specific connotations attached to the term “cover” and the ultimate differences in what cover is meant to protect, i.e., the animal or soil.

4.1.3 Rangeland Condition

The SRM Glossary (Society for Range Management 1998) defines rangeland condition as “(a) a generic term relating to present status of a unit of rangeland in terms of specific values or potentials. Specific values or potentials must be stated. (b) the present state of vegetation of a rangeland site in relation to the climax (natural potential) plant community for that site”. Despite a formal definition from the profession, the inconsistent use of rangeland condition increases confusion within and across disciplines. For example, Hervert et al. (2005) evaluated the space use of Sonoran pronghorns (Antilocapra americana sonoriensis) in relation to an assessment of “rangeland condition” based on the condition of the vegetation determined by rainfall; they did not specifically outline how they quantified rangeland condition other than relating seasonal rainfall to “rangeland condition”. A rangeland manager reading the paper may have assumed that the authors compared the relative space use of pronghorn to some measure of how close used and unused sites were to the expected climax condition of the vegetation communities.

Brunson (1992) suggested that confusion over terminology can lead to mistrust between the professions. Although differences in terminology are not responsible for conflicts, they represent our professional differences. We propose that the differences in terminology can reinforce tribalism and create the illusion of exceptionalism and will stifle the transdisciplinary development of comprehensive solutions to complex ecological problems that impact our collective disciplines and resources. We also do not believe that mandating unified definitions for commonly used terms is realistic or that it would serve to better unify the professionals. Rather, a more suitable solution lies in working toward an understanding of the way different professions use terms and their underlying meanings (Brunson 1992).

5 The Big Tent

Ecosystem-level conservation problems now require wildlife and rangeland managers to work closely together to address natural resource management problems. For example, the underlying threats to sage-grouse are related to the degradation of sagebrush communities, which has demanded coordination between rangeland and wildlife managers. Sage-grouse occur in 11 western states within one of North America's largest and most at-risk biomes (Schroeder et al. 2004; Chap. 10). Conservation of sagebrush communities is primarily the responsibility of landowners, private or land management agencies, which generally includes rangeland and wildlife managers, while conserving sage-grouse populations lies with state wildlife managers. The risks to sage-grouse are largely habitat-related and often require management approaches that focus on vegetation communities at varying scales. For instance, sage-grouse conservation has included multiple local working group programs across the distribution of the species, where rangeland and wildlife professionals have worked closely together to develop and implement conservation practices addressing risks, which can include prescribed livestock grazing (Chap. 10). This high degree of collaboration was cited as justification for an unwarranted 2015 ESA listing decision for greater sage-grouse (USFWS 2015), thereby underscoring the significance of combining expertise from plant and animal-focused disciplines.

Recent changes in academic institutional approaches provide an interesting example of the integration of rangeland and wildlife disciplines. There are currently 14 degree programs accredited by the Society for Range Management in North America. Twenty-one percent (3) of the departments are housed within rangeland and wildlife departments, 29% (4) in animal science and rangeland science, 29% (4) in ecosystem or natural resource departments, 14% (2) in forestry and range departments, and 7% (1) in a botany department. Most (79%) of the SRM-accredited programs have wildlife ecologists in their departments. Many of the departments with accredited rangeland programs have appointed faculty with wildlife expertise meant to crossover with rangeland programming in the last 15 years. For example, the Animal and Range (land) Sciences departments at Montana State University and Oregon State University have hired wildlife faculty for teaching and research programs to meet the current demands of rangeland students. We believe that most rangeland programs understand the need to have wildlife management expertise available within their degree programs, even when wildlife programs are not housed within the same department or college. We propose that these changes have created rangeland management students with broader exposure to wildlife-related expertise. For example, John Reese (Kanab, Utah), an alumnus of Utah State University, indicated that the wildlife education he received as part of his Rangeland Ecology and Management degree from USU proved valuable to him as a BLM rangeland specialist.

Similar adaptations have been made within both wildlife and rangeland professional societies. The Rangeland Wildlife Working Group of TWS and the Wildlife Habitat Committee of SRM are two prominent examples. In 2013, the Rangeland Wildlife Working Group was created to provide a home for professionals who work at the intersection of wildlife and rangeland ecology. The working group has a membership of approximately 100 individuals who are interested in the management and function of rangeland ecosystems that provide value to humans and wildlife. In addition to providing policy statements related to rangeland management, hosting annual Rangeland Wildlife Working Group meetings, and publishing regular newsletters, this group has successfully hosted a symposium or workshop at TWS Annual Conference nearly every year since its inception. A partnership was developed with the SRM’s Wildlife Habitat Committee, where dual memberships often exist, and the groups have collaborated by hosting joint symposia at international meetings. Where high-level partnerships between the two organizations have been discussed before, these individuals with complementary interests have organically created a powerful team of professionals advocating for education, proper management, and sound science of rangelands and the wildlife that inhabit them.

6 Conclusion

Moving into the future, whether because of budgetary constraints or intentional recognition that our disciplines complement one another, rangeland and wildlife managers will have to continue to work together. We feel there is significant value in the individuality of each discipline and the skills and knowledge that each brings to the table help solve large and complex problems that face multiple-use landscapes in the wake of population growth and climate change. We must recognize the value offered by each specific discipline while embracing the need for cross-pollination of both professions. As this occurs, terminology will always be problematic, but we encourage practitioners of both fields to carefully interpret discipline-specific meanings of terminology. The Society for Rangeland Management has created a glossary (https://rangelandsgateway.org/glossary) of terms available online. Although we have found no such glossary from TWS, there are several articles highlighting the need for greater precision in our professional language (Darracq and Tandy 2019). Careful use of terms from reliable textbooks and publications can help reduce misunderstandings and conflict between disciplines.

Our hope is that wildlife and rangeland professionals will recognize the substantial commonalities shared by both professions, put aside discipline-based tribalism, and seek to first understand and then be understood. The parallel progression of the disciplines shows that we have far more similarities than differences. For example, managing harvest could become a unifying principle that brings rangeland and wildlife professions closer together. As global and political climates continue to change, both disciplines will be faced with reevaluating and justifying harvest to ensure that resources are sustainable into the future. Our problems are too large to tackle alone. Current land use challenges threaten our flora and fauna resources, which were a major part of the motivation for many of us to choose these professions in the first place. Working across the table, or more emphatically, removing the table, is the best way to remain relevant and effective in our rapidly changing times.