Skip to main content

Plant–Microbe Interaction for Legume Biofortification: Present Status and Future Challenges

  • Chapter
  • First Online:
Legumes Biofortification

Abstract

Climate change and the rapidly growing global population, coupled with the problem of hidden hunger, necessitates the implementation of environmentally friendly agriculture practices to boost crop nutritional value and productivity. An effective solution for this is the use of plant growth–promoting bacteria (PGPB) in legume biofortification, which offers numerous health benefits and decreases the risk of various diseases. Legumes, being a significant source of plant proteins, can engage in symbiotic nitrogen (N) fixation, solubilize phosphorus (P), reduce CO2 emissions, improve plant resistance to pathogens, and enhance soil exploration, ultimately leading to improved plant growth and soil preservation. However, the potential of microbe-mediated legume biofortification has not yet been fully explored. This chapter focuses on the significance of microbe-mediated legume biofortification in improving plant nutritional value, agronomic traits, and yields. It also emphasizes the need for the integration of genetic, biochemical, physiological, and environmental data to achieve this. Hence, the use of beneficial rhizobacteria as biofertilizers constitutes a cost-effective and promising approach for sustainable agriculture and the resolution of food security issues around the world.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdel-Wahab A, Mekhemar G, Badawi FSF, Shehata HS (2008) Enhancement of nitrogen fixation, growth, and productivity of bradyrhizobium-lupin symbiosis via co-inoculation with rhizobacteria in different soil types. J Agric Chem Biotechnol 33(1):469–484

    Google Scholar 

  • Akrami M, Khiavi HK, Shikhlinski H, Khoshvaghtei H (2012) Bio controlling two pathogens of chickpea Fusarium solani and Fusarium oxysporum by different combinations of Trichoderma harzianum, Trichoderma asperellum and Trichoderma virens under field condition. Int J Agric Sci Res 1(3):41–45

    Google Scholar 

  • Alexandratos N, Bruinsma J (2012) World agriculture towards 2030/2050: the 2012 revision

    Google Scholar 

  • Ansari MF, Tipre DR, Dave SR (2015) Efficiency evaluation of commercial liquid biofertilizers for growth of Cicer aeritinum (chickpea) in pot and field study. Biocatal Agric Biotechnol 4(1):17–24

    Article  Google Scholar 

  • Arncken C, Klaiss M, Wendling M, Messmer M (2020) Cultivation of white lupin-A cool-season and environmentally friendly protein crop

    Google Scholar 

  • Aslam MM, Akhtar K, Karanja JK, Haider FU (2020) Understanding the adaptive mechanisms of plant in low phosphorous soil. Plant stress physiology. IntechOpen, London

    Google Scholar 

  • Aslam MM, Karanja JK, Yuan W, Zhang Q, Zhang J, Xu W (2021a) Phosphorus uptake is associated with the rhizosheath formation of mature cluster roots in white lupin under soil drying and phosphorus deficiency. Plant Physiol Biochem 166:531–539

    Article  CAS  PubMed  Google Scholar 

  • Aslam MM, Waseem M, Zhang Q, Ke W, Zhang J, Xu W (2021b) Identification of ABC transporter G subfamily in white lupin and functional characterization of L. albABGC29 in phosphorus use. BMC Genom 22(1):1–14

    Article  Google Scholar 

  • Aslam MM, Waseem M, Weifeng X, Qamar MTU. Identification and expression analysis of phosphate transporter (PHT) gene family in Lupinus albus cluster root under phosphorus stress. Int J Biol Macromol. 2022 Apr 30;205:772–781. https://doi.org/10.1016/j.ijbiomac.2022.03.085. Epub 2022 Mar 21. PMID: 35331794.

  • Atnaf M, Wegary D, Tesfaye K, Dagne K, Mazengia Y, Ayalew B, Melak A, Jaleta M (2020) Exploring forgotten opportunity: White Lupin development for food, feed, cash, health, and soil fertility management in Ethiopia. Cogent Environ Sci 6(1):1813451

    Article  Google Scholar 

  • Bhattacharyya PN, Jha DK (2012) Plant growth–promoting rhizobacteria (PGPR): emergence in agriculture. World J Microbiol Biotechnol 28(4):1327–1350

    Article  CAS  PubMed  Google Scholar 

  • Board J (2013) A comprehensive survey of international soybean research: genetics, physiology, agronomy and nitrogen relationships

    Google Scholar 

  • Bouis HE, Eozenou P, Rahman A (2011) Food prices, household income, and resource allocation: socioeconomic perspectives on their effects on dietary quality and nutritional status. Food Nutr Bull 32(1_suppl1):S14–S23

    Article  PubMed  Google Scholar 

  • Bowen G, Rovira A (1999) The rhizosphere and its management to improve plant growth. Adv Agron 66:1–102

    Article  Google Scholar 

  • Broughton WJ, Hernandez G, Blair M, Beebe S, Gepts P, Vanderleyden J (2003) Beans (Phaseolus spp.)–model food legumes. Plant Soil 252(1):55–128

    Article  CAS  Google Scholar 

  • Calton JB (2010) Prevalence of micronutrient deficiency in popular diet plans. J Int Soc Sports Nutr 7:24

    Article  PubMed  PubMed Central  Google Scholar 

  • Campos-Vega R, Vergara-Castañeda H, Oomah B (2011) Functional food sources: beans in sight. Nova Science Publishers, Inc., Hauppauge, pp 1–56

    Google Scholar 

  • Dakora, F.D., & Phillips, D.A. (2002). Root exudates as mediators of mineral acquisition in low-nutrient environments. Plant and Soil, 245, 35–47.

    Google Scholar 

  • Dakora F, Matiru V, Kanu A (2015) Rhizosphere ecology of lumichrome and riboflavin, two bacterial signal molecules eliciting developmental changes in plants. Front Plant Sci 6

    Google Scholar 

  • de Santos Silva, F. C., T. Sediyama, R. de Cássia Teixeira Oliveira, A. Borém, F. L. de Silva, A. R. G. Bezerra and A. F. de Silva (2017). Economic importance and evolution of breeding. Soybean Breeding. Springer: 1–16.

    Book  Google Scholar 

  • de Souza JEB, de Brito Ferreira EP (2017) Improving sustainability of common bean production systems by co-inoculating rhizobia and azospirilla. Agric Ecosyst Environ 237:250–257

    Article  Google Scholar 

  • Dhuldhaj U, Pandya U (2017) Implementation of biofortification technology by using PGPR for sustainable agricultural production. Agriculturally important microbes for sustainable agriculture. Springer, pp 63–79

    Book  Google Scholar 

  • Dogra N, Yadav R, Kaur M, Adhikary A, Kumar S, Ramakrishna W (2019) Nutrient enhancement of chickpea grown with plant growth promoting bacteria in local soil of Bathinda, Northwestern India. Physiol Mol Biol Plants 25(5):1251–1259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Durán P, Acuña JJ, Jorquera MA, Azcón R, Paredes C, Rengel Z, de la Luz Mora M (2014) Endophytic bacteria from selenium-supplemented wheat plants could be useful for plant-growth promotion, biofortification and Gaeumannomyces graminis biocontrol in wheat production. Biol Fertil Soils 50(6):983–990

    Article  Google Scholar 

  • Durán P, Acuña JJ, Gianfreda L, Azcón R, Funes-Collado V, Mora ML (2015) Endophytic selenobacteria as new inocula for selenium biofortification. Appl Soil Ecol 96:319–326

    Article  Google Scholar 

  • Egamberdieva D, Berg G, Lindström K, Räsänen LA (2010) Co-inoculation of Pseudomonas spp. with Rhizobium improves growth and symbiotic performance of fodder galega (Galega orientalis Lam.). Eur J Soil Biol 46(3):269–272

    Article  CAS  Google Scholar 

  • Egamberdiyeva D, Qarshieva D, Davranov K (2004) Growth and yield of soybean varieties inoculated with Bradyrhizobium spp in N-deficient calcareous soils. Biol Fertil Soils 40(2):144–146

    Article  Google Scholar 

  • El-Mokadem M, Helemish F, Abou-Bakr Z, Sheteawi S (1989) Associative effect of Azospirillum lipoferum and Azotobacter chroococcum with Rhizobium spp. on mineral composition and growth of chickpea (Cicer arietinum) on sandy soils. Zentralblatt für Mikrobiologie 144(4):255–265

    Article  Google Scholar 

  • Ferchichi N, Toukabri W, Boularess M, Smaoui A, Mhamdi R, Trabelsi D (2019) Isolation, identification and plant growth promotion ability of endophytic bacteria associated with lupine root nodule grown in Tunisian soil. Arch Microbiol 201(10):1333–1349

    Article  CAS  PubMed  Google Scholar 

  • Fernández-Pascual M, Pueyo JJ, Felipe M, Golvano MP, Lucas MM (2007) Singular features of the Bradyrhizobium-Lupinus symbiosis

    Google Scholar 

  • Gadd GM (2010) Metals, minerals and microbes: geomicrobiology and bioremediation. Microbiology 156(3):609–643

    Article  CAS  PubMed  Google Scholar 

  • Goettsch LH, Lenssen AW, Yost RS, Luvaga ES, Semalulu O, Tenywa M, Miiro R, Mazur RE (2017) Improved production systems for common bean on Ferralsol soil in south-central Uganda. Afr J Agric Res 12(23):1959–1969

    Article  CAS  Google Scholar 

  • Golubkina N, Moldovan A, Kekina H, Kharchenko V, Sekara A, Vasileva V, Skrypnik L, Tallarita A, Caruso G (2021) Joint biofortification of plants with selenium and iodine: new field of discoveries. Plants 10(7):1352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • González-Sama A, Lucas MM, De Felipe MR, Pueyo JJ (2004) An unusual infection mechanism and nodule morphogenesis in white lupin (Lupinus albus). New Phytologist:371–380

    Google Scholar 

  • Gopalakrishnan S, Sathya A, Vijayabharathi R, Varshney RK, Gowda C, Krishnamurthy L (2015a) Plant growth promoting rhizobia: challenges and opportunities. 3 Biotech 5(4):355–377

    Article  PubMed  Google Scholar 

  • Gopalakrishnan S, Srinivas V, Alekhya G, Prakash B, Kudapa H, Rathore A, Varshney RK (2015b) The extent of grain yield and plant growth enhancement by plant growth–promoting broad-spectrum Streptomyces sp. in chickpea. SpringerPlus 4(1):1–10

    Article  CAS  Google Scholar 

  • Gopalakrishnan S, Vadlamudi S, Samineni S, Sameer Kumar CV (2016) Plant growth promotion and biofortification of chickpea and pigeonpea through inoculation of biocontrol potential bacteria, isolated from organic soils. SpringerPlus 5(1):1882

    Article  PubMed  PubMed Central  Google Scholar 

  • Hafeez FY, Abaid-Ullah M, Hassan MN (2013) Plant growth–promoting rhizobacteria as zinc mobilizers: a promising approach for cereals biofortification. In: Maheshwari DK, Saraf M, Aeron A (eds) Bacteria in agrobiology: crop productivity. Springer Berlin Heidelberg, Berlin, Heidelberg, pp 217–235

    Chapter  Google Scholar 

  • Hayat I, Ahmad A, Masud T, Ahmed A, Bashir S (2014) Nutritional and health perspectives of beans (Phaseolus vulgaris L.): an overview. Crit Rev Food Sci Nutr 54(5):580–592

    Article  CAS  PubMed  Google Scholar 

  • Herridge DF, Peoples MB, Boddey RM (2008) Global inputs of biological nitrogen fixation in agricultural systems. Plant Soil 311(1):1–18

    Article  CAS  Google Scholar 

  • Htwe AZ, Moh SM, Moe K, Yamakawa T (2018) Effects of co-inoculation of Bradyrhizobium japonicum SAY3-7 and Streptomyces griseoflavus P4 on plant growth, nodulation, nitrogen fixation, nutrient uptake, and yield of soybean in a field condition. Soil Sci Plant Nutr 64(2):222–229

    Article  CAS  Google Scholar 

  • Hungria M, Campo RJ, Mendes IC (2003) Benefits of inoculation of the common bean (Phaseolus vulgaris) crop with efficient and competitive Rhizobium tropici strains. Biol Fertil Soils 39(2):88–93

    Article  Google Scholar 

  • Israr D, Mustafa G, Khan KS, Shahzad M, Ahmad N, Masood S (2016) Interactive effects of phosphorus and Pseudomonas putida on chickpea (Cicer arietinum L.) growth, nutrient uptake, antioxidant enzymes and organic acids exudation. Plant Physiol Biochem 108:304–312

    Article  CAS  PubMed  Google Scholar 

  • Janusz P (2017) White lupin (Lupinus albus L.)–nutritional and health values in human nutrition–a review. Czech J Food Sci 35(2):95–105

    Article  Google Scholar 

  • Jat R, Ahlawat I (2006) Direct and residual effect of vermicompost, biofertilizers and phosphorus on soil nutrient dynamics and productivity of chickpea-fodder maize sequence. J Sustain Agric 28(1):41–54

    Article  Google Scholar 

  • Jha AB, Warkentin TD (2020) Biofortification of pulse crops: status and future perspectives. Plants 9(1):73

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson N, Johnson CR, Thavarajah P, Kumar S, Thavarajah D (2020) The roles and potential of lentil prebiotic carbohydrates in human and plant health. Plants People Planet 2(4):310–319

    Article  Google Scholar 

  • Joshi D, Chandra R, Suyal DC, Kumar S (2019) Impacts of bioinoculants Pseudomonas jesenii MP1 and Rhodococcus qingshengii S10107 on chickpea (Cicer arietinum L.) yield and soil nitrogen status. Pedosphere 29(3):388–399

    Article  CAS  Google Scholar 

  • Jukanti AK, Gaur PM, Gowda C, Chibbar RN (2012) Nutritional quality and health benefits of chickpea (Cicer arietinum L.): a review. Br J Nutr 108(S1):S11–S26

    Article  CAS  PubMed  Google Scholar 

  • Kahraman A (2017) Nutritional value and foliar fertilization in soybean. J Elementol 22(1)

    Google Scholar 

  • Kamshybayeva G, Atabayeva S, Kenzhebayeva S, Domakbayeva A, Utesheva S, Nurmahanova A, Asrandina S, Zhuniszhan A, Turpanova R (2017) The importance of soybean (Glycine max) as a source of biologically valuable substances. Int J Biol Chem 10(2):23–27

    Article  CAS  Google Scholar 

  • Kaur T, Rana KL, Kour D, Sheikh I, Yadav N, Kumar V, Yadav AN, Dhaliwal HS, Saxena AK (2020) Microbe-mediated biofortification for micronutrients: present status and future challenges. In: New and future developments in microbial biotechnology and bioengineering, vol Elsevier, pp 1–17

    Google Scholar 

  • Kerem Z, Lev-Yadun S, Gopher A, Weinberg P, Abbo S (2007) Chickpea domestication in the Neolithic Levant through the nutritional perspective. J Archaeol Sci 34(8):1289–1293

    Article  Google Scholar 

  • Khaitov B, Vollmann J, Yeong Pyon J, Park K (2020) Improvement of salt tolerance and growth in common bean (Phaseolus vulgaris L.) by co-inoculation with native rhizobial strains. J Agric Sci Technol 22(1):209–220

    Google Scholar 

  • Khalid S (2015) Biofortification of iron in chickpea by plant growth promoting rhizobacteria. Pak J Bot 47(3):1191–1194

    CAS  Google Scholar 

  • Khande R, Sharma SK, Ramesh A, Sharma MP (2017) Zinc solubilizing Bacillus strains that modulate growth, yield and zinc biofortification of soybean and wheat. Rhizosphere 4:126–138

    Article  Google Scholar 

  • Khush GS, Lee S, Cho J-I, Jeon J-S (2012) Biofortification of crops for reducing malnutrition. Plant Biotechnol Reports 6:195–202

    Article  Google Scholar 

  • Kne J (2011) Improvement of common bean growth by co-inoculation with Rhizobium and plant growth–promoting bacteria

    Google Scholar 

  • Knezevic-vukcevic J (2011) Improvement of common bean growth by co-inoculation with Rhizobium and plant growth–promoting bacteria. Rom Biotechnol Lett 16:5919–5926

    Google Scholar 

  • Knights E, Hobson K (2016) Chickpea overview

    Google Scholar 

  • Kohajdova Z, KaroVičoVá J, Schmidt Š (2011) Lupin composition and possible use in bakery-a review. Czech J Food Sci 29(3):203–211

    Article  CAS  Google Scholar 

  • Kroc M, Rybiński W, Wilczura P, Kamel K, Kaczmarek Z, Barzyk P, Święcicki W (2017) Quantitative and qualitative analysis of alkaloids composition in the seeds of a white lupin (Lupinus albus L.) collection. Genet Resour Crop Evol 64(8):1853–1860

    Article  CAS  Google Scholar 

  • Ku Y-S, Rehman HM, Lam H-M (2019) Possible roles of rhizospheric and endophytic microbes to provide a safe and affordable means of crop biofortification. Agronomy 9(11):764

    Article  CAS  Google Scholar 

  • Kumari N, Mondal S, Mahapatra P, Meetei T (2019) Effect of biofertilizer and micronutrients on yield of chickpea

    Google Scholar 

  • Kurlovich B, Kartuzova L, Heinanen J, Benken I, Chmeleva Z, Bernatskaya M (2002) Biochemical composition. Chapter 9. In: Lupins (Geography, classification, genetic resources and breeding). OY International Express, St. Petersburg, pp 241–268

    Google Scholar 

  • Lambers H, Clements JC, Nelson MN (2013) How a phosphorus-acquisition strategy based on carboxylate exudation powers the success and agronomic potential of lupines (Lupinus, Fabaceae). Am J Bot 100(2):263–288

    Article  CAS  PubMed  Google Scholar 

  • Lamont BB, Pérez-Fernández M (2016) Total growth and root-cluster production by legumes and proteas depends on rhizobacterial strain, host species and nitrogen level. Ann Bot 118(4):725–732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ligowe IS, Young SD, Ander EL, Kabambe V, Chilimba ADC, Bailey EH, Lark RM, Nalivata PC (2020) Selenium biofortification of crops on a Malawi Alfisol under conservation agriculture. Geoderma 369:114315

    Article  CAS  Google Scholar 

  • Lurthy T, Pivato B, Lemanceau P, Mazurier S (2021) Importance of the rhizosphere microbiota in iron biofortification of plants. Front Plant Sci 12

    Google Scholar 

  • Malik KA, Maqbool A (2020) Transgenic crops for biofortification. Front Sustain Food Syst 4

    Google Scholar 

  • Martínez-Hidalgo P, Hirsch AM (2017) The nodule microbiome: N2-fixing rhizobia do not live alone. Phytobiomes 1(2):70–82

    Article  Google Scholar 

  • Martínez-Villaluenga C, Sironi E, Vidal-Valverde C, Duranti M (2006) Effects of oligosaccharide removing procedure on the protein profiles of lupin seeds. Eur Food Res Technol 223(5):691–696

    Article  Google Scholar 

  • Martins J, Bento O (2007) As leguminosas como alimentos funcionais: o caso das dislipidémias e das doenças cardiovasculares. Revista de Ciências Agrárias 30(1):385–399

    Google Scholar 

  • Martirosyan DM, Singh J (2015) A new definition of functional food by FFC: what makes a new definition unique? Func Foods Health Dis 5(6):209–223

    Article  Google Scholar 

  • Massoud O, Morsy EM, El-Batanony NH (2009) Field response of snap bean (Phaseolus vulgaris L.) to N2 fixers Bacillus circulans and arbuscular mycorrhizal fungi inoculation through accelerating rock phosphate and feldspar weathering. Aust J Basic Appl Sci 3:844–852

    CAS  Google Scholar 

  • Mazumdar D, Saha SP, Ghosh S (2020) Isolation, screening and application of a potent PGPR for enhancing growth of Chickpea as affected by nitrogen level. Int J Veg Sci 26(4):333–350

    Article  Google Scholar 

  • Mazur V, Mazur K, Pantsyreva H (2019) Influence of the technological aspects growing on quality composition of seed white lupine (Lupinus albus L.) in the Forest Steppe of Ukraine. Ukrain J Ecol 9(1):50–55

    Google Scholar 

  • Messina MJ (1999) Legumes and soybeans: overview of their nutritional profiles and health effects. Am J Clin Nutr 70(3):439 s–450 s

    Article  Google Scholar 

  • Messina V (2014) Nutritional and health benefits of dried beans. Am J Clin Nutr 100(suppl_1):437S–442S

    Article  CAS  PubMed  Google Scholar 

  • Mikić A, Ćupina B, Mihailović V, Krstić Đ, Antanasović S, Zorić L, Đorđević V, Perić V, Srebrić M (2013) Intercropping white (Lupinus albus) and Andean (Lupinus mutabilis) lupins with other annual cool season legumes for forage production. South Afr J Bot 89:296–300

    Article  Google Scholar 

  • Mishra PK, Bisht SC, Ruwari P, Joshi GK, Singh G, Bisht JK, Bhatt J (2011) Bioassociative effect of cold tolerant Pseudomonas spp. and Rhizobium leguminosarum-PR1 on iron acquisition, nutrient uptake and growth of lentil (Lens culinaris L.). Eur J Soil Biol 47(1):35–43

    Article  CAS  Google Scholar 

  • Mishra PK, Bisht SC, Mishra S, Selvakumar G, Bisht J, Gupta H (2012) Coinoculation of Rhizobium leguminosarum-PR1 with a cold tolerant Pseudomonas sp. improves iron acquisition, nutrient uptake and growth of field pea (Pisum sativum L.). J Plant Nutr 35(2):243–256

    Article  CAS  Google Scholar 

  • Mohammadi K, Ghalavand A, Aghaalikhani M (2010) Effect of organic matter and biofertilizers on chickpea quality and biological nitrogen fixation. World Acad Sci Eng Technol 4:966–971

    Google Scholar 

  • Ortega García M, Shagarodsky Scull T, Dibut Álvarez BL, Ríos Rocafull Y, Tejeda González G, Gómez Jorrin LA (2016) Influencia de la interacción entre el cultivo del garbanzo (Cicer arietinum L.) y la inoculación con cepas seleccionadas de Mesorhizobium spp. Cultivos Tropicales 37:20–27

    Google Scholar 

  • Padash A, Shahabivand S, Behtash F, Aghaee A (2016) A practicable method for zinc enrichment in lettuce leaves by the endophyte fungus Piriformospora indica under increasing zinc supply. Scientia Horticulturae 213:367–372

    Article  CAS  Google Scholar 

  • Paredes M, Becerra V, Tay J (2009) Inorganic nutritional composition of common bean (Phaseolus vulgaris L.) genotypes race Chile. Chilean J Agric Res 69(4):486–495

    Article  Google Scholar 

  • Patel D, Singh H, Shroff S, Sahu J (2011) Antagonistic efficiency of Pseudomonas strains against soil borne disease of chickpea crop under in vitro and in vivo. Elixir Agric 30:1774–1777

    Google Scholar 

  • Patel P, Trivedi G, Saraf M (2018) Iron biofortification in mungbean using siderophore producing plant growth promoting bacteria. Environ Sustain 1(4):357–365

    Article  Google Scholar 

  • Pellegrino E, Bedini S (2014) Enhancing ecosystem services in sustainable agriculture: biofertilization and biofortification of chickpea (Cicer arietinum L.) by arbuscular mycorrhizal fungi. Soil Biol Biochem 68:429–439

    Article  CAS  Google Scholar 

  • Peoples M, Brockwell J, Herridge D, Rochester I, Alves B, Urquiaga S, Boddey R, Dakora F, Bhattarai S, Maskey S (2009) The contributions of nitrogen-fixing crop legumes to the productivity of agricultural systems. Symbiosis 48(1):1–17

    Article  CAS  Google Scholar 

  • Peterbauer T, Richter A (2001) Biochemistry and physiology of raffinose family oligosaccharides and galactosyl cyclitols in seeds. Seed Sci Res 11(3):185–197

    CAS  Google Scholar 

  • Pfeiffer WH, McClafferty B (2007) HarvestPlus: breeding crops for better nutrition. Crop Sci 47(S3):S-88–S-105

    Article  Google Scholar 

  • Poveda J (2021) Insect frass in the development of sustainable agriculture. A review. Agron Sustain Dev 41(1):1–10

    Article  Google Scholar 

  • Prakamhang J, Tittabutr P, Boonkerd N, Teamtisong K, Uchiumi T, Abe M, Teaumroong N (2015) Proposed some interactions at molecular level of PGPR coinoculated with Bradyrhizobium diazoefficiens USDA110 and B. japonicum THA6 on soybean symbiosis and its potential of field application. Appl Soil Ecol 85:38–49

    Article  Google Scholar 

  • Pramanik K, Bera A (2012) Response of biofertilizers and phytohormone on growth and yield of chickpea (Cicer aritinum L.). J Crop Weed 8(2):45–49

    Google Scholar 

  • Prasanna R, Nain L, Rana A, Shivay YS (2016) Biofortification with microorganisms: present status and future challenges. In: Biofortification of food crops. Springer, pp 249–262

    Chapter  Google Scholar 

  • Rahman GM, Monira S (2018) Performance of biofertilizers on growth and yield of chickpea

    Google Scholar 

  • Ramesh A, Sharma SK, Sharma MP, Yadav N, Joshi OP (2014a) Inoculation of zinc solubilizing Bacillus aryabhattai strains for improved growth, mobilization and biofortification of zinc in soybean and wheat cultivated in Vertisols of central India. Appl Soil Ecol 73:87–96

    Article  Google Scholar 

  • Ramesh A, Sharma SK, Sharma MP, Yadav N, Joshi OP (2014b) Plant growth–promoting traits in Enterobacter cloacae subsp. dissolvens MDSR9 isolated from soybean rhizosphere and its impact on growth and nutrition of soybean and wheat upon inoculation. Agric Res 3(1):53–66

    Article  CAS  Google Scholar 

  • Rebello CJ, Greenway FL, Finley JW (2014) Whole grains and pulses: a comparison of the nutritional and health benefits. J Agric Food Chem 62(29):7029–7049

    Article  CAS  PubMed  Google Scholar 

  • Reiter B, Pfeifer U, Schwab H, Sessitsch A (2002) Response of endophytic bacterial communities in potato plants to infection with Erwinia carotovora subsp. atroseptica. Appl Environ Microbiol 68(5):2261–2268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roberfroid M, Gibson GR, Hoyles L, McCartney AL, Rastall R, Rowland I, Wolvers D, Watzl B, Szajewska H, Stahl B (2010) Prebiotic effects: metabolic and health benefits. Br J Nutr 104(S2):S1–S63

    Article  CAS  PubMed  Google Scholar 

  • Roriz M, Carvalho SMP, Castro PML, Vasconcelos MW (2020) Legume biofortification and the role of plant growth–promoting bacteria in a sustainable agricultural era. Agronomy 10(3):435

    Article  CAS  Google Scholar 

  • Saharan B, Nehra V (2011) Plant growth promoting rhizobacteria: a critical review. Life Sci Med Res 21(1):30

    Google Scholar 

  • Saini R, Dudeja SS, Giri R, Kumar V (2015) Isolation, characterization, and evaluation of bacterial root and nodule endophytes from chickpea cultivated in Northern India. J Basic Microbiol 55(1):74–81

    Article  CAS  PubMed  Google Scholar 

  • Santoyo G, Moreno-Hagelsieb G, del Carmen Orozco-Mosqueda M, Glick BR (2016) Plant growth–promoting bacterial endophytes. Microbiol Res 183:92–99

    Article  CAS  PubMed  Google Scholar 

  • Sathya A, Vijayabharathi R, Srinivas V, Gopalakrishnan S (2016) Plant growth–promoting actinobacteria on chickpea seed mineral density: an upcoming complementary tool for sustainable biofortification strategy. 3 Biotech 6(2):138

    Article  PubMed  PubMed Central  Google Scholar 

  • Sathya A, Vijayabharathi R, Gopalakrishnan S (2017) Plant growth–promoting actinobacteria: a new strategy for enhancing sustainable production and protection of grain legumes. 3 Biotech 7(2):102–102

    Article  PubMed  PubMed Central  Google Scholar 

  • Sharma SK, Sharma MP, Ramesh A, Joshi OP (2012) Characterization of zinc-solubilizing Bacillus isolates and their potential to influence zinc assimilation in soybean seeds. J Microbiol Biotechnol 22(3):352–359

    Article  CAS  PubMed  Google Scholar 

  • Shimelis EA, Rakshit SK (2005) Proximate composition and physico-chemical properties of improved dry bean (Phaseolus vulgaris L.) varieties grown in Ethiopia. LWT-Food Sci Technol 38(4):331–338

    Article  CAS  Google Scholar 

  • Singh G, Kumar A (2019) Synteny analysis of Glycine max and Phaseolus vulgaris revealing conserved regions of NBS-LRR coding genes. Biosci Biotechnol Res Commun 12(1):124–133

    Google Scholar 

  • Singh J, Singh AV (2017) Microbial strategies for enhanced phytoremediation of heavy metal-contaminated soils. Environmental pollutants and their bioremediation approaches. CRC Press, pp 257–272

    Google Scholar 

  • Singh D, Geat N, Rajawat M, Mahajan M, Prasanna R, Singh S, Kaushik R, Singh R, Kumar K, Saxena A (2018a) Deciphering the mechanisms of endophyte-mediated biofortification of Fe and Zn in wheat. J Plant Growth Regul 37(1):174–182

    Article  CAS  Google Scholar 

  • Singh D, Geat N, Rajawat MVS, Prasanna R, Kar A, Singh AM, Saxena AK (2018b) Prospecting endophytes from different Fe or Zn accumulating wheat genotypes for their influence as inoculants on plant growth, yield, and micronutrient content. Ann Microbiol 68(12):815–833

    Article  CAS  Google Scholar 

  • Singh B, Goutam U, Kukreja S, Siddappa S, Sood S, Sharma J, Bhardwaj V (2022) Biofortification strategies to improve iron concentrations in potato tubers: lessons and future opportunities. Potato Res 65(1):51–64

    Article  CAS  Google Scholar 

  • Singh G, Ratnaparkhe M, Kumar A. Comparative analysis of transposable elements from

    Google Scholar 

  • Slatni T, Dell’Orto M, Salah IB, Vigani G, Smaoui A, Gouia H, Zocchi G, Abdelly C (2012) Immunolocalization of H+-ATPase and IRT1 enzymes in N2-fixing common bean nodules subjected to iron deficiency. J Plant Physiol 169(3):242–248

    Article  CAS  PubMed  Google Scholar 

  • Smith SE, Read DJ (2010) Mycorrhizal symbiosis. Academic Press

    Google Scholar 

  • Solaiman A, Rabbani M, Hossain D, Hossain G, Alam M (2012) Influence of phosphorus and inoculation with Rhizobium and AM fungi on growth and dry matter yield of chickpea. Bangladesh J Sci Res 25(1):23–32

    Article  Google Scholar 

  • Sparvoli F, Bollini R, Cominelli E (2015) Nutritional value. In: Grain legumes. Springer, pp 291–325

    Chapter  Google Scholar 

  • Stewart CP, Dewey KG, Ashorn P (2010) The undernutrition epidemic: an urgent health priority. Lancet 375(9711):282

    Article  PubMed  Google Scholar 

  • Sujak A, Kotlarz A, Strobel W (2006) Compositional and nutritional evaluation of several lupin seeds. Food Chem 98(4):711–719

    Article  CAS  Google Scholar 

  • Sulewska H, Ratajczak K, Niewiadomska A, Panasiewicz K (2019) The use of microorganisms as bio-fertilizers in the cultivation of white lupine. Open Chem 17(1):813–822

    Article  CAS  Google Scholar 

  • Suman J, Rakshit A, Ogireddy SD, Singh S, Gupta C, Chandrakala J (2022) Microbiome as a key player in sustainable agriculture and human health. Front Soil Sci 2:12

    Article  Google Scholar 

  • Sun Z, Yue Z, Liu H, Ma K, Li C (2021) Microbial-assisted wheat iron biofortification using endophytic Bacillus altitudinis WR10. Front Nutr 8:704030

    Article  PubMed  PubMed Central  Google Scholar 

  • Sura-de Jong M, Reynolds RJB, Richterova K, Musilova L, Staicu LC, Chocholata I, Cappa JJ, Taghavi S, van der Lelie D, Frantik T (2015) Selenium hyperaccumulators harbor a diverse endophytic bacterial community characterized by high selenium resistance and plant growth promoting properties. Front Plant Sci 6:113

    Article  PubMed  PubMed Central  Google Scholar 

  • Terpolilli JJ, Hood GA, Poole PS (2012) What determines the efficiency of N2-fixing Rhizobium-legume symbioses? Adv Microb Physiol 60:325–389

    Article  CAS  PubMed  Google Scholar 

  • Thacher TD, Fischer PR, Strand MA, Pettifor JM (2006) Nutritional rickets around the world: causes and future directions. Ann Trop Paediatr 26(1):1–16

    Article  PubMed  Google Scholar 

  • Tidke SA, Ramakrishna D, Kiran S, Kosturkova G, Ravishankar G (2015) Nutraceutical potential of soybean: review. Asian J Clin Nutr 7(2):22–32

    Article  CAS  Google Scholar 

  • Trivedi G, Patel P, Saraf M (2020) Synergistic effect of endophytic selenobacteria on biofortification and growth of Glycine max under drought stress. South Afr J Bot 134:27–35

    Article  CAS  Google Scholar 

  • Ullah A, Farooq M, Hussain M (2020) Improving the productivity, profitability and grain quality of kabuli chickpea with co-application of zinc and endophyte bacteria Enterobacter sp. MN17. Arch Agron Soil Sci 66(7):897–912

    Article  CAS  Google Scholar 

  • Upadhyaya HD, Bajaj D, Narnoliya L, Das S, Kumar V, Gowda C, Sharma S, Tyagi AK, Parida SK (2016) Genome-wide scans for delineation of candidate genes regulating seed-protein content in chickpea. Front Plant Sci 7:302

    Article  PubMed  PubMed Central  Google Scholar 

  • Valliyodan B, Qiu D, Patil G, Zeng P, Huang J, Dai L, Chen C, Li Y, Joshi T, Song L (2016) Landscape of genomic diversity and trait discovery in soybean. Sci Reports 6(1):1–10

    Google Scholar 

  • Varshney RK, Song C, Saxena RK, Azam S, Yu S, Sharpe AG, Cannon S, Baek J, Rosen BD, Tar’an B (2013) Draft genome sequence of chickpea (Cicer arietinum) provides a resource for trait improvement. Nat Biotechnol 31(3):240–246

    Article  CAS  PubMed  Google Scholar 

  • Verma JP, Yadav J (2012) Evaluation of plant growth promoting rhizobacteria and their effect on plant growth and grain yield of chickpea (Cicer arietinum L.) under sustainable agriculture Production. Agric Sci Eng (ICASE2012):127

    Google Scholar 

  • Vitale A, Bollini R (1995) Legume storage proteins. In: Seed development and germination, pp 73–102

    Google Scholar 

  • Vryzas Z (2016) The plant as metaorganism and research on next-generation systemic pesticides–prospects and challenges. Front Microbiol 7:1968

    Article  PubMed  PubMed Central  Google Scholar 

  • Welch R (2001) Perspectives on the micronutrient nutrition of crops

    Google Scholar 

  • White PJ, Broadley MR (2005) Biofortifying crops with essential mineral elements. Trends Plant Sci 10(12):586–593

    Article  PubMed  Google Scholar 

  • White PJ, Broadley MR (2009) Biofortification of crops with seven mineral elements often lacking in human diets--iron, zinc, copper, calcium, magnesium, selenium and iodine. New Phytol 182(1):49–84

    Article  CAS  PubMed  Google Scholar 

  • Yadav J, Verma JP (2014) Effect of seed inoculation with indigenous Rhizobium and plant growth promoting rhizobacteria on nutrients uptake and yields of chickpea (Cicer arietinum L.). Eur J Soil Biol 63:70–77

    Article  CAS  Google Scholar 

  • Yadav AN, Rastegari AA, Yadav N, Kour D (2020) Advances in plant microbiome and sustainable agriculture. Springer

    Book  Google Scholar 

  • Yadegari M, Rahmani HA (2010) Evaluation of bean (Phaseolus vulgaris) seeds inoculation with Rhizobium phaseoli and plant growth promoting Rhizobacteria (PGPR) on yield and yield components. Afr J Agric Res 5(9):792–799

    Google Scholar 

  • Yang D, Hu C, Wang X, Shi G, Li Y, Fei Y, Song Y, Zhao X (2021) Microbes: a potential tool for selenium biofortification. Metallomics 13(10)

    Google Scholar 

  • Ye Y, Qu J, Pu Y, Rao S, Xu F, Wu C (2020) Selenium Biofortification of Crop Food by Beneficial Microorganisms. J fungi (Basel, Switzerland) 6(2):59

    CAS  Google Scholar 

  • Zaheer A, Mirza BS, Mclean JE, Yasmin S, Shah TM, Malik KA, Mirza MS (2016) Association of plant growth–promoting Serratia spp. with the root nodules of chickpea. Res Microbiol 167(6):510–520

    Article  CAS  PubMed  Google Scholar 

  • Zaheer A, Malik A, Sher A, Qaisrani MM, Mehmood A, Khan SU, Ashraf M, Mirza Z, Karim S, Rasool M (2019) Isolation, characterization, and effect of phosphate-zinc-solubilizing bacterial strains on chickpea (Cicer arietinum L.) growth. Saudi J Biol Sci 26(5):1061–1067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zohary D, Hopf M (2000) Domestication of plants in the Old World: The origin and spread of cultivated plants in West Asia, Europe and the Nile Valley. Oxford University Press

    Google Scholar 

Download references

Author Contributions

MMA and MW conceived the study design. MMA, OW, AI, and MW drafted the manuscript and designed the figures. MW, ZD, and MAA critically reviewed the manuscript. All the authors have read and agreed to the published version of the manuscript.

Conflict of Interest

The authors declare no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Waseem .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Waseem, M., Aslam, M.M., Idris, A.L., Nkurikiyimfura, O., Di, Z. (2023). Plant–Microbe Interaction for Legume Biofortification: Present Status and Future Challenges. In: Nadeem, M.A., et al. Legumes Biofortification. Springer, Cham. https://doi.org/10.1007/978-3-031-33957-8_12

Download citation

Publish with us

Policies and ethics