Skip to main content

Using Physics-Informed Machine Learning to Optimize 3D Printing Processes

  • Conference paper
  • First Online:
Progress in Digital and Physical Manufacturing (ProDPM 2021)

Part of the book series: Springer Tracts in Additive Manufacturing ((STAM))

Abstract

In this work, we present the design and evaluation of a physics-informed machine learning (ML) approach for 3D printing of metal components based on real experimental measurement data. For this purpose, different thermal processes during the manufacturing of different metal components are modelled and solved in space and time using physics-informed neural networks (PINNs), with special attention to the geometric domain of the heat source. In this way, a digital twin is created as a simulation model of the thermal process with fixed input parameters, which represents the physical behavior and allows interpretable conclusions to be drawn with regard to the temperature distribution. The presented approach includes discrete and continuous models that are compared with a numerical solution method (finite difference method, FDM) for partial differential equations (PDEs) and real measurement data from Siemens. In addition, learning is accelerated by designing the loss function with information about initial and boundary conditions (Neumann and Dirichlet) and the heat source. This approach does not require discretization and is robust to limited noisy data. The results have confirmed the advantages of PINNs for data-driven discovery of the heat equation and have shown that the temperature distribution during additive manufacturing (AM) processes can be estimated and predicted very well.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Frazier, W.E.: Metal additive manufacturing: a review. J. Mater. Eng. Perform. 23(6), 1917–1928 (2014)

    Article  Google Scholar 

  2. DebRoy, T., et al.: Additive manufacturing of metallic components – process, structure and properties. Prog. Mater Sci. 92, 112–224 (2018)

    Article  Google Scholar 

  3. Knapp, G.L., et al.: Building blocks for a digital twin of additive manufacturing. Acta Mater. 135, 390–399 (2017)

    Article  Google Scholar 

  4. Yap, C.Y., et al.: Review of selective laser melting: materials and applications. Appl. Phys. Rev. 2(4), 041101 (2015)

    Article  Google Scholar 

  5. Mukherjee, T., Wei, H.L., De, A., DebRoy, T.: Heat and fluid flow in additive manufacturing—part i: modeling of powder bed fusion. Comput. Mater. Sci. 150, 304–313 (2018)

    Article  Google Scholar 

  6. Mukherjee, T., Wei, H.L., De, A., DebRoy, T.: Heat and fluid flow in additive manufacturing – part ii: powder bed fusion of stainless steel, and titanium, nickel and aluminum base alloys. Comput. Mater. Sci. 150, 369–380 (2018)

    Article  Google Scholar 

  7. Wessels, H., Weißenfels, C., Wriggers, P.: Metal particle fusion analysis for additive manufacturing using the stabilized optimal transportation meshfree method. Comput. Methods Appl. Mech. Eng. 339, 91–114 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  8. Zhang, Z., et al.: Numerical methods for microstructural evolutions in laser additive manufacturing. Comput. Math. Appl. 78(7), 2296–2307 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cao, L.: Numerical simulation of the impact of laying powder on selective laser melting single-pass formation. Int. J. Heat Mass Transf. 141, 1036–1048 (2019)

    Article  Google Scholar 

  10. Razavykia, A., Brusa, E., Delprete, C., Yavari, R.: An overview of additive manufacturing technologies-a review to technical synthesis in numerical study of selective laser melting. Materials (Basel, Switzerland) 13(17), 3895 (2020)

    Article  Google Scholar 

  11. Crank, J., Nicolson, P.: A practical method for numerical evaluation of solutions of partial differential equations of the heat-conduction type. Adv. Comput. Math. 6(1), 207–226 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  12. Narasimhan, T.N., Witherspoon, P.A.: An integrated finite difference method for analyzing fluid flow in porous media. Water Resour. Res. 12(1), 57–64 (1976)

    Article  Google Scholar 

  13. Razzak, M.I., Naz, S., Zaib, A.: Deep learning for medical image processing: overview, challenges and the future. In: Dey, N., Ashour, A.S., Borra, S. (eds.) Classification in BioApps. LNCVB, vol. 26, pp. 323–350. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-65981-7_12

    Chapter  Google Scholar 

  14. Jiao, L., Zhao, J.: A survey on the new generation of deep learning in image processing. IEEE Access 7, 172231–172263 (2019)

    Article  Google Scholar 

  15. 2017 IEEE Intelligent Vehicles Symposium (IV). IEEE (2017)

    Google Scholar 

  16. Deng, L., Liu, Y. (eds.): Deep Learning in Natural Language Processing. Springer, Singapore (2018)

    Google Scholar 

  17. Weichert, Dorina, Link, Patrick, Stoll, Anke, Rüping, Stefan, Ihlenfeldt, Steffen, Wrobel, Stefan: A review of machine learning for the optimization of production processes. The Int. J. Adv. Manuf. Technol. 104(5–8), 1889–1902 (2019). https://doi.org/10.1007/s00170-019-03988-5

    Article  Google Scholar 

  18. Raissi, M., Perdikaris, P., Karniadakis, G.E.: Physics informed deep learning (part i): Data-driven solutions of nonlinear partial differential equations (2017)

    Google Scholar 

  19. Raissi, M., Perdikaris, P., Karniadakis, G.E.: Physics informed deep learning (part ii): Data-driven discovery of nonlinear partial differential equations (2018)

    Google Scholar 

  20. Raissi, M., Perdikaris, P., Karniadakis, G.E.: Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. J. Comput. Phys. 378, 686–707 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  21. Raissi, M.: Deep hidden physics models: deep learning of nonlinear partial differential equations. J. Mach. Learn. Res. 19(1), 932–955 (2018)

    MathSciNet  MATH  Google Scholar 

  22. Wessels, H., Weißenfels, C., Wriggers, P.: The neural particle method – an updated lagrangian physics informed neural network for computational fluid dynamics. Comput. Methods Appl. Mech. Eng. 368, 113127 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  23. Hornik, K., Stinchcombe, M., White, H.: Multilayer feedforward networks are universal approximators. Neural Netw. 2(5), 359–366 (1989)

    Article  MATH  Google Scholar 

  24. Pan, H., Niu, X., Li, R., Dou, Y., Jiang, H.: Annealed gradient descent for deep learning. Neurocomputing 380, 201–211 (2020)

    Article  Google Scholar 

  25. Bartholomew-Biggs, M., Brown, S., Christianson, B., Dixon, L.: Automatic differentiation of algorithms. J. Comput. Appl. Math. 124(1–2), 171–190 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  26. Katsurada, M., Okamoto, H.: The collocation points of the fundamental solution method for the potential problem. Comput. Math. Appl. 31(1), 123–137 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  27. Nwankpa, C., Ijomah, W., Gachagan, A., Marshall, S.: Activation functions: Comparison of trends in practice and research for deep learning (2018)

    Google Scholar 

  28. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin Uhrich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Uhrich, B., Schäfer, M., Theile, O., Rahm, E. (2023). Using Physics-Informed Machine Learning to Optimize 3D Printing Processes. In: Correia Vasco, J.O., et al. Progress in Digital and Physical Manufacturing. ProDPM 2021. Springer Tracts in Additive Manufacturing. Springer, Cham. https://doi.org/10.1007/978-3-031-33890-8_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-33890-8_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-33889-2

  • Online ISBN: 978-3-031-33890-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics