Skip to main content

Sports and Altitude

  • Chapter
  • First Online:
Sideline Management in Sports

Abstract

Recreational activities, training, and competition in altitude have become increasingly popular over the past 25 years. High altitude training represents a central component of athletic preparation nowadays, not only for endurance sports such as long and middle distance running, but also for team and anaerobic sports. Environmental factors and altitude do not represent the only concern for the athletes’ safety, but also the access to appropriate medical supervision in these conditions is often very difficult. Exercise and sport performed in high altitude have significant health consequences. Physiological adaptations within the athlete are induced and facilitated by the increased hypoxic stress in altitude that may bring improvements in the performance at sea levels. Despite there being a lot of articles and studies to date, the exact mechanisms which are responsible for such improvements remain to be fully explained. There is a high variability in individual response to altitude and this is dependent on several factors that range from fitness level, training load, nutritional habits, genetics, chemosensitivity to hypoxia and ventilatory responses, the oxygen carrying capacity of the blood, fatigue, and previous exposure to altitude.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Conkin J, Wessel JH. Critique of the equivalent air altitude model. Aviat Space Environ Med. 2008;79(10):975–82.

    Article  PubMed  Google Scholar 

  2. Favier FB, Britto FA, Freyssenet DG, Bigard XA, Benoit H. HIF-1-driven skeletal muscle adaptations to chronic hypoxia: molecular insights into muscle physiology. Cell Mol Life Sci. 2015;72(24):4681–96.

    Article  CAS  PubMed  Google Scholar 

  3. Hamlin MJ, Draper N, Hellemans J. Real and simulated altitude training and performance. In: Hamlin M, editor. Current issues in sports and exercise medicine. InTech; 2013. http://www.intechopen.com/books/current-issues-in-sports-and-exercise-medicine/real-and-simulated-altitude-training-and-performance.

    Chapter  Google Scholar 

  4. Semenza GL. HIF-1: mediator of physiological and pathophysiological responses to hypoxia. J Appl Physiol. 2000;88(4):1474–80.

    Article  CAS  PubMed  Google Scholar 

  5. Lindholm ME, Rundqvist H. Skeletal muscle hypoxia-inducible factor-1 and exercise: skeletal muscle hypoxia-inducible factor-1 and exercise. Exp Physiol. 2016;101(1):28–32.

    Article  CAS  PubMed  Google Scholar 

  6. Chapman RF, Stray-Gundersen J, Levine BD. Individual variation in response to altitude training. J Appl Physiol. 1998;85(4):1448–56.

    Article  CAS  PubMed  Google Scholar 

  7. Wehrlin JP, Zuest P, Hallén J, Marti B. Live high-train low for 24 days increases hemoglobin mass and red cell volume in elite endurance athletes. J Appl Physiol. 2006;100(6):1938–45.

    Article  CAS  PubMed  Google Scholar 

  8. Jelkmann W. Regulation of erythropoietin production: erythropoietin production. J Physiol. 2011;589(6):1251–8.

    Article  CAS  PubMed  Google Scholar 

  9. Robach P, Fulla Y, Westerterp KR, Richalet JP. Comparative response of EPO and soluble transferrin receptor at high altitude. Med Sci Sports Exerc. 2004;36(9):1493–8.

    Article  CAS  PubMed  Google Scholar 

  10. Levine BD, Stray-Gundersen J. Point: positive effects of intermittent hypoxia (live high:train low) on exercise performance are mediated primarily by augmented red cell volume. J Appl Physiol. 2005;99(5):2053–5.

    Article  PubMed  Google Scholar 

  11. Stray-Gundersen J, Chapman RF, Levine BD. “Living high-training low” altitude training improves sea level performance in male and female elite runners. J Appl Physiol. 2001;91(3):1113–20.

    Article  CAS  PubMed  Google Scholar 

  12. Wilber RL, Stray-Gundersen J, Levine BD. Effect of hypoxic ‘dose’ on physiological responses and sea-level performance. Med Sci Sports Exerc. 2007;39(9):1590–9.

    Article  PubMed  Google Scholar 

  13. Whayne TF. Cardiovascular medicine at high altitude. Angiology. 2014;65(6):459–72.

    Article  PubMed  Google Scholar 

  14. Feriche B, Schoenfeld BJ, Bonitch-Gongora J, de la Fuente B, Almeida F, Argüelles J, et al. Altitude-induced effects on muscular metabolic stress and hypertrophy-related factors after a resistance training session. Eur J Sport Sci. 2020;20(8):1083–92.

    Article  PubMed  Google Scholar 

  15. Goldfarb-Rumyantzev AS, Alper SL. Short-term responses of the kidney to high altitude in mountain climbers. Nephrol Dial Transplant. 2014;29(3):497–506.

    Article  CAS  PubMed  Google Scholar 

  16. Penaloza D, Arias-Stella J. The heart and pulmonary circulation at high altitudes: healthy highlanders and Chronic Mountain sickness. Circulation. 2007;115(9):1132–46.

    Article  PubMed  Google Scholar 

  17. Zhang G, Zhou SM, Yuan C, Tian HJ, Li P, Gao YQ. The effects of short-term and long-term exposure to a high altitude hypoxic environment on neurobehavioral function. High Alt Med Biol. 2013;14(4):338–41.

    Article  PubMed  Google Scholar 

  18. Fulco CS, Beidleman BA, Muza SR. Effectiveness of Preacclimatization strategies for high-altitude exposure. Exerc Sport Sci Rev. 2013;41(1):55–63.

    Article  PubMed  Google Scholar 

  19. Koehle MS, Cheng I, Sporer B. Canadian academy of sport and exercise medicine position statement: athletes at high altitude. Clin J Sport Med. 2014;24(2):120–7.

    Article  PubMed  Google Scholar 

  20. Cheng I, Kiss A, Lilge L. An observational study of personal ultraviolet dosimetry and acute diffuse reflectance skin changes at extreme altitude. Wilderness Environ Med. 2013;24(4):390–6.

    Article  CAS  PubMed  Google Scholar 

  21. Rigel EG, Lebwohl MG, Rigel AC, Rigel DS. Ultraviolet radiation in alpine skiing: magnitude of exposure and importance of regular protection. Arch Dermatol. 2003;139(1):60–2.

    Article  PubMed  Google Scholar 

  22. Bloch KE, Buenzli JC, Latshang TD, Ulrich S. Sleep at high altitude: guesses and facts. J Appl Physiol. 2015;119(12):1466–80.

    Article  CAS  PubMed  Google Scholar 

  23. Tseng CH, Lin FC, Chao HS, Tsai HC, Shiao GM, Chang SC. Impact of rapid ascent to high altitude on sleep. Sleep Breath. 2015;19(3):819–26.

    Article  PubMed  Google Scholar 

  24. Weil JV. Sleep at high altitude. High Alt Med Biol. 2004;5(2):180–9.

    Article  PubMed  Google Scholar 

  25. Wing-Gaia SL. Nutritional strategies for the preservation of fat free mass at high altitude. Nutrients. 2014;6(2):665–81.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Kechijian D. Optimizing nutrition for performance at altitude: a literature review. J Spec Oper Med. 2011;11(2):12.

    Article  PubMed  Google Scholar 

  27. Saunders PU, Pyne DB, Gore CJ. Endurance training at altitude. High Alt Med Biol. 2009;10(2):135–48.

    Article  PubMed  Google Scholar 

  28. Girard O, Amann M, Aughey R, Billaut F, Bishop DJ, Bourdon P, et al. Position statement—altitude training for improving team-sport players’ performance: current knowledge and unresolved issues. Br J Sports Med. 2013;47(Suppl 1):i8–16.

    Article  PubMed  Google Scholar 

  29. Levine BD, Stray-Gundersen J, Mehta RD. Effect of altitude on football performance: football at altitude. Scand J Med Sci Sports. 2008;18:76–84.

    Article  PubMed  Google Scholar 

  30. Wilber RL. Application of altitude/hypoxic training by elite athletes. Med Sci Sports Exerc. 2007;39(9):1610–24.

    Article  PubMed  Google Scholar 

  31. Wachsmuth NB, Völzke C, Prommer N, Schmidt-Trucksäss A, Frese F, Spahl O, et al. The effects of classic altitude training on hemoglobin mass in swimmers. Eur J Appl Physiol. 2013;113(5):1199–211.

    Article  CAS  PubMed  Google Scholar 

  32. Bonne TC, Lundby C, Jørgensen S, Johansen L, Mrgan M, Bech SR, et al. “Live High–Train High” increases hemoglobin mass in Olympic swimmers. Eur J Appl Physiol. 2014;114(7):1439–49.

    Article  PubMed  Google Scholar 

  33. Siebenmann C, Cathomen A, Hug M, Keiser S, Lundby AK, Hilty MP, et al. Hemoglobin mass and intravascular volume kinetics during and after exposure to 3,454-m altitude. J Appl Physiol. 2015;119(10):1194–201.

    Article  CAS  PubMed  Google Scholar 

  34. Rodríguez FA, Iglesias X, Feriche B, Calderón-Soto C, Chaverri D, Wachsmuth NB, et al. Altitude training in elite swimmers for sea level performance (altitude project). Med Sci Sports Exerc. 2015;47(9):1965–78.

    Article  PubMed  Google Scholar 

  35. Mellerowicz H, Meller W, Wowerier J, Zerdick J, Ketusinh O, Kral B, et al. Comparative studies on the effect of high altitude training on permanent performance at lower altitudes. Schweiz Z Sportmed. 1971;Suppl:5–17.

    Google Scholar 

  36. McLean BD, Gore CJ, Kemp J. Application of ‘live low-train high’ for enhancing normoxic exercise performance in team sport athletes. Sports Med. 2014;44(9):1275–87.

    Article  PubMed  Google Scholar 

  37. Millet GP, Faiss R, Brocherie F, Girard O. Hypoxic training and team sports: a challenge to traditional methods? Br J Sports Med. 2013;47(Suppl 1):i6–7.

    Article  PubMed  Google Scholar 

  38. Lundby C, Millet GP, Calbet JA, Bärtsch P, Subudhi AW. Does ‘altitude training’ increase exercise performance in elite athletes? Br J Sports Med. 2012;46(11):792–5.

    Article  PubMed  Google Scholar 

  39. Millet G, Girard O, Beard A, Brocherie F. Repeated sprint training in hypoxia—an innovative method. Dtsch Z Für Sportmed. 2019;2019(5):115–22.

    Article  Google Scholar 

  40. Vogt M, Puntschart A, Geiser J, Zuleger C, Billeter R, Hoppeler H. Molecular adaptations in human skeletal muscle to endurance training under simulated hypoxic conditions. J Appl Physiol. 2001;91(1):173–82.

    Article  CAS  PubMed  Google Scholar 

  41. Wilbur RL. Live high + train low: thinking in terms of an optimal hypoxic dose. Int J Sports Physiol Perform. 2007;2(3):223–38.

    Article  PubMed  Google Scholar 

  42. Chapman RF, Karlsen T, Resaland GK, Ge RL, Harber MP, Witkowski S, et al. Defining the “dose” of altitude training: how high to live for optimal sea level performance enhancement. J Appl Physiol. 2014;116(6):595–603.

    Article  PubMed  Google Scholar 

  43. Bonetti DL, Hopkins WG. Sea-level exercise performance following adaptation to hypoxia: a meta-analysis. Sports Med. 2009;39(2):107–27.

    Article  PubMed  Google Scholar 

  44. Saugy JJ, Schmitt L, Cejuela R, Faiss R, Hauser A, Wehrlin JP, et al. Comparison of “Live High-Train Low” in Normobaric versus Hypobaric Hypoxia. PLoS One. 2014;9(12):e114418.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Beidleman BA, Fulco CS, Staab JE, Andrew SP, Muza SR. Cycling performance decrement is greater in hypobaric versus normobaric hypoxia. Extreme Physiol Med. 2014;3(1):8.

    Article  Google Scholar 

  46. Bailey DM, Davies B. Physiological implications of altitude training for endurance performance at sea level: a review. Br J Sports Med. 1997;31(3):183–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Saw A, Halson S, Mujika I. Monitoring athletes during training camps: observations and translatable strategies from elite road cyclists and swimmers. Sports. 2018;6(3):63.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Mujika I. Quantification of training and competition loads in endurance sports: methods and applications. Int J Sports Physiol Perform. 2017;12(s2):S2-9–S2-17.

    Article  Google Scholar 

  49. Gore C, Hahn A, Burge C, Telford R. VO 2 max and Haemoglobin mass of trained athletes during high intensity training. Int J Sports Med. 1997;28(06):477–82.

    Article  Google Scholar 

  50. Schmidt W, Prommer N. Effects of various training modalities on blood volume: Total hemoglobin mass and altitude training. Scand J Med Sci Sports. 2008;18:57–69.

    Article  PubMed  Google Scholar 

  51. Gore CJ, Sharpe K, Garvican-Lewis LA, Saunders PU, Humberstone CE, Robertson EY, et al. Altitude training and haemoglobin mass from the optimised carbon monoxide rebreathing method determined by a meta-analysis. Br J Sports Med. 2013;47(Suppl 1):i31–9.

    Article  PubMed  Google Scholar 

  52. Saunders PU, Garvican-Lewis LA, Schmidt WF, Gore CJ. Relationship between changes in haemoglobin mass and maximal oxygen uptake after hypoxic exposure. Br J Sports Med. 2013;47(Suppl 1):i26–30.

    Article  PubMed  Google Scholar 

  53. Govus AD, Garvican-Lewis LA, Abbiss CR, Peeling P, Gore CJ. Pre-altitude serum ferritin levels and daily oral iron supplement dose mediate iron parameter and hemoglobin mass responses to altitude exposure. PLoS One. 2015;10(8):e0135120.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Stellingwerff T, Peeling P, Garvican-Lewis LA, Hall R, Koivisto AE, Heikura IA, et al. Nutrition and altitude: strategies to enhance adaptation, improve performance and maintain health: a narrative review. Sports Med. 2019;49(S2):169–84.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Płoszczyca K, Langfort J, Czuba M. The effects of altitude training on Erythropoietic response and hematological variables in adult athletes: a narrative review. Front Physiol. 2018;9:375.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Chapman RF, Stager JM, Tanner DA, Stray-Gundersen J, Levine BD. Impairment of 3000-m run time at altitude is influenced by arterial oxyhemoglobin saturation. Med Sci Sports Exerc. 2011;43(9):1649–56.

    Article  CAS  PubMed  Google Scholar 

  57. Wehrlin JP, Hallén J. Linear decrease in.VO2max and performance with increasing altitude in endurance athletes. Eur J Appl Physiol. 2006;96(4):404–12.

    Article  PubMed  Google Scholar 

  58. Ferretti G, Moia C, Thomet JM, Kayser B. The decrease of maximal oxygen consumption during hypoxia in man: a mirror image of the oxygen equilibrium curve. J Physiol. 1997;498(1):231–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Saugy JJ, Rupp T, Faiss R, Lamon A, Bourdillon N, Millet GP. Cycling time trial is more altered in hypobaric than Normobaric hypoxia. Med Sci Sports Exerc. 2016;48(4):680–8.

    Article  CAS  PubMed  Google Scholar 

  60. Chapman RF. The individual response to training and competition at altitude. Br J Sports Med. 2013;47(Suppl 1):i40–4.

    Article  PubMed  Google Scholar 

  61. Mourot L, Millet GP. Is maximal heart rate decrease similar between Normobaric versus hypobaric hypoxia in trained and untrained subjects? High Alt Med Biol. 2019;20(1):94–8.

    Article  CAS  PubMed  Google Scholar 

  62. Sharma AP, Saunders PU, Garvican-Lewis LA, Clark B, Welvaert M, Gore CJ, et al. Improved performance in National-Level Runners with Increased Training Load at 1600 and 1800 m. Int J Sports Physiol Perform. 2019;14(3):286–95.

    Article  PubMed  Google Scholar 

  63. Schmitt L, Willis SJ, Coulmy N, Millet GP. Effects of different training intensity distributions between elite cross-country skiers and Nordic-combined athletes during live high-train low. Front Physiol. 2018;9:932.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Saw AE, Main LC, Gastin PB. Monitoring the athlete training response: subjective self-reported measures trump commonly used objective measures: a systematic review. Br J Sports Med. 2016;50(5):281–91.

    Article  PubMed  Google Scholar 

  65. Borg GAV. Psychophysical bases of perceived exertion. Med Sci Sports Exerc. 1982;14(5):377–81.

    Article  CAS  PubMed  Google Scholar 

  66. Levine BD, Stray-Gundersen J. “Living high-training low”: effect of moderate-altitude acclimatization with low-altitude training on performance. J Appl Physiol. 1997;83(1):102–12.

    Article  CAS  PubMed  Google Scholar 

  67. Bärtsch P, Saltin B, Dvorak J. Consensus statement on playing football at different altitude: consensus statement on playing football at different altitude. Scand J Med Sci Sports. 2008;18:96–9.

    Article  PubMed  Google Scholar 

  68. Bradley PS, Carling C, Archer D, Roberts J, Dodds A, Di Mascio M, et al. The effect of playing formation on high-intensity running and technical profiles in English FA premier league soccer matches. J Sports Sci. 2011;29(8):821–30.

    Article  PubMed  Google Scholar 

  69. Faude O, Koch T, Meyer T. Straight sprinting is the most frequent action in goal situations in professional football. J Sports Sci. 2012;30(7):625–31.

    Article  PubMed  Google Scholar 

  70. Wachsmuth N, Kley M, Spielvogel H, Aughey RJ, Gore CJ, Bourdon PC, et al. Changes in blood gas transport of altitude native soccer players near sea-level and sea-level native soccer players at altitude (ISA3600). Br J Sports Med. 2013;47(Suppl 1):i93–9.

    Article  PubMed  Google Scholar 

  71. Heinicke K, Wolfarth B, Winchenbach P, Biermann B, Schmid A, Huber G, et al. Blood volume and hemoglobin mass in elite athletes of different disciplines. Int J Sports Med. 2001;22(7):504–12.

    Article  CAS  PubMed  Google Scholar 

  72. Daniels J, Oldridge N. The effects of alternate exposure to altitude and sea level on world-class middle-distance runners. Med Sci Sports. 1970;2(3):107–12.

    CAS  PubMed  Google Scholar 

  73. Tønnessen E, Sylta Ø, Haugen TA, Hem E, Svendsen IS, Seiler S. The road to gold: training and peaking characteristics in the year prior to a gold medal endurance performance. PLoS One. 2014;9(7):e101796.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Burtscher M, Niedermeier M, Burtscher J, Pesta D, Suchy J, Strasser B. Preparation for endurance competitions at altitude: physiological, psychological, dietary and coaching aspects. A narrative review. Front Physiol. 2018;9:1504.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Millet GP, Roels B, Schmitt L, Woorons X, Richalet JP. Combining hypoxic methods for peak performance. Sports Med. 2010;40(1):1–25.

    Article  PubMed  Google Scholar 

  76. Mujika I, Sharma AP, Stellingwerff T. Contemporary periodization of altitude training for elite endurance athletes: a narrative review. Sports Med. 2019;49(11):1651–69.

    Article  PubMed  Google Scholar 

  77. Chapman RF, Laymon AS, Levine BD. Timing of arrival and pre-acclimatization strategies for the endurance athlete competing at moderate to high altitudes. High Alt Med Biol. 2013;14(4):319–24.

    Article  PubMed  Google Scholar 

  78. Turner G, Fudge BW, Pringle JSM, Maxwell NS, Richardson AJ. Altitude training in endurance running: perceptions of elite athletes and support staff. J Sports Sci. 2019;37(2):163–72.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacques Menetrey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Motta, M., Ornon, G., Menetrey, J. (2023). Sports and Altitude. In: Rocha Piedade, S., Hutchinson, M.R., Parker, D., Espregueira-Mendes, J., Neyret, P. (eds) Sideline Management in Sports. Springer, Cham. https://doi.org/10.1007/978-3-031-33867-0_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-33867-0_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-33866-3

  • Online ISBN: 978-3-031-33867-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics