Skip to main content

Data Science for Global Health

  • Chapter
  • First Online:
Global Health Essentials

Part of the book series: Sustainable Development Goals Series ((SDGS))

  • 823 Accesses

Abstract

Data science promises to revolutionize healthcare, providing insight into disease mechanisms, enabling a more personalized approach to care, improving public health surveillance and the ability to predict trends. However, there are challenges and barriers to its application and implementation, requiring careful attention to data governance and ethics. In this chapter, we present examples of the application of data science in global health and briefly discuss the challenges that should be addressed for its equitable implementation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Big data refers to a large volume or quantity of information. In addition to its size, big data is also characterized by its diversity (various formats and types, structured and unstructured) as well as the speed with which it accumulates.

References

  1. Wyber R, Vaillancourt S, Perry W, Mannava P, Folaranmi T, Celi LA. Big data in global health: improving health in low- and middle-income countries. Bull World Health Organ. 2015;93(3):203–8. https://doi.org/10.2471/BLT.14.139022.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Qingpeng Z, Gao J, Wu JT, Cao Z, Zeng DD. Data science approaches to confronting the COVID-19 pandemic: a narrative review. Philos Trans A Math Phys Eng Sci. 2022;380:20210127. https://doi.org/10.1098/rsta.2021.0127.

    Article  CAS  Google Scholar 

  3. Hao X, Cheng S, Wu D, Wu T, Lin X, Wang C. Reconstruction of the full transmission dynamics of COVID-19 in Wuhan. Nature. 2020;584(7821):420–4. https://doi.org/10.1038/s41586-020-2554-8.

    Article  CAS  PubMed  Google Scholar 

  4. Kleinman RA, Merkel C. Digital contact tracing for COVID-19. CMAJ. 2020;192(24):E653–6. https://doi.org/10.1503/cmaj.200922.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ozturk T, Talo M, Yildirim EA, Baloglu UB, Yildirim O, Rajendra AU. Automated detection of COVID-19 cases using deep neural networks with x-ray images. Comput Biol Med. 2020;121:103792. https://doi.org/10.1016/j.compbiomed.2020.103792.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ong E, Wong MU, Huffman A, He Y. COVID-19 coronavirus vaccine design using reverse vaccinology and machine learning. Front Immunol. 2020;11:1581Published 2020 Jul 3. https://doi.org/10.3389/fimmu.2020.01581.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Alrajhi AA, Alswailem OA, Wali G, et al. Data-driven prediction for COVID-19 severity in hospitalized patients. Int J Environ Res Public Health. 2022;19(5):2958. https://doi.org/10.3390/ijerph19052958.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Khan MT, Kaushik AC, Ji L, Malik SI, Ali S, Wei DQ. Artificial neural networks for prediction of tuberculosis disease. Front Microbiol. 2019;10:395. Published 2019 Mar 4. https://doi.org/10.3389/fmicb.2019.00395.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Nagpal MS, Barbaric A, Sherifali D, Morita PP, Cafazzo JA. Patient-generated data analytics of health behaviors of people living with type 2 diabetes: scoping review. JMIR Diabetes. 2021;6(4):e29027. Published 2021 Dec 20. https://doi.org/10.2196/29027.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Achilonu OJ, Fabian J, Bebington B, Singh E, Eijkemans MJC, Musenge E. Predicting colorectal cancer recurrence and patient survival using supervised machine learning approach: a south african population-based study [Published correction appears in front public health]. Front Public Health. 2021;9:694306. https://doi.org/10.3389/fpubh.2021.694306.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Macaulay BO, Aribisala BS, Akande SA, Akinnuwesi BA, Olabanjo OA. Breast cancer risk prediction in African women using random Forest classifier. Cancer Treat Res Commun. 2021;28:100396. https://doi.org/10.1016/j.ctarc.2021.100396.

    Article  PubMed  Google Scholar 

  12. Li Y, Luo YH, Wampfler JA, et al. Efficient and accurate extracting of unstructured EHRs on cancer therapy responses for the development of RECIST natural language processing tools: part I, the corpus. JCO Clin Cancer Inform. 2020;4:383–91. https://doi.org/10.1200/CCI.19.00147.

    Article  PubMed  Google Scholar 

  13. Jamthikar AD, et al. Artificial intelligence framework for predictive cardiovascular and stroke risk assessment models: a narrative review of integrated approaches using carotid ultrasound. Comput Biol Med. 2020;126:104043.

    Article  PubMed  Google Scholar 

  14. Chowdhury AS, Lofgren ET, Moehring RW, Broschat SL. Identifying predictors of antimicrobial exposure in hospitalized patients using a machine learning approach. J Appl Microbiol. 2019;128:688–96. https://doi.org/10.1111/jam.14499.

    Article  PubMed  Google Scholar 

  15. Lara RAN, Aguilera-Mendoza L, Brizuela CA, Pena A, Rio G. Heterologous machine learning for the identification of antimicrobial activity in human-targeted drugs. Molecules. 2019;24:13. https://doi.org/10.3390/molecules24071258.

    Article  CAS  Google Scholar 

  16. Valles S. A brief history of the social concept of health and its role in population health science. In: Philosophy of population health science: philosophy for a new public health era. London: Routledge; 2018. p. 31–56.

    Chapter  Google Scholar 

  17. Yearby R. Structural racism and health disparities: reconfiguring the social determinants of health framework to include the root cause. J Law Med Ethics. 2020;48(3):518–26. https://doi.org/10.1177/1073110520958876.

    Article  PubMed  Google Scholar 

  18. COHRED: Research fairness initiative. 2018. https://rfi.cohred.org/. Accessed 22 Jun 2022.

  19. Molldrem S, Smith AK. Reassessing the ethics of molecular HIV surveillance in the era of cluster detection and response: toward HIV data justice. Am J Bioeth. 2020;20(10):10–23.

    Article  PubMed  Google Scholar 

  20. Martin KE. Ethical issues in the big data industry. MIS Q Exec. 2015;14(2):67–85.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zelalem Temesgen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Meagher, K., Falzon, D., Temesgen, Z. (2023). Data Science for Global Health. In: Raviglione, M.C.B., Tediosi, F., Villa, S., Casamitjana, N., Plasència, A. (eds) Global Health Essentials. Sustainable Development Goals Series. Springer, Cham. https://doi.org/10.1007/978-3-031-33851-9_59

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-33851-9_59

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-33850-2

  • Online ISBN: 978-3-031-33851-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics