Skip to main content

Sandwiched Metasurface Antenna for Small Spacecrafts in IoT Infrastructure

  • Chapter
  • First Online:
Data Analytics for Internet of Things Infrastructure

Abstract

In this study, low-profile probe-excited crossed antenna with sandwiched metasurface is proposed for very small and ultra-small spacecrafts at X-band. The designed metasurface antenna is lightweight, low cost, and occupies physical size suitable for very small/ultra-small spacecrafts. The main targets of this study are the use of an optimized sandwiched metasurface for increasing return loss and peak gain of proposed antenna at X-band. Moreover, the sandwiched metasurface is used for minimizing levels of generated back lobes and so interferences with electronic components inside the spacecraft box. The constructed sandwiched metasurface antenna, therefore, achieves a bandwidth of about 350 MHz and increases the antenna total gain by about 1.10 dBi at X-band despite its very small size. These results are in general very suitable for very small and ultra-small spacecrafts communications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. El Bakkali, M. (2020, July). Planar antennas with parasitic elements and Metasurface superstrate structure for 3U CubeSats [PhD. Thesis]. Sidi Mohamed Ben Abdellah University, city of Fez, Morocco.

    Google Scholar 

  2. Rahmat-Samii, Y., Manohar, V., & Kovitz, J. M. (2017). For satellites, think small, dream big: A review of recent antenna developments for CubeSats. IEEE Antennas and Propagation Magazine, 59(2), 22–30.

    Article  Google Scholar 

  3. Rivera, M., & Boyle, A. (2013). Space for all: Small, cheap satellites may one day do your bidding. NBC NEWS, Innovation, 5, 11 am ET.

    Google Scholar 

  4. An international network of 50 CubeSats Project [online] Available: https://www.qb50.eu/. Accessed 10/09/2019.

  5. El Bakkali, M., Bekkali, M. E., Gaba, G. S., Guerrero, J. M., Kansal, L., & Masud, M. (2021). Fully integrated high gain S-band triangular slot antenna for CubeSat communications. electronics.

    Google Scholar 

  6. Crisp, N., Smith, K., & Hollingsworth, P. (2014). Small satellite launch to LEO: A review of current and future launch systems. Transactions of the Japan Society for Aeronautical and Space Sciences, Aerospace Technology Japan, 12(ists29), Tf 39–Tf 47. https://doi.org/10.2322/tastj.12.Tf39

    Article  Google Scholar 

  7. Perez, T. R., & Subbarao, K. (2016). A survey of current femtosatellite designs, technologies, and mission concepts. JoSS, 5(3), 467–482.

    Google Scholar 

  8. Tristancho, J., & Gutierrez-Cabello, J. (2011, October 16–20). A probe of concept for FEMTO-SATELLITES based on commercial-of-the-shelf. In Digital avionics systems conference (DASC), 2011 IEEE/AIAA 30th (pp. 8A2-1–8A2-9).

    Google Scholar 

  9. Sundaramoorthy, P. P., Gilland, E., & Verhoeven, C. J. M. (2010, September). Systematic identification of applications for a cluster of femto-satellites. In 61st International Astronautical Congress, Prague, Czech Republic.

    Google Scholar 

  10. Mohammadi, M., Kashani, F. H., & Ghalibafan, J. (2021). Backfire-to-endfire scanning capability of a balanced metamaterial structure based on slotted ferrite-filled waveguide. Waves in Random and Complex Media, 31(6), 1211–1225.

    Article  MathSciNet  Google Scholar 

  11. Vo, M. T., Vo, A. H., Nguyen, T., Sharma, R., & Le, T. (2021). Dealing with the class imbalance problem in the detection of fake job descriptions. Computers, Materials & Continua, 68(1), 521–535.

    Article  Google Scholar 

  12. Sachan, S., Sharma, R., & Sehgal, A. (2021). Energy efficient scheme for better connectivity in sustainable mobile wireless sensor networks. Sustainable Computing: Informatics and Systems, 30, 100504.

    Google Scholar 

  13. Ghanem, S., Kanungo, P., Panda, G., et al. (2021). Lane detection under artificial colored light in tunnels and on highways: An IoT-based framework for smart city infrastructure. Complex & Intelligent Systems. https://doi.org/10.1007/s40747-021-00381-2

  14. Sachan, S., Sharma, R., & Sehgal, A. (2021). SINR based energy optimization schemes for 5G vehicular sensor networks. Wireless Personal Communications, 127, 1023. https://doi.org/10.1007/s11277-021-08561-6

    Article  Google Scholar 

  15. Priyadarshini, I., Mohanty, P., Kumar, R., et al. (2021). A study on the sentiments and psychology of twitter users during COVID-19 lockdown period. Multimedia Tools and Applications, 81, 27009. https://doi.org/10.1007/s11042-021-11004-w

    Article  Google Scholar 

  16. Azad, C., Bhushan, B., Sharma, R., et al. (2021). Prediction model using SMOTE, genetic algorithm and decision tree (PMSGD) for classification of diabetes mellitus. Multimedia Systems, 28, 1289. https://doi.org/10.1007/s00530-021-00817-2

    Article  Google Scholar 

  17. Priyadarshini, I., Kumar, R., Tuan, L. M., et al. (2021). A new enhanced cyber security framework for medical cyber physical systems. SICS Software-Intensive Cyber-Physical Systems, 35, 159. https://doi.org/10.1007/s00450-021-00427-3

    Article  Google Scholar 

  18. Priyadarshini, I., Kumar, R., Sharma, R., Singh, P. K., & Satapathy, S. C. (2021). Identifying cyber insecurities in trustworthy space and energy sector for smart grids. Computers & Electrical Engineering, 93, 107204.

    Article  Google Scholar 

  19. Singh, R., Sharma, R., Akram, S. V., Gehlot, A., Buddhi, D., Malik, P. K., & Arya, R. (2021). Highway 4.0: Digitalization of highways for vulnerable road safety development with intelligent IoT sensors and machine learning. Safety Science, 143, 105407. ISSN 0925-7535.

    Article  Google Scholar 

  20. Sahu, L., Sharma, R., Sahu, I., Das, M., Sahu, B., & Kumar, R. (2021). Efficient detection of Parkinson’s disease using deep learning techniques over medical data. Expert Systems, e12787. https://doi.org/10.1111/exsy.12787

  21. Ali, E. M., Soruri, M., Dalarsson, M., Naser-Moghadasi, M., Virdee, B. S., Stefanovic, C., Pietrenko-Dabrowska, A., Koziel, S., Szczepanski, S., & Limiti, E. (2022). A comprehensive survey on antennas on-chip based on metamaterial, metasurface, and substrate integrated waveguide principles for millimeter-waves and terahertz integrated circuits and systems. IEEE Access, 10, 3668–3692.

    Article  Google Scholar 

  22. Babaeian, F., Virdee, B. S., Aïssa, S., Azpilicueta, L., See, C. H., Althuwayb, A. A., Huynen, I., Abd-Alhameed, R., Falcone, F., & Limiti, E. (2020). A comprehensive survey on “Various decoupling mechanisms with focus on metamaterial and metasurface principles applicable to SAR and MIMO antenna systems”. IEEE Access, 8, 192965–193004.

    Article  Google Scholar 

  23. Virdee, B. S., Azpilicueta, L., Naser-Moghadasi, M., Akinsolu, M. O., See, C. H., Liu, B., Abd-Alhameed, R. A., Falcone, F., Huynen, I., Denidni, T. A., & Limiti, E. (2020). A comprehensive survey of “Metamaterial transmission-line based antennas: Design, challenges, and applications”. IEEE Access, 8, 144778–144808.

    Article  Google Scholar 

  24. Holloway, C. L., Kuester, E. F., Gordon, J. A., O'Hara, J., Booth, J., & Smith, D. R. (2012). An overview of the theory and applications of metasurfaces: The two-dimensional equivalents of metamaterials. Antennas and Propagation Magazine, IEEE, 54, 10–35.

    Article  Google Scholar 

  25. G. Minatti, M. Faenzi, , E. Martini, Caminita, F., De Vita, P., Ovejero, D. G., Sabbadini, M., and Maci, S.: Modulated metasurface antennas for space: Synthesis, analysis and realizations, IEEE Transactions on Antennas and Propagation, vol. 63, no. 4, pp. 1288–1300, 2015.

    Article  MathSciNet  MATH  Google Scholar 

  26. ANSYS HFSS simulator. [online] Available: http://www.ansys.com/products/electronics/ansys.

  27. “KalamSat – World’s smallest satellite built by Indian teen to be launched by NASA on June 21”. Zee News. May 15, 2017. Retrieved May 16, 2017.

  28. Lastovicka-Medin, G. (2016, June). Nano/pico/femto-satellites: Review of challenges in space education and science integration towards disruptive technology. In: [Online] (pp. 357–362) IEEE. Available from: https://doi.org/10.1109/MECO.2016.7525781

  29. El Bakkali, M., Gaba, G. S., Tubbal, F. E., & El Idrissi, N. E. A. (2018). High gain patch antenna array with parasitic elements for CubeSat applications. In IEEE Indian conference on antennas and propogation (pp. 1–5).

    Google Scholar 

  30. Bakkali, M. E., Tubbal, F., Gaba, G. S., Kansal, L., & El Idrissi, N. A. High gain miniaturized MPA with MSS for FemtoSat communications. In A. Luhach, D. Jat, K. Hawari, X. Z. Gao, & P. Lingras (Eds.), Advanced informatics for computing research. ICAICR 2019 (Communications in Computer and Information Science) (Vol. 1076). Springer. https://doi.org/10.1007/978-981-15-0111-1_32

  31. Karthikeya, G. S., & Suraj, H. S. (2016). mmWave metamaterial inspired coaxial-fed microstrip antenna array for Femtosat. In 2016 Loughborough Antennas & Propagation Conference (LAPC) (pp. 1–5). https://doi.org/10.1109/LAPC.2016.7807518

    Chapter  Google Scholar 

  32. Omari, F., Hussain, N., Benhmimou, B., Gupta, N., Laamara, R. A., …, Abdulkarim, Y. I., & El Bakkali, M. (2022, October 3rd – 5th). Only-metal ultra-small circular slot antenna for 3U CubeSats. In 13th international conference on computing, communication and technologies (13th ICCCNT) (pp. 1–6).

    Google Scholar 

  33. Benhmimou, B., Hussain, N., Gupta, N., Laamara, R. A., Guerrero, J. M., …, El Bakkali, M., Arpanaei, F., & Alibakhshikenari, M. (2022, October 3rd–5th). Miniaturized transparent slot antenna for 1U and 2U CubeSats: CRTS space missions. In 13th international conference on computing, communication and technologies (13th ICCCNT) (pp. 1–6).

    Google Scholar 

  34. Malik, P., Lu, J., Madhav, B. T. P., Kalkhambkar, G., & Amit, S. (Eds.). Smart antennas: Latest trends in design and application. Springer. https://doi.org/10.1007/978-3-030-76636-8. ISBN 978-3-030-76636-8.

  35. Roges, R., & Malik, P. K. (2021). Planar and printed antennas for Internet of Things-enabled environment: Opportunities and challenges. International Journal of Communication Systems, 34(15), e4940. https://doi.org/10.1002/dac.4940. (IF: 2.047) ISSN: 1099-1131, Sep 2021.

    Article  Google Scholar 

  36. Rahim, A., & Malik, P. K. (2021). Analysis and design of fractal antenna for efficient communication network in vehicular model, 100586., , Elsevier, ISSN 2210-5379. Sustainable Computing: Informatics and Systems, 31. https://doi.org/10.1016/j.suscom.2021.100586

  37. Shaik, N., & Malik, P. K. (2021). A comprehensive survey 5G wireless communication systems: Open issues, research challenges, channel estimation, multi carrier modulation and 5G applications. Multimedia Tools and Applications, 80, 28789. https://doi.org/10.1007/s11042-021-11128-z

    Article  Google Scholar 

  38. Malik, P. K., Wadhwa, D. S., & Khinda, J. S. (2020). A survey of device to device and cooperative communication for the future cellular networks. International Journal of Wireless Information Networks, Springer, 27, 411–432. https://doi.org/10.1007/s10776-020-00482-8

    Article  Google Scholar 

  39. Tiwari, P., & Malik, P. K. (2021). Wide band micro-strip antenna design for higher “X” band. International Journal of e-Collaboration (IJeC), 17(4), 60–74. https://doi.org/10.4018/IJeC.2021100105. (ISSN: 1548-3673) Oct 2021.

    Article  Google Scholar 

  40. Kaur, A., & Malik, P. K. (2021). Multiband elliptical patch fractal and defected ground structures microstrip patch antenna for wireless applications. Progress in Electromagnetics Research B, 91, 157–173. https://doi.org/10.2528/PIERB20102704. (ISSN: 1937-6472).

    Article  Google Scholar 

  41. Shaik, N., & Malik, P. K. (2020). A retrospection of channel estimation techniques for 5G wireless communications: Opportunities and challenges. International Journal of Advanced Science and Technology, 29(05), 8469–8479. ISSN: 2005-4238, June 2020.

    Google Scholar 

  42. Malik, P. K., & Singh, M. (2019). Multiple bandwidth design of micro strip antenna for future wireless communication. International Journal of Recent Technology and Engineering. ISSN: 2277-3878, 8(2), 5135–5138. https://doi.org/10.35940/ijrte.B2871.078219

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Prof. Gurjot Singh, Prof. Alexander Kogut, and Prof. Yadgar Ibrahim Abdulkarim for their valuable support in preparing this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandeep Kumar Arora .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Benhmimou, B. et al. (2023). Sandwiched Metasurface Antenna for Small Spacecrafts in IoT Infrastructure. In: Sharma, R., Jeon, G., Zhang, Y. (eds) Data Analytics for Internet of Things Infrastructure. Internet of Things. Springer, Cham. https://doi.org/10.1007/978-3-031-33808-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-33808-3_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-33807-6

  • Online ISBN: 978-3-031-33808-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics