Skip to main content

Techniques to Identify Image Objects Under Adverse Environmental Conditions: A Systematic Literature Review

  • Chapter
  • First Online:
Data Analytics for Internet of Things Infrastructure

Part of the book series: Internet of Things ((ITTCC))

  • 236 Accesses

Abstract

For traffic and security surveillance, moving object detection and segmentation are critical. Detecting moving objects in dynamic environments is more difficult than it is in static environments. In this paper, all the research articles published between 2011 and 2022 in IEEE Xplore, ScienceDirect conferences, and various journals were referenced for a systematic review on identifying different objects from images/videos taken under adverse environmental conditions. We used different tags and keywords to search for papers on the topic under study. All the papers were studied, the proposed techniques were analyzed, and information was gathered. On the basis of this analysis, we present some future prospects for the area under study. We also present a survey of various techniques proposed by various researchers to detect moving objects under various environmental conditions over a period of time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pavlic, M., Belzner, H., Rigoll, G., & Ili, S. (2011). Image based fog detection in vehicles. IEEE.

    Google Scholar 

  2. Pavlic, M., Belzner, H., Rigoll, G., & Ili, S. 2012. Image based fog detection in vehicles. In Intelligent Vehicles Symposium Alcalá de Henares, SCI indexed.

    Google Scholar 

  3. Dong, Z., Wu, Y., Pei, M., & Jia, Y. (2015). Vehicle type classification using a semisupervised convolutional neural network. IEEE Transactions on Intelligent Transportation Systems, SCI Indexed, 16(4), 2247–2256.

    Article  Google Scholar 

  4. Fu, H., Ma, H., Liu, Y., & Lu, D. (2016). A vehicle classification system based on hierarchical multi-SVMs in crowded traffic scenes. Neurocomputing, SCI indexed, 211, 182–190.

    Article  Google Scholar 

  5. Singh, R., Singh, S., & Kaur, N. (2016). A review: Techniques of vehicle detection in fog. Indian Journal of Science and Technology, Zoological Record, 9(45). https://doi.org/10.17485/ijst/2016/v9i45/106793

  6. Zhuo, L., Jiang, L., Zhu, Z., Li, J., Zhang, J., & Long, H. (2017). Vehicle classification for large-scale traffic surveillance videos using convolutional neural networks. Machine Vision and Applications, SCI, 28(7), 793–802.

    Article  Google Scholar 

  7. Murugan, V., & Kumar, V. R. (2018). Automatic moving vehicle detection and classification based on artificial neural fuzzy inference system. Wireless Personal Communications, SCI, Springer, 100(3), 745–766.

    Article  Google Scholar 

  8. Chowdhury, P. N., & Ray, T. C. (2018). A vehicle detection technique for traffic management using image processing. In International Conference on Computer, Communication, Chemical, Material and Electronic Engineering (IC4ME2), SCI.

    Google Scholar 

  9. Liu, W., Luo, Z., & Li, S. (2018). Improving deep ensemble vehicle classification by using selected adversarial samples. Knowledge-Based Systems, SCI, 160, 167–175.

    Article  Google Scholar 

  10. Wang, X., Zhang, W., Wu, X., Xiao, L., Qian, Y., & Fang, Z. (2019). Real-time vehicle type classification with deep convolutional neural networks. Journal of Real-Time Image Processing, SCI, 16(1), 5–14.

    Article  Google Scholar 

  11. Jyothi, R. A., Babu, R. K., & Bachu, S. (2019). Moving object detection using the genetic algorithm for real times transportation. International Journal of Engineering and Advanced Technology (IJEAT), 8(6).

    Google Scholar 

  12. Chandrika, R. R., Ganesh, G. N. S., & Raghunath, K. M. K. (2020). Vehicle detection and classification using image processing. IEEE Xplore, SCI.

    Google Scholar 

  13. Kalyan, S. S., Pratyusha, V., Nishitha, N., & Ramesh, T. K. (2020). Vehicle detection using image processing. In IEEE International Conference for Innovation in Technology, SCI.

    Google Scholar 

  14. Shyamala, A. (2020). Certain investigations on moving vehicle detection and classification using soft computing techniques. shodhganga.

    Google Scholar 

  15. Şentaş, A., Tashiev, İ., & Küçükayvaz, F. (2020). Performance evaluation of support vector machine and convolutional neural network algorithms in real-time vehicle type and color classification. Evolutionary Intelligence, SCI, 13(1), 83–91.

    Article  Google Scholar 

  16. Hedeya, M. A., Eid, A. H., & Abdel-Kadar, R. F. (2020). A super learner ensemble of deep networks for vehicle-type classification. IEEE Access, SCI, 8, 98266–98280.

    Article  Google Scholar 

  17. Zahra, G., Imran, M., Qahtani, A. M., Alsufyani, A., Almutiry, O., Mahmood, A., & Alazemi, F. E. (2021). Visibility enhancement of scene images degraded by foggy weather condition: An application to video surveillance. Computers, Materials & Continua Tech Science Press, SCI. https://doi.org/10.32604/cmc.2021.017454

  18. Jagannathan, P., Kumar, S. R., Frnda, J., Divakarachari, P. V., & Subramani, P. (2021). Moving vehicle detection and classification using Gaussian mixture model and ensemble deep learning technique. Hindawi Wireless Communications and Mobile Computing, SCI. https://doi.org/10.1155/2021/5590894

  19. Miclea, R. C., Ungureanu, V. I., Sandru, F. D., & Silea, I. (2021). Visibility enhancement and fog detection: Solutions presented in recent scientific papers with potential for application to Mobile systems. Sensors, SCI, 21, 3370. https://doi.org/10.3390/s21103370

    Article  Google Scholar 

  20. Kim, K., Kim, S., & Kim, K. S. (2018). Effective image enhancement techniques for fog-affected indoor and outdoor images. IET Image Processing Research Article, SCI. https://doi.org/10.1049/iet-ipr.2016.0819

  21. Jiang, Y., Sun, C., Zhao, Y., & Yang, L. (2017). Fog density estimation and image defogging based on surrogate modeling for optical depth. IEEE Transactions on Image Processing, SCI. https://doi.org/10.1109/TIP.2017.2700720

  22. Nam, Y., & Nam, Y. C. (2018). Vehicle classification based on images from visible light and thermal cameras. Journal on Image and Video Processing, SCI. https://doi.org/10.1186/s13640-018-0245-2

  23. Pesek, J., & Fiser, O. (2013). Automatically low clouds or fog detection, based on two visibility meters and FSO. In 13th Conference on Microwave Techniques COMITE.

    Google Scholar 

  24. Hautière, N., Tarel, J. P., & D. Aubert (2007). Towards fog-free in-vehicle vision systems through contrast restoration. In Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., pp. 0–7. https://doi.org/10.1109/CVPR.2007.383259

  25. Abbaspour, M. J., Yazdi, M., & Masnadi-Shirazi, M. (2016). A new fast method for foggy image enhancement. In 2016 24th Iranian Conference on Electrical Engineering (ICEE) 2016, pp. 1855–1859. https://doi.org/10.1109/IranianCEE.2016.7585823

  26. Hautière, N., Tarel, J. P., Halmaoui, H., Brémond, R., & Aubert, D. (2014). Enhanced fog detection and free-space segmentation for car navigation. Machine Vision and Applications, 25(3), 667–679. https://doi.org/10.1007/s00138-011-0383-3

    Article  Google Scholar 

  27. Negru, M., & Nedevschi, S. (2013). Image based fog detection and visibility estimation for driving assistance systems. In Proceedings, 2013 IEEE 9th International Conference on Intelligent Computer Communication and Processing 2013, pp. 163–168, https://doi.org/10.1109/ICCP.2013.6646102

  28. Negru, M., Nedevschi, S., & Peter, R. I. (2015). Exponential contrast restoration in fog conditions for driving assistance. IEEE Transactions on Intelligent Transportation Systems, 16(4), 2257–2268. https://doi.org/10.1109/TITS.2015.2405013

    Article  Google Scholar 

  29. Halmaoui, H., Joulan, K., Hautière, N., Cord, A., & Brémond, R. (2015). Quantitative model of the driver’s reaction time during daytime fog-application to a head up display-based advanced driver assistance system. IET Intelligent Transport Systems, 9(4), 375–381. https://doi.org/10.1049/iet-its.2014.0101

    Article  Google Scholar 

  30. Yuan, H., Liu, C., Guo, Z., & Sun, Z. (2017). A region-wised medium transmission based image dehazing method. IEEE Access, 5(c), 1735–1742. https://doi.org/10.1109/ACCESS.2017.2660302

    Article  Google Scholar 

  31. Anandkumar, R., Dinesh, K., Obaid, A. J., Malik, P., Sharma, R., Dumka, A., Singh, R., Khatak, S., & Securing e-Health application of cloud computing using hyperchaotic image encryption framework. (2022). 107860, ISSN 0045-7906. Computers & Electrical Engineering, 100. https://doi.org/10.1016/j.compeleceng.2022.107860

  32. Sharma, R., Xin, Q., Siarry, P., & Hong, W.-C. (2022). Guest editorial: Deep learning-based intelligent communication systems: Using big data analytics. IET Communications. https://doi.org/10.1049/cmu2.12374

  33. Sharma, R., & Arya, R. (2022). UAV based long range environment monitoring system with Industry 5.0 perspectives for smart city infrastructure, 108066, ISSN 0360-8352. Computers & Industrial Engineering, 168. https://doi.org/10.1016/j.cie.2022.108066

  34. Rai, M., Maity, T., Sharma, R., et al. (2022). Early detection of foot ulceration in type II diabetic patient using registration method in infrared images and descriptive comparison with deep learning methods. The Journal of Supercomputing. https://doi.org/10.1007/s11227-022- 04380-z

  35. Sharma, R., Gupta, D., Maseleno, A., & Peng, S.-L. (2022). Introduction to the special issue on big data analytics with internet of things-oriented infrastructures for future smart cities. Expert Systems, 39, e12969. https://doi.org/10.1111/exsy.12969

    Article  Google Scholar 

  36. Sharma, R., Gavalas, D., & Peng, S.-L. (2022). Smart and future applications of Internet of Multimedia Things (IoMT) using big data analytics. Sensors, 22, 4146. https://doi.org/10.3390/s22114146

    Article  Google Scholar 

  37. Sharma, R., & Arya, R. (2022). Security threats and measures in the internet of things for smart city infrastructure: A state of art. Transactions on Emerging Telecommunications Technologies, e4571. https://doi.org/10.1002/ett.4571

  38. Zheng, J., Wu, Z., Sharma, R., & Lv, H. (2022). Adaptive decision model of product team organization pattern for extracting new energy from agricultural waste, 102352, ISSN 2213-1388. Sustainable Energy Technologies and Assessments, 53(Part A). https://doi.org/10.1016/j.seta.2022.102352

  39. Mou, J., Gao, K., Duan, P., Li, J., Garg, A., & Sharma, R. (2022). A machine learning approach for energy-efficient intelligent transportation scheduling problem in a real-world dynamic circumstances. IEEE Transactions on Intelligent Transportation Systems. https://doi.org/10.1109/TITS.2022.3183215

  40. Priyadarshini, I., Sharma, R., Bhatt, D., et al. (2022). Human activity recognition in cyber-physical systems using optimized machine learning techniques. Cluster Computing. https://doi.org/10.1007/s10586-022-03662-8

  41. Hussain, F., & Jeong, J. (2016). Visibility enhancement of scene images degraded by foggy weather conditions with deep neural networks. Journal of Sensors, 2016. https://doi.org/10.1155/2016/3894832

  42. Hu, A., Xie, Z., Xu, Y., Xie, M., Wu, L., & Qiu, Q. (2020). Unsupervised haze removal for high-resolution optical remote-sensing images based on improved generative adversarial networks. Remote Sensing, 12(24), 1–20. https://doi.org/10.3390/rs12244162

    Article  Google Scholar 

  43. Ha, E., Shin, J., & Paik, J. (2020). Gated dehazing network via least square adversarial learning. Sensors (Switzerland), 20(21), 1–15. https://doi.org/10.3390/s20216311

    Article  Google Scholar 

  44. Chen, J., Wu, C., Chen, H., & Cheng, P. (2020). Unsupervised dark-channel attention-guided cyclegan for single-image dehazing. Sensors (Switzerland), 20(21), 1–15. https://doi.org/10.3390/s20216000

    Article  Google Scholar 

  45. Ngo, D., Lee, S., Lee, G. D., & Kang, B. (2020). Single-image visibility restoration: A machine learning approach and its 4K-capable hardware accelerator. Sensors (Switzerland), 20(20), 1–27. https://doi.org/10.3390/s20205795

    Article  Google Scholar 

  46. Feng, M., Yu, T., Jing, M., & Yang, G. (2020). Learning a convolutional autoencoder for nighttime image dehazing. Information, 11(9), 1–13. https://doi.org/10.3390/info11090424

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Navjot Kaur .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kaur, N., Sharma, K., Jain, A. (2023). Techniques to Identify Image Objects Under Adverse Environmental Conditions: A Systematic Literature Review. In: Sharma, R., Jeon, G., Zhang, Y. (eds) Data Analytics for Internet of Things Infrastructure. Internet of Things. Springer, Cham. https://doi.org/10.1007/978-3-031-33808-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-33808-3_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-33807-6

  • Online ISBN: 978-3-031-33808-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics