Skip to main content

Digital Approaches for Optimization of Composite Processing: Bayesian Optimization for Impregnation and Fibre Spreading In-Situ Monitoring

  • Conference paper
  • First Online:
Proceedings of the Munich Symposium on Lightweight Design 2022 (MSLD 2022, MSLD 2022, MSLD 2022)

Abstract

In order to optimize the processing of composite materials, the importance of digital methods in materials science is steadily increasing. In this study, two approaches were used for composite materials processing. First, for the winding of H2 storage vessels using towpregs, Bayesian optimization (BO) was used as a tool to find optimal process conditions within specified parameter limits. The applied algorithm can efficiently maximize selected target values within existing parameter limits. In this case, the goal was to achieve a maximum towpreg width of a winding standard of ¼” (6.35 mm) with a fibre volume content between 55–60 vol.%. Although this maximum couldn’t be achieved within the specified parameter limits, the BO resulted in a steady reduction of the standard deviation and thus a significant increase in process quality. In the second part of this study, an in-situ monitoring tool for a fibre spreading process was developed. Fibre spreading of low-cost but mechanically weak Heavy Tows has the potential to be used in the future production of H2 storage vessels, especially for the highly cost-effective automotive market. To gain deeper insights into the spreading process itself, a sufficient in-line monitoring tool is needed to observe and analyse the spreading behaviour of the given fibres. Using a camera setup and a developed Python tool, a method has been developed to observe the spreading process of the fibres in depth. This opens the possibility for further in-depth parameter studies on the spreading behaviour and the use of Heavy Tows in automotive applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Züttel, A.: Hydrogen storage methods. Naturwissenschaften 91(4), 157–172 (2004). https://doi.org/10.1007/s00114-004-0516-x

    Article  Google Scholar 

  2. Pandita, S., et al.: Clean wet-filament winding – Part 1: design concept and simulations. J. Compos. Mater. 47(3), 379–390 (Feb.2013). https://doi.org/10.1177/0021998312440474

  3. Walker, G.: “Hydrogen storage technologies,” in Solid-State Hydrogen Storage, pp. 3–17. Elsevier, (2008). https://doi.org/10.1533/9781845694944.1.3

  4. Lohse-Busch, H. et al.: “Report # ANL/ESD-18/12 Technology Assessment of a Fuel Cell Vehicle: 2017 Toyota Mirai,” US DOE -Energy Syst. Div., (2017) www.anl.gov

  5. Ayakda, H., Ozan, S.: Aydiin, “HYDROGEN STORAGE TECHNOLOGIES” (2018) https://doi.org/10.1533/9781845694944.1.3

  6. Shahriari, B., Swersky, K., Wang, Z., Adams, R.P., de Freitas, N.: Taking the Human Out of the Loop: A Review of Bayesian Optimization. Proc. IEEE 104(1), 148–175 (Jan.2016). https://doi.org/10.1109/JPROC.2015.2494218

  7. Agnihotri, A., Batra, N.: “Exploring Bayesian Optimization”. https://distill.pub/2020/bayesian-optimization/

  8. Li, C., et al.: Rapid Bayesian optimisation for synthesis of short polymer fibre materials. Sci. Rep. 7(1), 5683 (Jul.2017). https://doi.org/10.1038/s41598-017-05723-0

  9. Albuquerque, H., Rodrigo, Q., Rothenhäusler, F., Ruckdäschel, H.: “Designing formulations of bio-based, multi-component epoxy resin systems via machine learning”, pp. 1–15. Submitt. Publisher

    Google Scholar 

  10. Nunna, S., Blanchard, P., Buckmaster, D., Davis, S., Naebe, M.: Development of a cost model for the production of carbon fibres. Heliyon 5(10), e02698 (Oct.2019). https://doi.org/10.1016/j.heliyon.2019.e02698

  11. Ennis, B. et al.: “Optimized Carbon Fibre Composites in Wind Turbine Blade Design,” Sandia Rep., no. November, (2019) https://www.energy.gov/sites/default/files/2019/12/f69/SAND2019-14173-Optimized.pdf

  12. Friedrich, K., Almajid, A.A.: Manufacturing Aspects of Advanced Polymer Composites for Automotive Applications. Appl. Compos. Mater. 20(2), 107–128 (Apr.2013). https://doi.org/10.1007/s10443-012-9258-7

  13. Huang, C., et al.: Exploration relation between interlaminar shear properties of thin-ply laminates under short-beam bending and meso-structures. J. Compos. Mater. 52(17), 2375–2386 (Jul.2018). https://doi.org/10.1177/0021998317745586

  14. Cugnoni, J., et al.: Towards aerospace grade thin-ply composites: Effect of ply thickness, fibre, matrix and interlayer toughening on strength and damage tolerance. Compos. Sci. Technol. 168, 467–477 (2018). https://doi.org/10.1016/j.compscitech.2018.08.037

    Article  Google Scholar 

  15. Tonejc, M., Steiner, H., Fauster, E., Konstantopoulos, S., Schledjewski, R.: “A STUDY ON GEOMETRICAL PARAMETERS INFLUENCING THE MECHANICAL SPREADING OF FIBRE BUNDLES,” in 20th International Conference on Composite Materials, p. 10 (2015)

    Google Scholar 

  16. Vossen, C., Rene, G.: “Schlussbericht zu IGF-Vorhaben Nr. 18713 N Auto-Tow – Automatische Regulierung und Homogenisierung der Fasereigenschsaften von Hochmodulfasergarnen,” Aachen, (2018)

    Google Scholar 

  17. Gizik, D.: “Untersuchung der Verwendung von Heavy Tow Carbonfasern für Strukturbauteile in der Luft- und Raumfahrt,” Universität Stuttgart, (2018) https://www.dr.hut-verlag.de/978-3-8439-3911-9.html

  18. Otsu, N.: A Threshold Selection Method from Gray-Level Histograms. IEEE Trans. Syst. Man. Cybern. 9(1), 62–66 (Jan.1979). https://doi.org/10.1109/TSMC.1979.4310076

Download references

Funding

The Bayesian optimization approach was funded in the project “CryoFuselage” in the BayLu25 program under guidance of German Aerospace Center (DLR). Grants were given by the Regierung of Oberbayern with the Bavarian Ministry of Economic affairs, Regional Development and Energy (StmWi) with grant number LABAY108A.

The in-situ monitoring tool development for fibre spreading was funded in the project “InLineCon” in the LuFo VI-1 program under the guidance of German Aerospace Center (DLR). Grants were given by the Federal Ministry for Economic Affairs and Climate Action (BMWK) with grant number 20E1903B.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florian Schönl .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Schönl, F., Hübner, F., Luik, M., Thomas, J., de Albuquerque, R., Ruckdäschel, H. (2023). Digital Approaches for Optimization of Composite Processing: Bayesian Optimization for Impregnation and Fibre Spreading In-Situ Monitoring. In: Rieser, J., Endress, F., Horoschenkoff, A., Höfer, P., Dickhut, T., Zimmermann, M. (eds) Proceedings of the Munich Symposium on Lightweight Design 2022. MSLD MSLD MSLD 2022 2022 2022. Springer Vieweg, Cham. https://doi.org/10.1007/978-3-031-33758-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-33758-1_5

  • Published:

  • Publisher Name: Springer Vieweg, Cham

  • Print ISBN: 978-3-031-33757-4

  • Online ISBN: 978-3-031-33758-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics