Skip to main content

A Myhill-Nerode Theorem for Higher-Dimensional Automata

  • Conference paper
  • First Online:
Application and Theory of Petri Nets and Concurrency (PETRI NETS 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13929))

Abstract

We establish a Myhill-Nerode type theorem for higher-dimensional automata (HDAs), stating that a language is regular precisely if it has finite prefix quotient. HDAs extend standard automata with additional structure, making it possible to distinguish between interleavings and concurrency. We also introduce deterministic HDAs and show that not all HDAs are determinizable, that is, there exist regular languages that cannot be recognised by a deterministic HDA. Using our theorem, we develop an internal characterisation of deterministic languages.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Pronunciation: ell-oh-set.

References

  1. Angluin, D.: Learning regular sets from queries and counterexamples. Inf. Comput. 75(2), 87–106 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  2. Barlocco, S., Kupke, C., Rot, J.: Coalgebra learning via duality. In: Bojańczyk, M., Simpson, A. (eds.) FoSSaCS 2019. LNCS, vol. 11425, pp. 62–79. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17127-8_4

    Chapter  Google Scholar 

  3. Bednarczyk, M.A.: Categories of asynchronous systems, Ph. D. thesis, University of Sussex, UK (1987)

    Google Scholar 

  4. Colcombet, T.: The theory of stabilisation monoids and regular cost functions. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009. LNCS, vol. 5556, pp. 139–150. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02930-1_12

    Chapter  MATH  Google Scholar 

  5. Dubut, J.: Trees in partial higher dimensional automata. In: Bojańczyk, M., Simpson, A. (eds.) FoSSaCS 2019. LNCS, vol. 11425, pp. 224–241. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17127-8_13

    Chapter  Google Scholar 

  6. Fahrenberg, U., Johansen, C., Struth, G., Ziemiański, K.: Languages of higher-dimensional automata. Math. Struct. Comput. Sci. 31(5), 575–613 (2021). https://arxiv.org/abs/2103.07557

  7. Fahrenberg, U., Johansen, C., Struth, G., Ziemiański, K.: A Kleene theorem for higher-dimensional automata. In: Klin, B., Lasota, S., Muscholl, A. (eds.) CONCUR, volume 243 of Leibniz International Proceedings in Informatics (LIPIcs), pp. 1–18. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2022). https://arxiv.org/abs/2202.03791

  8. Fahrenberg, U., Johansen, C., Struth, G., Ziemiański, K.: Posets with interfaces as a model for concurrency. Inf. Comput. 285(B), 104914 (2022). https://arxiv.org/abs/2106.10895

  9. Fahrenberg, U., Legay, A.: Partial higher-dimensional automata. In: Moss, L.S., Sobocinski, P., (eds.) CALCO, volume 35 of Leibniz International Proceedings in Informatics, pp. 101–115. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2015)

    Google Scholar 

  10. Fanchon, J., Morin, R.: Regular sets of pomsets with autoconcurrency. In: Brim, L., Křetínský, M., Kučera, A., Jančar, P. (eds.) CONCUR 2002. LNCS, vol. 2421, pp. 402–417. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45694-5_27

    Chapter  Google Scholar 

  11. Fanchon, J., Morin, R.: Pomset languages of finite step transition systems. In: Franceschinis, G., Wolf, K. (eds.) PETRI NETS 2009. LNCS, vol. 5606, pp. 83–102. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02424-5_7

    Chapter  MATH  Google Scholar 

  12. Fishburn, P.C.: Interval orders and interval graphs: a study of partially ordered sets. Wiley (1985)

    Google Scholar 

  13. Grabowski, J.: On partial languages. Fundamentae. Informatica 4(2), 427 (1981)

    Google Scholar 

  14. Henzinger, T.A., Piterman, N.: Solving games without determinization. In: Ésik, Z. (ed.) CSL 2006. LNCS, vol. 4207, pp. 395–410. Springer, Heidelberg (2006). https://doi.org/10.1007/11874683_26

    Chapter  Google Scholar 

  15. Howar, F., Steffen, B.: Active automata learning as black-box search and lazy partition refinement. In: Jansen, N., Stoelinga, M., van den Bos, P. (eds.) A Journey from Process Algebra via Timed Automata to Model Learning. LNCS, vol. 13560, pp. 321–338. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-15629-8_17

  16. Isberner, M., Howar, F., Steffen, B.: The TTT algorithm: a redundancy-free approach to active automata learning. In: Bonakdarpour, B., Smolka, S.A. (eds.) RV 2014. LNCS, vol. 8734, pp. 307–322. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11164-3_26

    Chapter  Google Scholar 

  17. Janicki, R., Koutny, M.: Structure of concurrency. Theoret. Comput. Sci. 112(1), 5–52 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  18. Janicki, R., Koutny, M.: Operational semantics, interval orders and sequences of antichains. Fundamentae Informatica 169(1–2), 31–55 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  19. Johansen, C.: ST-structures. J. Logic Algeb. Methods Programm. 85(6), 1201–1233 (2015). https://arxiv.org/abs/1406.0641

  20. Kupferman, O., Safra, S., Vardi, M.Y.: Relating word and tree automata. Ann. Pure Appl. Logic 138(1–3), 126–146 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  21. Nielsen, M., Plotkin, G.D., Winskel, G.: Petri nets, event structures and domains, part I. Theoret. Comput. Sci. 13, 85–108 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  22. Petri, C.A.: Kommunikation mit Automaten. Number 2 in Schriften des IIM. Institut für Instrumentelle Mathematik, Bonn (1962)

    Google Scholar 

  23. Pratt, V.R.: Modeling concurrency with geometry. In: POPL, pp. 311–322, New York City. ACM Press (1991)

    Google Scholar 

  24. Pratt, V.: Chu spaces and their interpretation as concurrent objects. In: van Leeuwen, J. (ed.) Computer Science Today. LNCS, vol. 1000, pp. 392–405. Springer, Heidelberg (1995). https://doi.org/10.1007/BFb0015256

    Chapter  Google Scholar 

  25. Pratt, V.R.: Transition and cancellation in concurrency and branching time. Math. Struct. Comput. Sci. 13(4), 485–529 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  26. Mike, W.: Shields. Concurrent machines. Comput. J. 28(5), 449–465 (1985)

    Article  MathSciNet  Google Scholar 

  27. van Glabbeek, R.J.: Bisimulations for higher dimensional automata. Email message, June (1991). http://theory.stanford.edu/rvg/hda

  28. van Glabbeek, R.J.: On the expressiveness of higher dimensional automata. Theoret. Comput. Sci. 356(3), 265–290 (2006)

    Google Scholar 

  29. van Glabbeek, R.J.: Erratum to “On the expressiveness of higher dimensional automata”. Theoret. Comput. Sci. 368(1-2), 168–194 (2006)

    Google Scholar 

  30. van Glabbeek, R.J., Goltz, U.: Refinement of actions and equivalence notions for concurrent systems. Acta Informatica 37(4/5), 229–327 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  31. van Glabbeek, R.J., Plotkin, G.D.: Configuration structures. In: LICS, pp. 199–209. IEEE Computer Society (1995)

    Google Scholar 

  32. van Glabbeek, R.J., Plotkin, G.D.: Configuration structures, event structures and Petri nets. Theoret. Comput. Sci. 410(41), 4111–4159 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  33. van Heerdt, G., Kappé, T., Rot, J., Silva, A.: Learning pomset automata. In: FOSSACS 2021. LNCS, vol. 12650, pp. 510–530. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-71995-1_26

    Chapter  Google Scholar 

  34. Vogler, W. (ed.): Modular Construction and Partial Order Semantics of Petri Nets. LNCS, vol. 625. Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-55767-9

Download references

Acknowledgement

We are indebted to Amazigh Amrane, Hugo Bazille, Christian Johansen, and Georg Struth for numerous discussions regarding the subjects of this paper; any errors, however, are exclusively ours.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uli Fahrenberg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fahrenberg, U., Ziemiański, K. (2023). A Myhill-Nerode Theorem for Higher-Dimensional Automata. In: Gomes, L., Lorenz, R. (eds) Application and Theory of Petri Nets and Concurrency. PETRI NETS 2023. Lecture Notes in Computer Science, vol 13929. Springer, Cham. https://doi.org/10.1007/978-3-031-33620-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-33620-1_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-33619-5

  • Online ISBN: 978-3-031-33620-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics