Skip to main content

Interval Traces with Mutex Relation

  • Conference paper
  • First Online:
Application and Theory of Petri Nets and Concurrency (PETRI NETS 2023)

Abstract

Interval traces can model sophisticated behaviours of concurrent systems under the assumptions that all observations/system runs are represented by interval orders and simultaneity is not necessarily transitive. What they cannot model is the case when a and b are considered independent, interleavings ab and ba are deemed equivalent, but simultaneous execution of a and b is disallowed. We introduce a new kind of interval traces, incorporating a mutex relation, that can model these kind of cases. We discuss the soundness of this concept and show how it can be applied in the domain of Petri nets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Mazurkiewicz traces do not forbid simultaneous executions of a and b for independent a and b, they just do not express it explicitly.

  2. 2.

    Defining interval step sequences is mathematically possible but it does not make much sense as \(t_\upharpoonright \) and \(t_\downharpoonright \) are interpreted as event beginning and its end, i.e., they are instantaneous, so their simultaneous occurrence is not observable - when time is continuous, or it can entirely be represented by interleaving - when time is discrete (see [22, 34]).

References

  1. Baldan, P., Busi, N., Corradini, A., Pinna, G.M.: Domain and event structure semantics for Petri nets with read and inhibitor arcs. Inf. Comput. 323, 129–189 (2004)

    MathSciNet  MATH  Google Scholar 

  2. Best, E., Koutny, M.: Petri net semantics of priority systems. Theor. Comput. Sci. 96(1), 175–174 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  3. Cartier, P., Foata, D.: Problèmes combinatoires de commutation et réarrangements. LNM, vol. 85. Springer-Verlag, Berlin (1969)

    Google Scholar 

  4. Desel, J., Reisig, W.: Place/transition petri nets. In: Reisig, W., Rozenberg, G. (eds.) ACPN 1996. LNCS, vol. 1491, pp. 122–173. Springer, Heidelberg (1998). https://doi.org/10.1007/3-540-65306-6_15

    Chapter  MATH  Google Scholar 

  5. Diekert, V., Métivier, Y.: Partial commutation and traces. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of Formal Languages, pp. 457–533. Springer, Heidelberg (1997). https://doi.org/10.1007/978-3-642-59126-6_8

    Chapter  Google Scholar 

  6. Diekert, V., Rozenberg, G., editors. The Book of Traces. World Scientific (1995)

    Google Scholar 

  7. Fahrenberg, U., Johansen, C., Struth, G., Ziemiański, K.: Posets with interfaces as a model for concurrency. Inf. Comput. 285 (2022)

    Google Scholar 

  8. Fishburn, P.C.: Intransitive indifference with unequal indifference intervals. J. Math. Psychol. 7, 144–149 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  9. Fishburn, P.C.: Interval Orders and Interval Graphs. John Wiley, New York (1985)

    Book  MATH  Google Scholar 

  10. Flynn, M.J., Agerwala, T.: Comments on capabilities, limitations and correctness of Petri nets. In: Lipovski, G.J., Szygenda, S.A., editors, Proceedings of the 1st Annual Symposium on Computer Architecture, Gainesville, FL, USA, December 1973, pp. 81–86. ACM (1973)

    Google Scholar 

  11. Flynn, M.J., Agerwala, T.: Comments on capabilities, limitations and correctness of Petri nets. In: Lipovski, G.J., Szygenda, S.A., editors, Proceedings of the 1st Annual Symposium on Computer Architecture, Gainesville, FL, USA, December 1973, pp. 81–86. ACM (1973)

    Google Scholar 

  12. Janicki, R., Kleijn, J., Koutny, M., Mikulski, Ł: Characterising concurrent histories. Fund. Inform. 139(1), 21–42 (2015)

    MathSciNet  MATH  Google Scholar 

  13. Janicki, R., Kleijn, J., Koutny, M., Mikulski, Ł: Classifying invariant structures of step traces. J. Comput. Syst. Sci. 104, 297–322 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  14. Janicki, R., Koutny, M.: Structure of concurrency. Theor. Comput. Sci. 112(1), 5–52 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  15. Janicki, R., Koutny, M.: Semantics of inhibitor nets. Inf. Comput. 123(1), 1–16 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  16. Janicki, R., Koutny, M.: Operational semantics, interval orders and sequences of antichains. Fund. Inform. 169(1–2), 31–55 (2019)

    MathSciNet  MATH  Google Scholar 

  17. Janicki, R., Lauer, P.E.: Specification and Analysis of Concurrent Systems - The COSY Approach, 2nd edn. Springer, EATCS Monographs on Theoretical Computer Science (2012). https://doi.org/10.1007/978-3-642-77337-2

    Book  MATH  Google Scholar 

  18. Janicki, R., Lauer, P.E., Koutny, M., Devillers, R.: Concurrent and maximally concurrent evolution of nonsequential systems. Theor. Comput. Sci. 43, 213–238 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  19. Janicki, R., Lê, D.T.M.: Modelling concurrency with comtraces and generalized comtraces. Inf. Comput. 209(11), 1355–1389 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  20. Janicki, R., Mikulski, Ł: Algebraic structure of step traces and interval traces. Fund. Inform. 175(1–4), 253–280 (2020)

    MathSciNet  MATH  Google Scholar 

  21. Janicki, R., Yin, X.: Modeling concurrency with interval traces. Inf. Comput. 253, 78–108 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  22. Janicki, R., Yin, X., Zubkova, N.: Modeling interval order structures with partially commutative monoids. In: Koutny, M., Ulidowski, I. (eds.) CONCUR 2012. LNCS, vol. 7454, pp. 425–439. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32940-1_30

    Chapter  Google Scholar 

  23. Kleijn, J., Koutny, M.: Formal languages and concurrent behaviours. In: Enguix, G.B., Jiménez-López, M.D., Martín-Vide, C., editors, New Developments in Formal Languages and Applications, volume 113 of Studies in Computational Intelligence, pp. 125–182. Springer, Cham (2008). https://doi.org/10.1007/978-3-540-78291-9_5

  24. Kleijn, J., Koutny, M.: Mutex causality in processes and traces of general elementary nets. Fund. Inform. 122(1–2), 119–146 (2013)

    MathSciNet  MATH  Google Scholar 

  25. Laarman, A.: Stubborn transaction reduction. In: Dutle, A., Muñoz, C., Narkawicz, A. (eds.) NFM 2018. LNCS, vol. 10811, pp. 280–298. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-77935-5_20

    Chapter  Google Scholar 

  26. Lengauer, C., Hehner, E.C.R.: A methodolgy for programming with concurrency. In: Händler, W., editor, CONPAR 81: Conference on Analysing Problem Classes and Programming for Parallel Computing, Nürnberg, Germany, June 10–12, 1981, Proceedings, volume 111 of Lecture Notes in Computer Science, pp. 259–270. Springer (1981)

    Google Scholar 

  27. Mazurkiewicz, A.: Concurrent program schemes and their interpretations. DAIMI Rep. PB 78, Aarhus University (1977)

    Google Scholar 

  28. Mazurkiewicz, A.W.: Introduction to trace theory. In: Diekert, V., Rozenberg, G., editors, The Book of Traces, pp. 3–41. World Scientific, (1995)

    Google Scholar 

  29. Mikulski, Ł.: Algebraic structure of combined traces. Log. Methods Comput. Sci., 9(3), (2013)

    Google Scholar 

  30. Montanari, U., Rossi, F.: Contextual nets. Acta Infortmatica 32(6), 545–596 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  31. Murata, T.: Petri nets: properties, analysis and applications. Proc. IEEE 77(4), 541–580 (1989)

    Article  Google Scholar 

  32. Nagy, B., Akkeleş, A.: Trajectories and traces on non-traditional regular tessellations of the plane. In: Brimkov, V.E., Barneva, R.P. (eds.) IWCIA 2017. LNCS, vol. 10256, pp. 16–29. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59108-7_2

    Chapter  Google Scholar 

  33. Paulevé, L.: Goal-oriented reduction of automata networks. In: Bartocci, E., Lio, P., Paoletti, N. (eds.) CMSB 2016. LNCS, vol. 9859, pp. 252–272. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45177-0_16

    Chapter  Google Scholar 

  34. Petri, C.A.: Nets, time and space. Theor. Comput. Sci. 153(1 &2), 3–48 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  35. Popova-Zeugmann, L., Pelz, E.: Algebraical characterisation of interval-timed Petri nets with discrete delays. Fundam. Informaticae 120(3–4), 341–357 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  36. Pratt, V.: Modeling concurrency with geometry. In: POPL ’91: Proceedings of the 18th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pp. 311–322. ACM (1991)

    Google Scholar 

  37. Rozenberg, G., Engelfriet, J.: Elementary net systems. In: Reisig, W., Rozenberg, G. (eds.) ACPN 1996. LNCS, vol. 1491, pp. 12–121. Springer, Heidelberg (1998). https://doi.org/10.1007/3-540-65306-6_14

    Chapter  Google Scholar 

  38. Shields, M.W.: Adequate path expressions. In: Kahn, G., editor, Semantics of Concurrent Computation, Proceedings of the International Symposium, Evian, France, July 2–4, 1979, volume 70 of Lecture Notes in Computer Science, pp. 249–265. Springer (1979)

    Google Scholar 

  39. Shields, M.W.: Concurrent machines. Comput. J. 28(5), 449–465 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  40. van Glabbeek, R., Vaandrager, F.: Petri net models for algebraic theories of concurrency. In: de Bakker, J.W., Nijman, A.J., Treleaven, P.C. (eds.) PARLE 1987. LNCS, vol. 259, pp. 224–242. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-17945-3_13

    Chapter  Google Scholar 

  41. Vogler, W.: A generalization of trace theory. RAIRO Infornatique théorique et Appl. 25(2), 147–156 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  42. Vogler, W.: Partial order semantics and read arcs. Theor. Comput. Sci. 286(1), 33–63 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  43. Wiener, N.: A contribution to the theory of relative position. Proc. Camb. Philos. Soc. 17, 441–449 (1914)

    MATH  Google Scholar 

  44. Zuberek, W.M.: Timed Petri nets and preliminary performance evaluation. In: Lenfant, J., Borgerson, B.R., Atkins, D.E., Irani, K.B., Kinniment, D., Aiso, H., editors, Proceedings of the 7th Annual Symposium on Computer Architecture, La Baule, France, May 6–8, 1980, pp. 88–96. ACM (1980)

    Google Scholar 

Download references

Acknowledgment

A partial support by the Discovery NSERC of Canada grant No. 6466-15, and the Leverhulme Trust grant RPG-2022-025 is acknowledged. The authors gratefully acknowledge four anonymous referees, whose comments significantly contributed to the final version of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Łukasz Mikulski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Janicki, R., Koutny, M., Mikulski, Ł. (2023). Interval Traces with Mutex Relation. In: Gomes, L., Lorenz, R. (eds) Application and Theory of Petri Nets and Concurrency. PETRI NETS 2023. Lecture Notes in Computer Science, vol 13929. Springer, Cham. https://doi.org/10.1007/978-3-031-33620-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-33620-1_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-33619-5

  • Online ISBN: 978-3-031-33620-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics