Skip to main content

Mechanisms of Endocrine Resistance in Hormone Receptor-Positive Breast Cancer

  • Chapter
  • First Online:
Breast Cancer Research and Treatment

Part of the book series: Cancer Treatment and Research ((CTAR,volume 188))

Abstract

Hormone receptor-positive (HR+) breast cancer (BC) accounts for approximately 70% of all breast invasive tumors. Endocrine therapy (ET) represents the standard treatment for HR + BC. Most patients, however, eventually develop resistance to ET, which limits their effectiveness and poses a major challenge for the management of HR + BC. Several mechanisms that contribute to ET resistance have been described. One of the most common mechanisms is the upregulation of alternative signaling pathways that can bypass estrogen dependency, such as activation of the PI3K/Akt/mTOR as well as mitogen-activated protein kinase (MAPK) and the insulin-like growth factor 1 receptor (IGF-1R) pathways. Another common mechanism of endocrine resistance is the acquisition of activating mutations of ESR1, which encodes for the estrogen receptor, that lead to structural changes of the receptor, prevent the binding to anti-estrogen drugs and result in constitutive activation of the receptor, even in the absence of estrogens. Epigenetic changes, such as DNA methylation and histone modifications, can also contribute to ET resistance by altering the expression of genes that are involved in estrogen signaling. Understanding the mechanisms of resistance to ET is crucial for the development of new therapies that can overcome resistance and improve outcomes for patients with HR + BC.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Siegel RL, Miller KD, Fuchs HE et al (2022) Cancer statistics, 2022. CA Cancer J Clin 72:7–33

    Google Scholar 

  2. Hanker AB, Sudhan DR, Arteaga CL (2020) Overcoming endocrine resistance in BC. Cancer Cell 37:496–513

    Google Scholar 

  3. Cancer Genome Atlas, Network (2012) Comprehensive molecular portraits of human breast tumours. Nature 490:61–70

    Google Scholar 

  4. Banerji S, Cibulskis K, Rangel-Escareno C et al (2012) Sequence analysis of mutations and translocations across BC subtypes. Nature 486:405–409

    Google Scholar 

  5. Stephens PJ, Tarpey PS, Davies H et al (2012) The landscape of cancer genes and mutational processes in BC. Nature 486:400–404

    Google Scholar 

  6. Nik-Zainal S, Davies H, Staaf J et al (2016) Landscape of somatic mutations in 560 BC whole-genome sequences. Nature 534:47–54

    Google Scholar 

  7. Razavi P, Chang MT, Xu G et al (2018) The genomic landscape of endocrine-resistant advanced BCs. Cancer Cell 34(427–38):e6

    Google Scholar 

  8. Bertucci F, Ng CKY, Patsouris A et al (2019) Genomic characterization of metastatic BCs. Nature 569:560–564

    Google Scholar 

  9. Angus L, Smid M, Wilting SM et al (2019) The genomic landscape of metastatic BC highlights changes in mutation and signature frequencies. Nat Genet 51:1450–1458

    Google Scholar 

  10. Aftimos P, Oliveira M, Irrthum A et al (2021) Genomic and transcriptomic analyses of BC primaries and matched metastases in AURORA, the breast international group (BIG) molecular screening initiative. Cancer Discov 11:2796–2811

    Google Scholar 

  11. Loibl S, Poortmans P, Morrow M et al (2021) BC. Lancet 397:1750–1769

    Google Scholar 

  12. Allison KH, Hammond MEH, Dowsett M et al (2020) Estrogen and progesterone receptor testing in BC: ASCO/CAP guideline update. J Clin Oncol 38:1346–1366

    Google Scholar 

  13. Wolff AC, Hammond MEH, Allison KH et al (2018) Human epidermal growth factor receptor 2 testing in BC: American society of clinical oncology/college of American pathologists clinical practice guideline focused update. J Clin Oncol 36:2105–2122

    Google Scholar 

  14. Curigliano G, Burstein HJ, Winer EP et al (2019) De-escalating and escalating treatments for early-stage BC: the St. Gallen International Expert Consensus Conference on the Primary Therapy of Early BC 2017. Ann Oncol 30:1181

    Google Scholar 

  15. Harbeck N, Penault-Llorca F, Cortes J et al (2019) BC. Nat Rev Dis Primers 5:66

    Google Scholar 

  16. Perou CM, Sorlie T, Eisen MB et al (2000) Molecular portraits of human breast tumours. Nature 406:747–752

    Google Scholar 

  17. Alvarez-Fernandez M, Malumbres M (2020) Mechanisms of sensitivity and resistance to CDK4/6 inhibition. Cancer Cell 37:514–529

    Google Scholar 

  18. Stendahl M, Kronblad A, Ryden L et al (2004) Cyclin D1 overexpression is a negative predictive factor for tamoxifen response in postmenopausal BC patients. Br J Cancer 90:1942–1948

    Google Scholar 

  19. Network TC, Atlas G (2012) Comprehensive molecular portraits of human breast tumours. Nature 490:61–70

    Google Scholar 

  20. Yates LR, Desmedt C (2017) Translational genomics: practical applications of the genomic revolution in BC. Clin Cancer Res 23:2630–2639

    Google Scholar 

  21. Marra A, Trapani D, Viale G et al (2020) Practical classification of triple-negative BC: intratumoral heterogeneity, mechanisms of drug resistance, and novel therapies. npj BC 6:54

    Google Scholar 

  22. Jeselsohn R, Buchwalter G, De Angelis C et al (2015) ESR1 mutations-a mechanism for acquired endocrine resistance in BC. Nat Rev Clin Oncol 12:573–583

    Google Scholar 

  23. Hyman DM, Smyth LM, Donoghue MTA et al (2017) AKT inhibition in solid tumors With AKT1 mutations. J Clin Oncol 35:2251–2259

    Google Scholar 

  24. Anderson WF, Chatterjee N, Ershler WB et al (2002) Estrogen receptor BC phenotypes in the surveillance, epidemiology, and end results database. BC Res Treat 76:27–36

    Google Scholar 

  25. Walter P, Green S, Greene G et al (1985) Cloning of the human estrogen receptor cDNA. Proc Natl Acad Sci USA 82:7889–7893

    Google Scholar 

  26. Marotti JD, Collins LC, Hu R et al (2010) Estrogen receptor-beta expression in invasive BC in relation to molecular phenotype: results from the nurses’ health study. Mod Pathol 23:197–204

    Google Scholar 

  27. Mann S, Laucirica R, Carlson N et al (2001) Estrogen receptor beta expression in invasive BC. Hum Pathol 32:113–118

    Google Scholar 

  28. Sutherland RL, Watts CK, Musgrove EA (1993) Cyclin gene expression and growth control in normal and neoplastic human breast epithelium. J Steroid Biochem Mol Biol 47:99–106

    Google Scholar 

  29. Osborne CK, Schiff R (2011) Mechanisms of endocrine resistance in BC. Annu Rev Med 62:233–247

    Google Scholar 

  30. Gennari A, Andre F, Barrios CH et al (2021) ESMO clinical practice guideline for the diagnosis, staging and treatment of patients with metastatic BC. Ann Oncol 32:1475–1495

    Google Scholar 

  31. Robertson JFR, Bondarenko IM, Trishkina E et al (2016) Fulvestrant 500 mg versus anastrozole 1 mg for hormone receptor-positive advanced BC (FALCON): an international, randomised, double-blind, phase 3 trial. Lancet 388:2997–3005

    Google Scholar 

  32. Finn RS, Martin M, Rugo HS et al (2016) Palbociclib and letrozole in advanced BC. N Engl J Med 375:1925–1936

    Google Scholar 

  33. Turner NC, Ro J, Andre F et al (2015) Palbociclib in hormone-receptor-positive advanced BC. N Engl J Med 373:209–219

    Google Scholar 

  34. Hortobagyi GN, Stemmer SM, Burris HA et al (2016) Ribociclib as first-line therapy for HR-positive, advanced BC. N Engl J Med 375:1738–1748

    Google Scholar 

  35. Sledge GW Jr, Toi M, Neven P et al (2017) MONARCH 2: abemaciclib in combination with fulvestrant in women with HR+/HER2- advanced BC who had progressed while receiving ET. J Clin Oncol 35:2875–2884

    Google Scholar 

  36. Li Z, Razavi P, Li Q et al (2018) Loss of the FAT1 tumor suppressor promotes resistance to CDK4/6 inhibitors via the hippo pathway. Cancer Cell 34:893–905, e8

    Google Scholar 

  37. Robinson DR, Wu YM, Vats P et al (2013) Activating ESR1 mutations in hormone-resistant metastatic BC. Nat Genet 45:1446–1451

    Google Scholar 

  38. Toy W, Shen Y, Won H et al (2013) ESR1 ligand-binding domain mutations in hormone-resistant BC. Nat Genet 45:1439–1445

    Google Scholar 

  39. Toy W, Weir H, Razavi P et al (2017) Activating ESR1 mutations differentially affect the efficacy of ER antagonists. Cancer Discov 7:277–287

    Google Scholar 

  40. Fribbens C, Garcia Murillas I, Beaney M et al (2018) Tracking evolution of aromatase inhibitor resistance with circulating tumour DNA analysis in metastatic BC. Ann Oncol 29:145–153

    Google Scholar 

  41. Nayar U, Cohen O, Kapstad C et al (2019) Acquired HER2 mutations in ER(+) metastatic BC confer resistance to estrogen receptor-directed therapies. Nat Genet 51:207–216

    Google Scholar 

  42. Sokol ES, Feng YX, Jin DX et al (2019) Loss of function of NF1 is a mechanism of acquired resistance to ET in lobular BC. Ann Oncol 30:115–123

    Google Scholar 

  43. Bosch A, Li Z, Bergamaschi A et al (2015) PI3K inhibition results in enhanced estrogen receptor function and dependence in hormone receptor-positive BC. Sci Transl Med 7:283ra51

    Google Scholar 

  44. Chandarlapaty S, Chen D, He W et al (2016) Prevalence of ESR1 mutations in cell-free DNA and outcomes in metastatic BC: a secondary analysis of the BOLERO-2 clinical trial. JAMA Oncol 2:1310–1315

    Google Scholar 

  45. Yang C, Li Z, Bhatt T et al (2017) Acquired CDK6 amplification promotes BC resistance to CDK4/6 inhibitors and loss of ER signaling and dependence. Oncogene 36:2255–2264

    Google Scholar 

  46. Condorelli R, Spring L, O’Shaughnessy J et al (2018) Polyclonal RB1 mutations and acquired resistance to CDK 4/6 inhibitors in patients with metastatic BC. Ann Oncol 29:640–645

    Google Scholar 

  47. Murphy CG, Dickler MN (2016) Endocrine resistance in hormone-responsive BC: mechanisms and therapeutic strategies. Endocr Relat Cancer 23:R337–R352

    Google Scholar 

  48. Gutierrez MC, Detre S, Johnston S et al (2005) Molecular changes in tamoxifen-resistant BC: relationship between estrogen receptor, HER-2, and p38 mitogen-activated protein kinase. J Clin Oncol 23:2469–2476

    Google Scholar 

  49. Lindstrom LS, Karlsson E, Wilking UM et al (2012) Clinically used BC markers such as estrogen receptor, progesterone receptor, and human epidermal growth factor receptor 2 are unstable throughout tumor progression. J Clin Oncol 30:2601–2608

    Google Scholar 

  50. Johnston SR, Saccani-Jotti G, Smith IE et al (1995) Changes in estrogen receptor, progesterone receptor, and pS2 expression in tamoxifen-resistant human BC. Cancer Res 55:3331–3338

    Google Scholar 

  51. Hartkopf AD, Grischke EM, Brucker SY (2020) Endocrine-resistant BC: mechanisms and treatment. Breast Care (Basel) 15:347–354

    Google Scholar 

  52. Kangaspeska S, Stride B, Metivier R et al (2008) Transient cyclical methylation of promoter DNA. Nature 452:112–115

    Google Scholar 

  53. Ottaviano YL, Issa JP, Parl FF et al (1994) Methylation of the estrogen receptor gene CpG island marks loss of estrogen receptor expression in human BC cells. Cancer Res 54:2552–2555

    Google Scholar 

  54. Yang X, Phillips DL, Ferguson AT et al (2001) Synergistic activation of functional estrogen receptor (ER)-alpha by DNA methyltransferase and histone deacetylase inhibition in human ER-alpha-negative BC cells. Cancer Res 61:7025–7029

    Google Scholar 

  55. Yang X, Ferguson AT, Nass SJ et al (2000) Transcriptional activation of estrogen receptor alpha in human BC cells by histone deacetylase inhibition. Cancer Res 60:6890–6894

    Google Scholar 

  56. Fan J, Yin WJ, Lu JS et al (2008) ER alpha negative BC cells restore response to ET by combination treatment with both HDAC inhibitor and DNMT inhibitor. J Cancer Res Clin Oncol 134:883–890

    Google Scholar 

  57. Reid G, Metivier R, Lin CY et al (2005) Multiple mechanisms induce transcriptional silencing of a subset of genes, including oestrogen receptor alpha, in response to deacetylase inhibition by valproic acid and trichostatin A. Oncogene 24:4894–4907

    Google Scholar 

  58. Munster PN, Thurn KT, Thomas S et al (2011) A phase II study of the histone deacetylase inhibitor vorinostat combined with tamoxifen for the treatment of patients with hormone therapy-resistant BC. Br J Cancer 104:1828–1835

    Google Scholar 

  59. Yardley DA, Ismail-Khan RR, Melichar B et al (2013) Randomized phase II, double-blind, placebo-controlled study of exemestane with or without entinostat in postmenopausal women with locally recurrent or metastatic estrogen receptor-positive BC progressing on treatment with a nonsteroidal aromatase inhibitor. J Clin Oncol 31:2128–2135

    Google Scholar 

  60. Connolly RM, Zhao F, Miller KD et al (2021) E2112: randomized phase III trial of ET plus entinostat or placebo in hormone receptor-positive advanced BC A trial of the ECOG-ACRIN cancer research group. J Clin Oncol 39:3171–3181

    Google Scholar 

  61. Arruabarrena-Aristorena A, Toska E (2022) Epigenetic mechanisms influencing therapeutic response in BC. Front Oncol 12

    Google Scholar 

  62. Corces MR, Granja JM, Shams S et al (2018) The chromatin accessibility landscape of primary human cancers. Science 362

    Google Scholar 

  63. Carroll JS, Meyer CA, Song J et al (2006) Genome-wide analysis of estrogen receptor binding sites. Nat Genet 38:1289–1297

    Google Scholar 

  64. Hurtado A, Holmes KA, Ross-Innes CS et al (2011) FOXA1 is a key determinant of estrogen receptor function and endocrine response. Nat Genet 43:27–33

    Google Scholar 

  65. Xu G, Chhangawala S, Cocco E et al (2020) ARID1A determines luminal identity and therapeutic response in estrogen-receptor-positive BC. Nat Genet 52:198–207

    Google Scholar 

  66. Toska E, Osmanbeyoglu HU, Castel P et al (2017) PI3K pathway regulates ER-dependent transcription in BC through the epigenetic regulator KMT2D. Science 355:1324–1330

    Google Scholar 

  67. Arruabarrena-Aristorena A, Maag JLV, Kittane S et al (2020) FOXA1 mutations reveal distinct chromatin profiles and influence therapeutic response in BC. Cancer Cell 38(534–50):e9

    Google Scholar 

  68. Rheinbay E, Parasuraman P, Grimsby J et al (2017) Recurrent and functional regulatory mutations in BC. Nature 547:55–60

    Google Scholar 

  69. Fu X, Pereira R, De Angelis C et al (2019) FOXA1 upregulation promotes enhancer and transcriptional reprogramming in endocrine-resistant BC. Proc Natl Acad Sci USA

    Google Scholar 

  70. Gala K, Li Q, Sinha A et al (2018) KMT2C mediates the estrogen dependence of BC through regulation of ERα enhancer function. Oncogene 37:4692–4710

    Google Scholar 

  71. Ellis MJ, Ding L, Shen D et al (2012) Whole-genome analysis informs BC response to aromatase inhibition. Nature 486:353–360

    Google Scholar 

  72. Ferraro E, Walsh EM, Tao JJ et al (2022) Accelerating drug development in BC: new frontiers for ER inhibition. Cancer Treat Rev 109:102432

    Google Scholar 

  73. Jeselsohn R, Yelensky R, Buchwalter G et al (2014) Emergence of constitutively active estrogen receptor-alpha mutations in pretreated advanced estrogen receptor-positive BC. Clin Cancer Res 20:1757–1767

    Google Scholar 

  74. Li S, Shen D, Shao J et al (2013) Endocrine-therapy-resistant ESR1 variants revealed by genomic characterization of breast-cancer-derived xenografts. Cell Rep 4:1116–1130

    Google Scholar 

  75. Turner NC, Kingston B, Kilburn LS et al (2020) Circulating tumour DNA analysis to direct therapy in advanced BC (plasmaMATCH): a multicentre, multicohort, phase 2a, platform trial. Lancet Oncol 21:1296–1308

    Google Scholar 

  76. Fanning SW, Mayne CG, Dharmarajan V et al (2016) Estrogen receptor alpha somatic mutations Y537S and D538G confer BC endocrine resistance by stabilizing the activating function-2 binding conformation. eLife 5

    Google Scholar 

  77. Fribbens C, O’Leary B, Kilburn L et al (2016) Plasma ESR1 mutations and the treatment of estrogen receptor-positive advanced BC. J Clin Oncol 34:2961–2968

    Google Scholar 

  78. Jhaveri KL, Boni V, Sohn J et al (2021) Safety and activity of single-agent giredestrant (GDC-9545) from a phase Ia/b study in patients (pts) with estrogen receptor-positive (ER+), HER2-negative locally advanced/metastatic BC (LA/mBC). J Clin Oncol 39:1017–1117

    Google Scholar 

  79. Bidard F-C, Kaklamani VG, Neven P et al (2022) Elacestrant (oral selective estrogen receptor degrader) versus standard ET for estrogen receptor–positive, human epidermal growth factor receptor 2–negative advanced BC: results from the randomized phase III EMERALD trial. J Clin Oncol: JCO 22:00338

    Google Scholar 

  80. Paoletti C, Schiavon G, Dolce EM et al (2018) Circulating biomarkers and resistance to ET in metastatic BCs: correlative results from AZD9496 oral SERD phase I trial. Clin Cancer Res 24:5860–5872

    Google Scholar 

  81. Furman C, Puyang X, Zhang Z et al (2022) Covalent ERα antagonist H3B–6545 demonstrates encouraging preclinical activity in therapy-resistant BC. Mol Cancer Ther 21:890–902

    Google Scholar 

  82. Snyder LB, Flanagan JJ, Qian Y et al (2021) Abstract 44: the discovery of ARV-471, an orally bioavailable estrogen receptor degrading PROTAC for the treatment of patients with BC. Can Res 81:44–44

    Google Scholar 

  83. Fox EM, Miller TW, Balko JM et al (2011) A kinome-wide screen identifies the insulin/IGF-I receptor pathway as a mechanism of escape from hormone dependence in BC. Cancer Res 71:6773–6784

    Google Scholar 

  84. Turner N, Pearson A, Sharpe R et al (2010) FGFR1 amplification drives ET resistance and is a therapeutic target in BC. Cancer Res 70:2085–2094

    Google Scholar 

  85. Frogne T, Benjaminsen RV, Sonne-Hansen K et al (2009) Activation of ErbB3, EGFR and Erk is essential for growth of human BC cell lines with acquired resistance to fulvestrant. BC Res Treat 114:263–275

    Google Scholar 

  86. Campbell RA, Bhat-Nakshatri P, Patel NM et al (2001) Phosphatidylinositol 3-kinase/AKT-mediated activation of estrogen receptor alpha: a new model for anti-estrogen resistance. J Biol Chem 276:9817–9824

    Google Scholar 

  87. Fox EM, Arteaga CL, Miller TW (2012) Abrogating endocrine resistance by targeting ERalpha and PI3K in BC. Front Oncol 2:145

    Google Scholar 

  88. Kurokawa H, Lenferink AE, Simpson JF et al (2000) Inhibition of HER2/neu (erbB-2) and mitogen-activated protein kinases enhances tamoxifen action against HER2-overexpressing, tamoxifen-resistant BC cells. Cancer Res 60:5887–5894

    Google Scholar 

  89. Viale G, Morganti S, Ferraro E et al (2019) What therapies are on the horizon for HER2 positive BC? Expert Rev Anticancer Ther 19:811–822

    Google Scholar 

  90. Criscitiello C, Marra A, Curigliano G (2021) PIK3CA mutation assessment in HR+/HER2—Metastatic BC: overview for oncology clinical practice. J Mol Pathol 2

    Google Scholar 

  91. Smyth LM, Piha-Paul SA, Won HH et al (2020) Efficacy and determinants of response to HER kinase inhibition in HER2-mutant metastatic BC. Cancer Discov 10:198–213

    Google Scholar 

  92. Ma CX, Luo J, Freedman RA et al (2022) The phase II MutHER study of neratinib alone and in combination with fulvestrant in HER2-mutated, non-amplified metastatic BC. Clin Cancer Res 28:1258–1267

    Google Scholar 

  93. Jhaveri KL, Goldman JW, Hurvitz SA et al (2022) Neratinib plus fulvestrant plus trastzuzumab (N+F+T) for hormone receptor-positive (HR+), HER2-negative, HER2-mutant metastatic BC (MBC): Outcomes and biomarker analysis from the SUMMIT trial. J Clin Oncol 40:1028–1128

    Google Scholar 

  94. Lee S, Rauch J, Kolch W (2020) Targeting MAPK signaling in cancer: mechanisms of drug resistance and sensitivity. Int J Mol Sci 21

    Google Scholar 

  95. Koutras AK, Fountzilas G, Kalogeras KT et al (2010) The upgraded role of HER3 and HER4 receptors in BC. Crit Rev Oncol Hematol 74:73–78

    Google Scholar 

  96. Liu B, Ordonez-Ercan D, Fan Z et al (2007) Downregulation of erbB3 abrogates erbB2-mediated tamoxifen resistance in BC cells. Int J Cancer 120:1874–1882

    Google Scholar 

  97. Krop IE, Masuda N, Mukohara T et al (2022) Results from the phase 1/2 study of patritumab deruxtecan, a HER3-directed antibody-drug conjugate (ADC), in patients with HER3-expressing metastatic BC (MBC). J Clin Oncol 40:1002–1102

    Google Scholar 

  98. Giltnane JM, Hutchinson KE, Stricker TP et al (2017) Genomic profiling of ER(+) BCs after short-term estrogen suppression reveals alterations associated with endocrine resistance. Sci Transl Med 9

    Google Scholar 

  99. Formisano L, Stauffer KM, Young CD et al (2017) Association of FGFR1 with ERalpha maintains ligand-independent ER transcription and mediates resistance to estrogen deprivation in ER(+) BC. Clin Cancer Res 23:6138–6150

    Google Scholar 

  100. Levine KM, Priedigkeit N, Basudan A et al (2019) FGFR4 overexpression and hotspot mutations in metastatic ER+BC are enriched in the lobular subtype. NPJ BC 5:19

    Google Scholar 

  101. Fruman DA, Chiu H, Hopkins BD et al (2017) The PI3K pathway in human disease. Cell 170:605–635

    Google Scholar 

  102. Croessmann S, Formisano L, Kinch LN et al (2019) Combined blockade of activating ERBB2 mutations and ER results in synthetic lethality of ER+/HER2 mutant BC. Clin Cancer Res 25:277–289

    Google Scholar 

  103. Samuels Y, Wang Z, Bardelli A et al (2004) High frequency of mutations of the PIK3CA gene in human cancers. Science 304:554

    Google Scholar 

  104. Campbell IG, Russell SE, Choong DY et al (2004) Mutation of the PIK3CA gene in ovarian and BC. Cancer Res 64:7678–7681

    Google Scholar 

  105. Miller TW, Hennessy BT, Gonzalez-Angulo AM et al (2010) Hyperactivation of phosphatidylinositol-3 kinase promotes escape from hormone dependence in estrogen receptor-positive human BC. J Clin Invest 120:2406–2413

    Google Scholar 

  106. Sanchez CG, Ma CX, Crowder RJ et al (2011) Preclinical modeling of combined phosphatidylinositol-3-kinase inhibition with ET for estrogen receptor-positive BC. BC Res 13:R21

    Google Scholar 

  107. Zardavas D, Te Marvelde L, Milne RL et al (2018) Tumor PIK3CA genotype and prognosis in early-stage BC: a pooled analysis of individual patient data. J Clin Oncol 36:981–990

    Google Scholar 

  108. Mosele F, Stefanovska B, Lusque A et al (2020) Outcome and molecular landscape of patients with PIK3CA-mutated metastatic BC. Ann Oncol 31:377–386

    Google Scholar 

  109. Meric-Bernstam F, Frampton GM, Ferrer-Lozano J et al (2014) Concordance of genomic alterations between primary and recurrent BC. Mol Cancer Ther 13:1382–1389

    Google Scholar 

  110. O’Leary B, Cutts RJ, Liu Y et al (2018) The genetic landscape and clonal evolution of BC resistance to palbociclib plus fulvestrant in the PALOMA-3 trial. Cancer Discov 8:1390–1403

    Google Scholar 

  111. Andre F, Ciruelos E, Rubovszky G et al (2019) Alpelisib for PIK3CA-mutated, hormone receptor-positive advanced BC. N Engl J Med 380:1929–1940

    Google Scholar 

  112. Vasan N, Razavi P, Johnson JL et al (2019) Double PIK3CA mutations in cis increase oncogenicity and sensitivity to PI3Kalpha inhibitors. Science 366:714–723

    Google Scholar 

  113. Sabatini DM (2006) mTOR and cancer: insights into a complex relationship. Nat Rev Cancer 6:729–734

    Google Scholar 

  114. Baselga J, Campone M, Piccart M et al (2012) Everolimus in postmenopausal hormone-receptor-positive advanced BC. N Engl J Med 366:520–529

    Google Scholar 

  115. Martorana F, Motta G, Pavone G et al (2021) AKT inhibitors: new weapons in the fight against BC? Front Pharmacol 12:662232

    Google Scholar 

  116. Howell SJ, Casbard A, Carucci M et al (2022) Fulvestrant plus capivasertib versus placebo after relapse or progression on an aromatase inhibitor in metastatic, oestrogen receptor-positive, HER2-negative BC (FAKTION): overall survival, updated progression-free survival, and expanded biomarker analysis from a randomised, phase 2 trial. Lancet Oncol

    Google Scholar 

  117. Jones RH, Casbard A, Carucci M et al (2020) Fulvestrant plus capivasertib versus placebo after relapse or progression on an aromatase inhibitor in metastatic, oestrogen receptor-positive BC (FAKTION): a multicentre, randomised, controlled, phase 2 trial. Lancet Oncol 21:345–357

    Google Scholar 

  118. Carbognin L, Miglietta F, Paris I et al (2019) Prognostic and predictive implications of PTEN in BC: unfulfilled promises but intriguing perspectives. Cancers (Basel) 11

    Google Scholar 

  119. Costa C, Wang Y, Ly A et al (2020) PTEN loss mediates clinical cross-resistance to CDK4/6 and PI3Kalpha inhibitors in BC. Cancer Discov 10:72–85

    Google Scholar 

  120. Juric D, Castel P, Griffith M et al (2015) Convergent loss of PTEN leads to clinical resistance to a PI(3)Kalpha inhibitor. Nature 518:240–244

    Google Scholar 

  121. Razavi P, Dickler MN, Shah PD et al (2020) Alterations in PTEN and ESR1 promote clinical resistance to alpelisib plus aromatase inhibitors. Nat Cancer 1:382–393

    Google Scholar 

  122. Pearson A, Proszek P, Pascual J et al (2020) Inactivating NF1 mutations are enriched in advanced BC and contribute to ET resistance. Clin Cancer Res 26:608–622

    Google Scholar 

  123. Creighton CJ, Hilger AM, Murthy S et al (2006) Activation of mitogen-activated protein kinase in estrogen receptor alpha-positive BC cells in vitro induces an in vivo molecular phenotype of estrogen receptor alpha-negative human breast tumors. Cancer Res 66:3903–3911

    Google Scholar 

  124. Moore AR, Rosenberg SC, McCormick F et al (2020) RAS-targeted therapies: is the undruggable drugged? Nat Rev Drug Discov 19:533–552

    Google Scholar 

  125. Knudsen ES, Pruitt SC, Hershberger PA et al (2019) Cell cycle and beyond: exploiting new RB1 controlled mechanisms for cancer therapy. Trends Cancer 5:308–324

    Google Scholar 

  126. Zwijsen RM, Wientjens E, Klompmaker R et al (1997) CDK-independent activation of estrogen receptor by cyclin D1. Cell 88:405–415

    Google Scholar 

  127. Casimiro MC, Wang C, Li Z et al (2013) Cyclin D1 determines estrogen signaling in the mammary gland in vivo. Mol Endocrinol 27:1415–1428

    Google Scholar 

  128. Miller TW, Balko JM, Fox EM et al (2011) ERalpha-dependent E2F transcription can mediate resistance to estrogen deprivation in human BC. Cancer Discov 1:338–351

    Google Scholar 

  129. Finn RS, Dering J, Conklin D et al (2009) PD 0332991, a selective cyclin D kinase 4/6 inhibitor, preferentially inhibits proliferation of luminal estrogen receptor-positive human BC cell lines in vitro. BC Res 11:R77

    Google Scholar 

  130. Marra A, Curigliano G (2019) Are all cyclin-dependent kinases 4/6 inhibitors created equal? npj BC 5:1–9

    Google Scholar 

  131. Li Q, Jiang B, Guo J et al (2022) INK4 tumor suppressor proteins mediate resistance to CDK4/6 kinase inhibitors. Cancer Discov 12:356–371

    Google Scholar 

  132. Freeman-Cook K, Hoffman RL, Miller N et al (2021) Expanding control of the tumor cell cycle with a CDK2/4/6 inhibitor. Cancer Cell 39(1404–21):e11

    Google Scholar 

  133. Gil-Gil M, Alba E, Gavila J et al (2021) The role of CDK4/6 inhibitors in early BC. Breast 58:160–169

    Google Scholar 

  134. Morganti S, Marra A, Crimini E et al (2022) Refining risk stratification in HR-positive/HER2-negative early BC: how to select patients for treatment escalation? BC Res Treat 1–20

    Google Scholar 

  135. Formisano L, Lu Y, Servetto A et al (2019) Aberrant FGFR signaling mediates resistance to CDK4/6 inhibitors in ER+BC. Nat Commun 10:1373

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Marra .

Editor information

Editors and Affiliations

Ethics declarations

G.C. reported personal fees from AstraZeneca, Ellipses, Daiichi Sankyo (Daiichi), Lilly, Merck, Novartis, Pfizer, Roche, and Seagen; research funding from Merck; and speakers’ fees from Daiichi, Lilly, Novartis, Pfizer, and Seagen outside the submitted work. A.M., D.T. and E.F. declared no conflict of interest.

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Marra, A., Trapani, D., Ferraro, E., Curigliano, G. (2023). Mechanisms of Endocrine Resistance in Hormone Receptor-Positive Breast Cancer. In: Al Jarroudi, O., El Bairi, K., Curigliano, G. (eds) Breast Cancer Research and Treatment. Cancer Treatment and Research, vol 188. Springer, Cham. https://doi.org/10.1007/978-3-031-33602-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-33602-7_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-33601-0

  • Online ISBN: 978-3-031-33602-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics