Skip to main content

Screening Programs for Breast Cancer: Toward Individualized, Risk-Adapted Strategies of Early Detection

  • Chapter
  • First Online:
Breast Cancer Research and Treatment

Abstract

Early detection of breast cancer (BC) comprises two approaches: screening of asymptomatic women in a specified target population at risk (usually a target age range for women at average risk), and early diagnosis for women with BC signs and symptoms. Screening for BC is a key health intervention for early detection. While population-based screening programs have been implemented for age-selected women, the pivotal clinical trials have not addressed the global utility nor the improvement of screening performance by utilizing more refined parameters for patient eligibility, such as individualized risk stratification. In addition, with the exception of the subset of women known to carry germline pathogenetic mutations in (high- or moderately-penetrant) cancer predisposition genes, such as BRCA1 and BRCA2, there has been less success in outreach and service provision for the unaffected relatives of women found to carry a high-risk mutation (i.e., “cascade testing”) as it is in these individuals for whom such actionable information can result in cancers (and/or cancer deaths) being averted. Moreover, even in the absence of clinical cancer genetics services, as is the case for the immediate and at least near-term in most countries globally, the capacity to stratify the risk of an individual to develop BC has existed for many years, is available for free online at various sites/platforms, and is increasingly being validated for non-Caucasian populations. Ultimately, a precision approach to BC screening is largely missing. In the present chapter, we aim to address the concept of risk-adapted screening of BC, in multiple facets, and understand if there is a value in the implementation of adapted screening strategies in selected women, outside the established screening prescriptions, in the terms of age-range, screening modality and schedules of imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sung H, Ferlay J, Siegel RL et al (2021) Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin 71(3):209–249. https://doi.org/10.3322/caac.21660

    Article  PubMed  Google Scholar 

  2. Ginsburg O, Bray F, Coleman MP et al (2017) The global burden of women’s cancers: a grand challenge in global health. Lancet 389(10071):847–860. https://doi.org/10.1016/S0140-6736(16)31392-7

    Article  PubMed  Google Scholar 

  3. GBDCC -Global Burden of Disease Cancer Collaboration (2019) Global, Regional, and National Cancer Incidence, Mortality, Years of Life Lost, Years Lived With Disability, and Disability-Adjusted Life-Years for 29 Cancer Groups, 1990 to 2017: A Systematic Analysis for the Global Burden of Disease Study. JAMA Oncol 5(12):1749–1768. https://doi.org/10.1001/jamaoncol.2019.2996

    Article  Google Scholar 

  4. GBD Diseases and Injuries Collaborators (2020) Global Burden of 369 Diseases and Injuries in 204 Countries and Territories, 1990–2019: A Systematic Analysis for the Global Burden of Disease Study 2019. Lancet 396(10258):1204–1222. https://doi.org/10.1016/s0140-6736(20)30925-9

    Article  Google Scholar 

  5. Hu K, Ding P, Wu Y et al (2019) Global patterns and trends in the breast cancer incidence and mortality according to sociodemographic indices: an observational study based on the global burden of diseases. BMJ Open 9(10):e028461. https://doi.org/10.1136/bmjopen-2018-028461

    Article  PubMed  PubMed Central  Google Scholar 

  6. Allemani C, Matsuda T, Di Carlo V, et al. CONCORD Working Group. Global surveillance of trends in cancer survival 2000–14 (CONCORD-3): analysis of individual records for 37 513 025 patients diagnosed with one of 18 cancers from 322 population-based registries in 71 countries. Lancet. 2018 Mar 17;391(10125):1023–1075. https://doi.org/10.1016/S0140-6736(17)33326-3.

  7. McCormack V, McKenzie F, Foerster M et al (2020) Breast cancer survival and survival gap apportionment in sub-Saharan Africa (ABC-DO): a prospective cohort study. Lancet Glob Health 8(9):e1203–e1212. https://doi.org/10.1016/S2214-109X(20)30261-8

    Article  PubMed  PubMed Central  Google Scholar 

  8. Ginsburg O, Ashton-Prolla P, Cantor A, Mariosa D, Brennan P. The role of genomics in global cancer prevention. Nat Rev Clin Oncol. 18(2):116-128. https://doi.org/10.1038/s41571-020-0428-5

  9. Jedy-Agba E, McCormack V, Adebamowo C, Dos-Santos-Silva I. Stage at diagnosis of breast cancer in sub-Saharan Africa: a systematic review and meta-analysis. Lancet Glob Health. 2016 Dec;4(12):e923-e935. https://doi.org/10.1016/S2214-109X(16)30259-5

  10. Kumar J, Kumar P (2021) COVID-19 pandemic and health-care disruptions: count the most vulnerable. Lancet Glob Health 9(6):e722–e723. https://doi.org/10.1016/S2214-109X(21)00098-X

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Riera R, Bagattini ÂM, Pacheco RL et al (2021) Delays and Disruptions in Cancer Health Care Due to COVID-19 Pandemic: Systematic Review. JCO Glob Oncol. 7:311–323. https://doi.org/10.1200/GO.20.00639

    Article  PubMed  Google Scholar 

  12. WHO -World Health Organization (2017). Tackling NCDs: ‘best buys’ and other recommended interventions for the prevention and control of noncommunicable diseases. https://apps.who.int/iris/handle/10665/259232. License: CC BY-NC-SA 3.0 IGO

  13. Allen LN, Feigl AB (2017) Reframing non-communicable diseases as socially transmitted conditions. Lancet Glob Health 5(7):e644–e646. https://doi.org/10.1016/S2214-109X(17)30200-0

    Article  PubMed  Google Scholar 

  14. Capodaglio G, Zorzi M, Tognazzo S et al (2018) Impact of breast cancer screening in a population with high spontaneous coverage with mammography. Tumori 104(4):258–265. https://doi.org/10.1177/0300891618792439

    Article  PubMed  Google Scholar 

  15. Duffy SW, Tabár L, Yen AM et al (2020) Mammography screening reduces rates of advanced and fatal breast cancers: Results in 549,091 women. Cancer 126(13):2971–2979. https://doi.org/10.1002/cncr.32859

    Article  PubMed  Google Scholar 

  16. Løberg M, Lousdal ML, Bretthauer M, Kalager M (2015) Benefits and harms of mammography screening. Breast Cancer Res 17(1):63. https://doi.org/10.1186/s13058-015-0525-z

    Article  PubMed  PubMed Central  Google Scholar 

  17. Mandelblatt JS, Cronin KA, Berry DA, et al. Modeling the impact of population screening on breast cancer mortality in the United States. Breast. 2011 Oct;20 Suppl 3(Suppl 3):S75–81. https://doi.org/10.1016/S0960-9776(11)70299-5

  18. Molassiotis A, Tyrovolas S, Giné-Vázquez I, et al. Organized breast cancer screening not only reduces mortality from breast cancer but also significantly decreases disability-adjusted life years: analysis of the Global Burden of Disease Study and screening programme availability in 130 countries. ESMO Open. 2021 Jun;6(3):100111. https://doi.org/10.1016/j.esmoop.2021.100111

  19. Shah SC, Kayamba V, Peek RM Jr, Heimburger D (2019) Cancer Control in Low-and Middle-Income Countries: Is It Time to Consider Screening? J Glob Oncol. 5:1–8. https://doi.org/10.1200/JGO.18.00200

    Article  CAS  PubMed  Google Scholar 

  20. Gopal S, Sharpless NE (2021) Cancer as a Global Health Priority. JAMA. https://doi.org/10.1001/jama.2021.12778

    Article  PubMed  Google Scholar 

  21. Alagoz O, Lowry KP, Kurian AW, Mandelblatt JS, et al. Impact of the COVID-19 Pandemic on Breast Cancer Mortality in the US: Estimates From Collaborative Simulation Modeling. J Natl Cancer Inst. 2021 Jul 14:djab097. https://doi.org/10.1093/jnci/djab097.

  22. Bertram MY, Sweeny K, Lauer JA et al (2018) Investing in non-communicable diseases: an estimation of the return on investment for prevention and treatment services. Lancet 391(10134):2071–2078. https://doi.org/10.1016/S0140-6736(18)30665-2

    Article  PubMed  Google Scholar 

  23. Hanna TP, Evans GA, Booth CM (2020) Cancer, COVID-19 and the precautionary principle: prioritizing treatment during a global pandemic. Nat Rev Clin Oncol 17(5):268–270. https://doi.org/10.1038/s41571-020-0362-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Rebbeck TR (2016) Defining Priorities for Reducing Disparities in Cancer Mortality. Cancer Epidemiol Biomarkers Prev 25(4):570–572. https://doi.org/10.1158/1055-9965.EPI-15-1244

    Article  PubMed  Google Scholar 

  25. Duggan C, Trapani D, Ilbawi AM, Fidarova E, Laversanne M, Curigliano G, Bray F, Anderson BO (2021) National health system characteristics, breast cancer stage at diagnosis, and breast cancer mortality: a population-based analysis. Lancet Oncol S1470–2045(21):00462–00469. https://doi.org/10.1016/S1470-2045(21)00462-9

    Article  Google Scholar 

  26. Printz C (2020) Medicare access increases cancer detection and drives down mortality rates. Cancer 126(12):2733. https://doi.org/10.1002/cncr.32975

    Article  PubMed  Google Scholar 

  27. Romero Y, Trapani D, Johnson S, Tittenbrun Z et al (2018) National cancer control plans: a global analysis. Lancet Oncol 19(10):e546–e555. https://doi.org/10.1016/S1470-2045(18)30681-8

    Article  PubMed  Google Scholar 

  28. UICC -Union for International Cancer Control (2020). South Korea’s National Cancer Control Case Study from the National Cancer Center of Korea.

    Google Scholar 

  29. Ginsburg O, Yip CH, Brooks A, Cabanes A, Caleffi M, et al. Breast cancer early detection: A phased approach to implementation. Cancer. 2020 May 15;126 Suppl 10(Suppl 10):2379–2393. https://doi.org/10.1002/cncr.32887.

  30. WHO- World Health Organization. Second round of the national pulse survey on continuity of essential health services during the COVID-19 pandemic. WHO HQ. https://www.who.int/publications/i/item/WHO-2019-nCoV-EHS-continuity-survey-2021.1. License: CC BY-NC-SA 3.0 IGO

  31. Autier P, Boniol M (2018) Mammography screening: A major issue in medicine. Eur J Cancer 90:34–62. https://doi.org/10.1016/j.ejca.2017.11.002

    Article  PubMed  Google Scholar 

  32. Bansal S, Deshpande V, Zhao X et al (2020) Analysis of Mammography Screening Schedules under Varying Resource Constraints for Planning Breast Cancer Control Programs in Low-and Middle-Income Countries: A Mathematical Study. Med Decis Making 40(3):364–378. https://doi.org/10.1177/0272989X20910724

    Article  PubMed  Google Scholar 

  33. Baum M (2015) “Catch it early, save a life and save a breast”: this misleading mantra of mammography. J R Soc Med 108(9):338–339. https://doi.org/10.1177/0141076815603563

    Article  PubMed  PubMed Central  Google Scholar 

  34. Gøtzsche PC (2015) Mammography screening is harmful and should be abandoned. J R Soc Med 108(9):341–345. https://doi.org/10.1177/0141076815602452

    Article  PubMed  PubMed Central  Google Scholar 

  35. Marten R, Mikkelsen B, Shao R, Dal Zennaro L, Berdzuli N, Fernando T, Hammerich A, Hennis A, Shin HR, Shongwe S, Ghaffar A (2021) Committing to implementation research for health systems to manage and control non-communicable diseases. Lancet Glob Health 9(2):e108–e109. https://doi.org/10.1016/S2214-109X(20)30485-X

    Article  CAS  PubMed  Google Scholar 

  36. Gøtzsche PC, Jørgensen KJ. Screening for breast cancer with mammography. Cochrane Database Syst Rev. 2013 Jun 4;2013(6):CD001877. https://doi.org/10.1002/14651858.CD001877.pub5.

  37. Bleyer A, Welch HG (2012) Effect of three decades of screening mammography on breast-cancer incidence. N Engl J Med 367(21):1998–2005. https://doi.org/10.1056/NEJMoa1206809

    Article  CAS  PubMed  Google Scholar 

  38. Jørgensen KJ, Gøtzsche PC, Kalager M, Zahl PH (2017) Breast Cancer Screening in Denmark: A Cohort Study of Tumor Size and Overdiagnosis. Ann Intern Med 166(5):313–323. https://doi.org/10.7326/M16-0270

    Article  PubMed  Google Scholar 

  39. Welch HG, Prorok PC, O’Malley AJ, Kramer BS (2016) Breast-Cancer Tumor Size, Overdiagnosis, and Mammography Screening Effectiveness. N Engl J Med 375(15):1438–1447. https://doi.org/10.1056/NEJMoa1600249

    Article  PubMed  Google Scholar 

  40. WHO -World Health Organization (2014). WHO position paper on mammography screening. World Health Organization. https://apps.who.int/iris/handle/10665/137339. ISBN 9789241507936

  41. IARC - WHO International Agency for the Research on Cancer (2014). Breast Cancer Screening, in Handbooks of Cancer Prevention Volume 15. ISBN-13: 978–92–832–3015–1. Available at: https://publications.iarc.fr/

  42. USPSTF -US Preventive Services Task Force (2019Aug 20) Risk Assessment, Genetic Counseling, and Genetic Testing for BRCA-Related Cancer: US Preventive Services Task Force Recommendation Statement. JAMA 322(7):652–665. https://doi.org/10.1001/jama.2019.10987

    Article  Google Scholar 

  43. ACR - American College of Radiology (2017). Breast Cancer Guidelines at Monticciolo DL, Newell MS, Hendrick RE, et al. Breast cancer screening for average-risk women: Recommendations from the ACR commission on breast imaging. Journal of the American College of Radiology 2017;14(9):1137–1143.

    Google Scholar 

  44. NHS UK – United Kingdom National Health Service (2017). Public Health England. Consolidated Standards for NHS Breast Screening Programme. https://www.gov.uk/search/all

  45. ACOG - American College of Obstetricians and Gynecologists (2017). Breast Cancer Screening in Practice Bulletin Number 179: Breast Cancer Risk Assessment and Screening in Average-Risk Women. Obstet Gynecol. 2017 Jul;130(1):e1-e16. https://doi.org/10.1097/AOG.0000000000002158. PMID: 28644335.

  46. ACP - American College of Physicians (2019) guidelines: Qaseem A, Lin JS, Mustafa RA, et al. Screening for Breast Cancer in Average-Risk Women: A Guidance Statement From the American College of Physicians. Ann Intern Med. 2019 Apr 16;170(8):547–560. https://doi.org/10.7326/M18-2147.

  47. ACS - American Cancer Society (2015). Screening of breast cancer in Oeffinger KC, Fontham ET, Etzioni R, et al. American Cancer Society. Breast cancer screening for women at average risk: 2015 guideline update from the American Cancer Society. JAMA 2015;314(15):1599–1614. Available at: https://www.cancer.org/

  48. ECIBC - European Commission Initiative on Breast Cancer (2021). European Breast Cancer Screening guidelines. https://healthcare-quality.jrc.ec.europa.eu/

  49. MoH Italy- Ministry of Health (2021). Guidelines for the screening of breast cancer. Available at: https://www.salute.gov.it/portale/home.html

  50. NCCN - National Comprehensive Cancer Network (2021). Breast Cancer screening and diagnosis. V1.2021. https://www.nccn.org

  51. Lee CS, Monticciolo DL, Moy L (2020) Screening Guidelines Update for Average-Risk and High-Risk Women. AJR Am J Roentgenol 214(2):316–323. https://doi.org/10.2214/AJR.19.22205

    Article  PubMed  Google Scholar 

  52. Burstein HJ, Curigliano G, Thürlimann B et Panelists of the St Gallen Consensus Conference. Customizing local and systemic therapies for women with early breast cancer. The St. Gallen International Consensus Guidelines for treatment of early breast cancer 2021. Ann Oncol. 2021 Jul 6:S0923–7534(21)02104–9. https://doi.org/10.1016/j.annonc.2021.06.023

  53. McClintock AH, Golob AL, Laya MB (2020) Breast Cancer Risk Assessment: A Step-Wise Approach for Primary Care Providers on the Front Lines of Shared Decision Making. Mayo Clin Proc 95(6):1268–1275. https://doi.org/10.1016/j.mayocp.2020.04.017

    Article  PubMed  Google Scholar 

  54. McWilliams L, Woof VG, Donnelly LS et al (2020) Risk stratified breast cancer screening: UK healthcare policy decision-making stakeholders’ views on a low-risk breast screening pathway. BMC Cancer 20(1):680. https://doi.org/10.1186/s12885-020-07158-9

    Article  PubMed  PubMed Central  Google Scholar 

  55. Desreux JAC (2018) Breast cancer screening in young women. Eur J Obstet Gynecol Reprod Biol 230:208–211. https://doi.org/10.1016/j.ejogrb.2018.05.018

    Article  PubMed  Google Scholar 

  56. Cirillo D, Núñez-Carpintero I, Valencia A (2021) Artificial intelligence in cancer research: learning at different levels of data granularity. Mol Oncol 15(4):817–829. https://doi.org/10.1002/1878-0261.12920

    Article  PubMed  PubMed Central  Google Scholar 

  57. Duffy SW, Vulkan D, Cuckle H et al (2020) Effect of mammographic screening from age 40 years on breast cancer mortality (UK Age trial): final results of a randomised, controlled trial. Lancet Oncol 21(9):1165–1172. https://doi.org/10.1016/S1470-2045(20)30398-3

    Article  PubMed  PubMed Central  Google Scholar 

  58. Loomans-Kropp HA, Umar A. Cancer prevention and screening: the next step in the era of precision medicine. NPJ Precis Oncol. 2019 Jan 28;3:3. https://doi.org/10.1038/s41698-018-0075-9

  59. Schacht DV, Yamaguchi K, Lai J et al (2014) Importance of a personal history of breast cancer as a risk factor for the development of subsequent breast cancer: results from screening breast MRI. AJR Am J Roentgenol 202(2):289–292. https://doi.org/10.2214/AJR.13.11553

    Article  PubMed  Google Scholar 

  60. Breast Cancer Association Consortium (2021) Breast Cancer Risk Genes -Association Analysis in More than 113,000 Women. N Engl J Med 384(5):428–439. https://doi.org/10.1056/NEJMoa1913948

    Article  Google Scholar 

  61. Hu C, Hart SN, Gnanaolivu R et al (2021) A Population-Based Study of Genes Previously Implicated in Breast Cancer. N Engl J Med 384(5):440–451. https://doi.org/10.1056/NEJMoa2005936

    Article  PubMed  PubMed Central  Google Scholar 

  62. Collaborative Group on Hormonal Factors in Breast Cancer (2002) Breast cancer and breastfeeding: collaborative reanalysis of individual data from 47 epidemiological studies in 30 countries, including 50302 women with breast cancer and 96973 women without the disease. Lancet 360(9328):187–195. https://doi.org/10.1016/S0140-6736(02)09454-0

    Article  Google Scholar 

  63. Ho PJ, Lau HSH, Ho WK et al (2020) Incidence of breast cancer attributable to breast density, modifiable and non-modifiable breast cancer risk factors in Singapore. Sci Rep 10(1):503. https://doi.org/10.1038/s41598-019-57341-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Huang KL, Mashl RJ, Wu Y, Ritter DI, Wang J et al (2018) Pathogenic Germline Variants in 10,389 Adult Cancers. Cell 173(2):355-370.e14. https://doi.org/10.1016/j.cell.2018.03.039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Islami F, Goding Sauer A, Miller KD, et al. Proportion and number of cancer cases and deaths attributable to potentially modifiable risk factors in the United States. CA Cancer J Clin. 2018 Jan;68(1):31-54. https://doi.org/10.3322/caac.21440

  66. Zhang YD, Hurson AN, Zhang H, Choudhury PP, Easton DF et al (2020) Assessment of polygenic architecture and risk prediction based on common variants across fourteen cancers. Nat Commun 11(1):3353. https://doi.org/10.1038/s41467-020-16483-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Digennaro M, Sambiasi D, Tommasi S et al (2017) Hereditary and non-hereditary branches of family eligible for BRCA test: cancers in other sites. Hered Cancer Clin Pract. 15:7. https://doi.org/10.1186/s13053-017-0067-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Metcalfe KA, Finch A, Poll A et al (2009) Breast cancer risks in women with a family history of breast or ovarian cancer who have tested negative for a BRCA1 or BRCA2 mutation. Br J Cancer 100(2):421–425. https://doi.org/10.1038/sj.bjc.6604830

    Article  CAS  PubMed  Google Scholar 

  69. Mukama T, Kharazmi E, Xu X et al (2020) Risk-Adapted Starting Age of Screening for Relatives of Patients With Breast Cancer. JAMA Oncol 6(1):68–74. https://doi.org/10.1001/jamaoncol.2019.3876

    Article  PubMed  Google Scholar 

  70. Mukama T, Fallah M, Tian Y, et al. Risk-tailored starting age of breast cancer screening based on women's reproductive profile: A nationwide cohort study. Eur J Cancer. 2020 Jan;124:207-213. https://doi.org/10.1016/j.ejca.2019.10.011. Epub 2019 Nov 21. PMID: 31761537

  71. Bakker MF, de Lange SV, Pijnappel RM, et al. DENSE Trial Study Group. Supplemental MRI Screening for Women with Extremely Dense Breast Tissue. N Engl J Med. 2019 Nov 28;381(22):2091–2102. https://doi.org/10.1056/NEJMoa1903986

  72. Bernardi D, Macaskill P, Pellegrini M et al (2016) Breast cancer screening with tomosynthesis (3D mammography) with acquired or synthetic 2D mammography compared with 2D mammography alone (STORM-2): a population-based prospective study. Lancet Oncol 17(8):1105–1113. https://doi.org/10.1016/S1470-2045(16)30101-2

    Article  PubMed  Google Scholar 

  73. Ciatto S, Houssami N, Bernardi D et al (2013) Integration of 3D digital mammography with tomosynthesis for population breast-cancer screening (STORM): a prospective comparison study. Lancet Oncol 14(7):583–589. https://doi.org/10.1016/S1470-2045(13)70134-7

    Article  PubMed  Google Scholar 

  74. Kerlikowske K, Hubbard RA, Miglioretti DL et al (2011) Comparative effectiveness of digital versus film-screen mammography in community practice in the United States: a cohort study. Ann Intern Med 155(8):493–502

    Article  PubMed  PubMed Central  Google Scholar 

  75. Lee A, Mavaddat N, Wilcox AN, Cunningham AP et al (2019) BOADICEA: a comprehensive breast cancer risk prediction model incorporating genetic and nongenetic risk factors. Genet Med 21(8):1708–1718. https://doi.org/10.1038/s41436-018-0406-9

    Article  PubMed  PubMed Central  Google Scholar 

  76. Veenhuizen SGA, de Lange SV, Bakker MF, et al. DENSE Trial Study Group. Supplemental Breast MRI for Women with Extremely Dense Breasts: Results of the Second Screening Round of the DENSE Trial. Radiology. 2021 May;299(2):278–286. https://doi.org/10.1148/radiol.2021203633.

  77. Evans A, Trimboli RM, Athanasiou A, et al. Breast ultrasound: recommendations for information to women and referring physicians by the European Society of Breast Imaging. Insights Imaging 2018;9(4):449e61. https://doi.org/10.1007/s13244-018-0636-z

  78. Gilbert FJ, Hickman SE, Baxter GC et al (2021) Opportunities in cancer imaging: risk-adapted breast imaging in screening. Clin Radiol S0009–9260(21):00119–00127. https://doi.org/10.1016/j.crad.2021.02.013

    Article  Google Scholar 

  79. Redmond CE, Healy GM, Murphy CF et al (2017) The use of ultrasonography and digital mammography in women under 40 years with symptomatic breast cancer: a 7-year Irish experience. Ir J Med Sci 186(1):63–67. https://doi.org/10.1007/s11845-016-1472-0

    Article  CAS  PubMed  Google Scholar 

  80. Pashayan N, Morris S, Gilbert FJ, Pharoah PDP (2018) Cost-effectiveness and Benefit-to-Harm Ratio of Risk-Stratified Screening for Breast Cancer: A Life-Table Model. JAMA Oncol 4(11):1504–1510. https://doi.org/10.1001/jamaoncol.2018.1901

    Article  PubMed  PubMed Central  Google Scholar 

  81. Boundouki G, Wilson R, Duxbury P, et al. Northwest Breast Research Collaborative. Patient and public priorities for breast cancer research: a qualitative study in the UK. BMJ Open. 2021 Jan 29;11(1):e036072. https://doi.org/10.1136/bmjopen-2019-036072

  82. Antoniou AC, Pharoah PP, Smith P, Easton DF (2004) The BOADICEA model of genetic susceptibility to breast and ovarian cancer. Br J Cancer 91(8):1580–1590. https://doi.org/10.1038/sj.bjc.6602175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Carver T, Hartley S, Lee A et al (2021) CanRisk Tool-A Web Interface for the Prediction of Breast and Ovarian Cancer Risk and the Likelihood of Carrying Genetic Pathogenic Variants. Cancer Epidemiol Biomarkers Prev 30(3):469–473. https://doi.org/10.1158/1055-9965.EPI-20-1319

    Article  CAS  PubMed  Google Scholar 

  84. Bharucha PP, Chiu KE, François FM, et al. Genetic Testing and Screening Recommendations for Patients with Hereditary Breast Cancer. Radiographics. 2020 Jul-Aug;40(4):913–936. https://doi.org/10.1148/rg.2020190181

  85. Nelson HD, Pappas M, Cantor A et al (2019) Risk Assessment, Genetic Counseling, and Genetic Testing for BRCA-Related Cancer in Women: Updated Evidence Report and Systematic Review for the US Preventive Services Task Force. JAMA 322(7):666–685. https://doi.org/10.1001/jama.2019.8430

    Article  PubMed  Google Scholar 

  86. Calò V, Bruno L, La Paglia L et al (2010) The clinical significance of unknown sequence variants in BRCA genes. Cancers (Basel) 2:1644–1660

    Article  PubMed  Google Scholar 

  87. Frank TS, Deffenbaugh AM, Reid JE et al (2002) Clinical characteristics of individuals with germline mutations in BRCA1 and BRCA2: analysis of 10,000 individuals. J Clin Oncol 20:1480–1490

    Article  CAS  PubMed  Google Scholar 

  88. Murray ML, Cerrato F, Bennett RL, Jarvik GP (2011) Follow-up of carriers of BRCA1 and BRCA2 variants of unknown significance: variant reclassification and surgical decisions. Genet Med 13:998–1005

    Article  CAS  PubMed  Google Scholar 

  89. Culver JO, Brinkerhoff CD, Clague J et al (2013) Variants of uncertain significance in BRCA testing: evaluation of surgical decisions, risk perception, and cancer distress. Clin Genet 84:464–472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. USPSTF - United States Preventive Services Task Force (2016). Breast cancer screening recommendations in Siu AL. U.S. Preventive Services Task Force. Screening for breast cancer: U.S. Preventive Services Task Force recommendation statement. Annals of Internal Medicine 2016;164(4):279–296Available at: https://www.uspreventiveservicestaskforce.org/

  91. Boughey JC, Hartmann LC, Anderson SS et al (2010) Evaluation of the Tyrer-Cuzick (International Breast Cancer Intervention Study) model for breast cancer risk prediction in women with atypical hyperplasia. J Clin Oncol 28(22):3591–3596. https://doi.org/10.1200/JCO.2010.28.0784

    Article  PubMed  PubMed Central  Google Scholar 

  92. Tyrer J, Duffy SW, Cuzick J (2004) A breast cancer prediction model incorporating familial and personal risk factors. Stat Med 23(7):1111–1130. https://doi.org/10.1002/sim.1668.Erratum.In:StatMed.2005Jan15;24(1):156

    Article  PubMed  Google Scholar 

  93. Vianna FSL, Giacomazzi J, Oliveira Netto CB, et al. Performance of the Gail and Tyrer-Cuzick breast cancer risk assessment models in women screened in a primary care setting with the FHS-7 questionnaire. Genet Mol Biol. 2019;42(1 suppl 1):232-237. https://doi.org/10.1590/1678-4685-GMB-2018-0110

  94. Amir E, Evans DG, Shenton A et al (2003) Evaluation of breast cancer risk assessment packages in the family history evaluation and screening programme. J Med Genet 40(11):807–814. https://doi.org/10.1136/jmg.40.11.807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Terry MB, Liao Y, Whittemore AS et al (2019) 10-year performance of four models of breast cancer risk: a validation study. Lancet Oncol 20(4):504–517. https://doi.org/10.1016/S1470-2045(18)30902-1

    Article  PubMed  Google Scholar 

  96. McCarthy AM, Guan Z, Welch M et al (2020) Performance of Breast Cancer Risk-Assessment Models in a Large Mammography Cohort. J Natl Cancer Inst 112(5):489–497. https://doi.org/10.1093/jnci/djz177

    Article  CAS  PubMed  Google Scholar 

  97. Gallagher S, Hughes E, Kurian AW, Domchek SM, Garber J, et al. Comprehensive Breast Cancer Risk Assessment for CHEK2 and ATM Pathogenic Variant Carriers Incorporating a Polygenic Risk Score and the Tyrer-Cuzick Model. JCO Precis Oncol. 2021 Jun 24;5:PO.20.00484. https://doi.org/10.1200/PO.20.00484

  98. Mazzola E, Chipman J, Cheng SC, Parmigiani G (2014) Recent BRCAPRO upgrades significantly improve calibration. Cancer Epidemiol Biomarkers Prev 23:1689–1695

    Article  PubMed  PubMed Central  Google Scholar 

  99. Parmigiani G, Berry D, Aguilar O (1998) Determining carrier probabilities for breast cancer-susceptibility genes BRCA1 and BRCA2. Am J Hum Genet 62:145–158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Bernstein-Molho R, Singer A, Laitman Y, et al. Multigene panel testing in unselected Israeli breast cancer cases: mutational spectrum and use of BRCA1/2 mutation prediction algorithms. Breast Cancer Res Treat. 2019 Jul;176(1):165-170. https://doi.org/10.1007/s10549-019-05228-6

  101. Gail MH, Brinton LA, Byar DP et al (1989) Projecting individualized probabilities of developing breast cancer for white females who are being examined annually. J Natl Cancer Inst 81(24):1879–1886. https://doi.org/10.1093/jnci/81.24.1879

    Article  CAS  PubMed  Google Scholar 

  102. Gail MH (2019) Performance of BCRAT in high-risk patients with breast cancer. Lancet Oncol 20(6):e285. https://doi.org/10.1016/S1470-2045(19)30301-8

    Article  PubMed  PubMed Central  Google Scholar 

  103. Costantino JP, Gail MH, Pee D et al (1999) Validation studies for models projecting the risk of invasive and total breast cancer incidence. J Natl Cancer Inst 91(18):1541–1548. https://doi.org/10.1093/jnci/91.18.1541

    Article  CAS  PubMed  Google Scholar 

  104. Adams-Campbell LL, Makambi KH, Palmer JR, Rosenberg L. Diagnostic accuracy of the Gail model in the Black Women's Health Study. Breast J. 2007 Jul-Aug;13(4):332–6. https://doi.org/10.1111/j.1524-4741.2007.00439.x

  105. Fisher B, Costantino JP, Wickerham DL et al (1998) Tamoxifen for prevention of breast cancer: report of the National Surgical Adjuvant Breast and Bowel Project P-1 Study. J Natl Cancer Inst 90(18):1371–1388. https://doi.org/10.1093/jnci/90.18.1371

    Article  CAS  PubMed  Google Scholar 

  106. Vogel VG, Costantino JP, Wickerham DL, et al. National Surgical Adjuvant Breast and Bowel Project. Update of the National Surgical Adjuvant Breast and Bowel Project Study of Tamoxifen and Raloxifene (STAR) P-2 Trial: Preventing breast cancer. Cancer Prev Res (Phila). 2010 Jun;3(6):696–706. https://doi.org/10.1158/1940-6207.CAPR-10-0076

  107. Tice JA, Bissell MCS, Miglioretti DL et al (2019) Validation of the breast cancer surveillance consortium model of breast cancer risk. Breast Cancer Res Treat 175(2):519–523. https://doi.org/10.1007/s10549-019-05167-2

    Article  PubMed  PubMed Central  Google Scholar 

  108. Michailidou K., Lindström S., Dennis J., Beesley J., Hui S., Kar S., Lemaçon A., Soucy P., Glubb D., Rostamianfar A., NBCS Collaborators. ABCTB Investigators. ConFab/AOCS Investigators Association analysis identifies 65 new breast cancer risk loci. Nature. 2017;551:92–94.

    Google Scholar 

  109. Minnier J, Rajeevan N, Gao L, Park B, Pyarajan S, et al. Polygenic Breast Cancer Risk for Women Veterans in the Million Veteran Program. https://doi.org/10.1200/PO.20.00541 JCO Precision Oncology no. 5 (2021) 1178–1191.

  110. Manrai AK, Funke BH, Rehm HL et al (2016) Genetic Misdiagnoses and the Potential for Health Disparities. N Engl J Med 375(7):655–665. https://doi.org/10.1056/NEJMsa1507092

    Article  PubMed  PubMed Central  Google Scholar 

  111. Liu C, Zeinomar N, Chung WK et al (2021) Generalizability of Polygenic Risk Scores for Breast Cancer Among Women With European, African, and Latinx Ancestry. JAMA Netw Open 4(8):e2119084. https://doi.org/10.1001/jamanetworkopen.2021.19084

    Article  PubMed  PubMed Central  Google Scholar 

  112. Shah PD (2021) Polygenic Risk Scores for Breast Cancer-Can They Deliver on the Promise of Precision Medicine? JAMA Netw Open 4(8):e2119333. https://doi.org/10.1001/jamanetworkopen.2021.19333

    Article  PubMed  Google Scholar 

  113. Meads C, Ahmed I, Riley RD (2012) A systematic review of breast cancer incidence risk prediction models with meta-analysis of their performance. Breast Cancer Res Treat 132(2):365–377. https://doi.org/10.1007/s10549-011-1818-2

    Article  PubMed  Google Scholar 

  114. Pashayan N, Antoniou AC, Ivanus U et al (2020) Personalized early detection and prevention of breast cancer: ENVISION consensus statement. Nat Rev Clin Oncol 17(11):687–705. https://doi.org/10.1038/s41571-020-0388-9

    Article  PubMed  PubMed Central  Google Scholar 

  115. Cozzi A, Schiaffino S, Giorgi Rossi P, Sardanelli F (2020) Breast cancer screening: in the era of personalized medicine, age is just a number. Quant Imaging Med Surg 10(12):2401–2407. https://doi.org/10.21037/qims-2020-26

    Article  PubMed  PubMed Central  Google Scholar 

  116. Allweis TM, Hermann N, Berenstein-Molho R, Guindy M (2021) Personalized Screening for Breast Cancer: Rationale, Present Practices, and Future Directions. Ann Surg Oncol 28(8):4306–4317. https://doi.org/10.1245/s10434-020-09426-1

    Article  PubMed  Google Scholar 

  117. Esserman LJ et WISDOM Study and Athena Investigators (2017) The WISDOM Study: breaking the deadlock in the breast cancer screening debate. NPJ Breast Cancer. 13(3):34. https://doi.org/10.1038/s41523-017-0035-5.PMID:28944288;PMCID:PMC5597574

    Article  Google Scholar 

  118. Cuzick J, Brentnall A, Dowsett M (2017) SNPs for breast cancer risk assessment. Oncotarget 8(59):99211–99212

    Article  PubMed  PubMed Central  Google Scholar 

  119. van Veen EM, Brentnall AR et al (2018) Use of Single-Nucleotide Polymorphisms and Mammographic Density Plus Classic Risk Factors for Breast Cancer Risk Prediction. JAMA Oncol 4(4):476–482. https://doi.org/10.1001/jamaoncol.2017.4881

    Article  PubMed  PubMed Central  Google Scholar 

  120. Adedokun B, Du Z, Gao G et al (2021) Cross-ancestry GWAS meta-analysis identifies six breast cancer loci in African and European ancestry women. Nat Commun 12(1):4198. https://doi.org/10.1038/s41467-021-24327-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Nelson HD, Fu R, Zakher B, Pappas M, McDonagh M (2019) Medication Use for the Risk Reduction of Primary Breast Cancer in Women: Updated Evidence Report and Systematic Review for the US Preventive Services Task Force. JAMA 322(9):868–886. https://doi.org/10.1001/jama.2019.5780

    Article  PubMed  Google Scholar 

  122. Duggan C, Dvaladze A, Scheel JR, et al. Situational analysis of breast health care systems: Why context matters. Cancer. 2020 May 15;126 Suppl 10:2405-2415. https://doi.org/10.1002/cncr.32899

  123. Mann RM, Hooley R, Barr RG, Moy L. Novel Approaches to Screening for Breast Cancer. Radiology. 2020 Nov;297(2):266-285. https://doi.org/10.1148/radiol.2020200172. Epub 2020 Sep 8

  124. Yala A, Mikhael PG, Strand F, Lin G, Smith K, Wan YL, Lamb L, Hughes K, Lehman C, Barzilay R. Toward robust mammography-based models for breast cancer risk. Sci Transl Med. 2021 Jan 27;13(578):eaba4373. https://doi.org/10.1126/scitranslmed.aba4373.

  125. Freeman K, Geppert J, Stinton C, Todkill D, Johnson S, Clarke A, Taylor-Phillips S (2021) Use of artificial intelligence for image analysis in breast cancer screening programmes: systematic review of test accuracy. BMJ 1(374):n1872. https://doi.org/10.1136/bmj.n1872

    Article  Google Scholar 

  126. Schrag D, McDonnell CH, Nadauld L, et al. 903O - A prospective study of a multi-cancer early detection blood test. Annals of Oncology (2022) 33 (suppl_7): S417-S426. https://doi.org/10.1016/annonc/annonc1061.

  127. D’Amico P, Corvaja C, Gerratana L, Reduzzi C, Curigliano G, Cristofanilli M. The use of liquid biopsy in early breast cancer: clinical evidence and future perspectives. J Cancer Metastasis Treat 2021;7:3. https://doi.org/10.20517/2394-4722.2020.93

  128. O’Donovan J, Newcomb A, MacRae MC et al (2020) Community health workers and early detection of breast cancer in low-income and middle-income countries: a systematic scoping review of the literature. BMJ Glob Health 5(5):e002466. https://doi.org/10.1136/bmjgh-2020-002466

    Article  PubMed  PubMed Central  Google Scholar 

  129. Richards, M. 2019. Independent Review of National Cancer Screening Programmes in England. Available at: https://www.england.nhs.uk/wp-content/uploads/2019/02/independent-review-of-cancer-screening-programmesinterim-report.pdf (accessed 28 July 2021)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dario Trapani .

Editor information

Editors and Affiliations

Ethics declarations

None declared.

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Trapani, D. et al. (2023). Screening Programs for Breast Cancer: Toward Individualized, Risk-Adapted Strategies of Early Detection. In: Al Jarroudi, O., El Bairi, K., Curigliano, G. (eds) Breast Cancer Research and Treatment. Cancer Treatment and Research, vol 188. Springer, Cham. https://doi.org/10.1007/978-3-031-33602-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-33602-7_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-33601-0

  • Online ISBN: 978-3-031-33602-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics