Skip to main content

Innovative Therapeutic Approaches for Patients with HER2-Positive Breast Cancer

  • Chapter
  • First Online:
Breast Cancer Research and Treatment

Part of the book series: Cancer Treatment and Research ((CTAR,volume 188))

  • 467 Accesses

Abstract

Overexpression of human epidermal growth factor receptor 2 (HER2), a transmembrane tyrosine kinase receptor, has been described in about 15–20% of breast cancer (BC) and is associated with poor outcomes. Trastuzumab is the first anti-HER2 monoclonal antibody (mAB) that blocks receptor activity but it also activates immune response against cancer cells, thus, revolutionizing the prognosis of patients with HER2-positive BC. Over the years, new therapies have been developed, including other mAbs and tyrosine kinase inhibitors (TKIs) that required multimodal approaches with chemotherapy to optimize their anticancer activity. This chapter gives a comprehensive overview of the last advancements including new approaches and future combinations, which seem to be very promising in overcoming resistance to the traditional anti-HER2 treatments. A modern therapeutic algorithm should include treatment options based on tumour patterns and a patient-centred approach. A proper patient’s selection is crucial to derive maximal benefits from a treatment strategy and emerging biomarkers should be integrated along with the HER2 status, which is currently the only validated biomarker in the context of HER2-positive disease. These biomarkers might include molecular features with reported prognostic/predictive significance, such as phosphatidylinositol 3’ -kinase (PI3K) or mitogen-activated protein kinase (MAPK) pathways, programmed cell death protein ligand 1 (PD-L1), and tumour-infiltrating lymphocytes (TILs), which all affect prognosis and response to treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nitta H, Kelly BD, Allred C, Jewell S, Banks P, Dennis E, Grogan TM (2016) The assessment of HER2 status in breast cancer: the past, the present, and the future. Pathol Int 66(6):313–324. https://doi.org/10.1111/pin.12407

    Article  PubMed  Google Scholar 

  2. Hayes DF (2019) HER2 and breast cancer—a phenomenal success story. N Engl J Med 381(13):1284–1286. https://doi.org/10.1056/NEJMcibr1909386

    Article  PubMed  Google Scholar 

  3. Engelman JA (2009) Targeting PI3K signalling in cancer: opportunities, challenges and limitations. Nat Rev Cancer 9(8):550–562. https://doi.org/10.1038/nrc2664

    Article  CAS  PubMed  Google Scholar 

  4. Ahn S, Woo JW, Lee K, Park SY (2020) HER2 status in breast cancer: changes in guidelines and complicating factors for interpretation. J Pathol Transl Med 54(1):34–44. https://doi.org/10.4132/jptm.2019.11.03

    Article  PubMed  Google Scholar 

  5. Ramakrishna N, Temin S, Chandarlapaty S, Crews JR, Davidson NE, Esteva FJ, Giordano SH, Kirshner JJ, Krop IE, Levinson J, Modi S, Patt DA, Perlmutter J, Winer EP, Lin NU (2018) Recommendations on disease management for patients with advanced human epidermal growth factor receptor 2–positive breast cancer and brain metastases: ASCO clinical practice guideline update. J Clin Oncol. https://doi.org/10.1200/JCO.2018.79.2713

    Article  PubMed  Google Scholar 

  6. Slamon DJ, Clark GM, Wong SG, Levin WJ, Ullrich A, McGuire WL (1987) Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science (New York, N.Y.), 235(4785):177–182. https://doi.org/10.1126/science.3798106

  7. Tandon AK, Clark GM, Chamness GC, Ullrich A, McGuire WL (1989) HER-2/neu oncogene protein and prognosis in breast cancer. J Clin Oncol: Off J Am Soc Clin Oncol 7(8):1120–1128. https://doi.org/10.1200/JCO.1989.7.8.1120

    Article  CAS  Google Scholar 

  8. Hudis CA (2007) Trastuzumab—mechanism of action and use in clinical practice. N Engl J Med 357(1):39–51. https://doi.org/10.1056/NEJMra043186

    Article  CAS  PubMed  Google Scholar 

  9. Slamon D, Eiermann W, Robert N, Pienkowski T, Martin M, Press M, Mackey J, Glaspy J, Chan A, Pawlicki M, Pinter T, Valero V, Liu M-C, Sauter G, von Minckwitz G, Visco F, Bee V, Buyse M, Bendahmane B, Crown J (2011) Adjuvant trastuzumab in HER2-positive breast cancer. N Engl J Med 365(14):1273–1283. https://doi.org/10.1056/NEJMoa0910383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Slamon DJ, Leyland-Jones B, Shak S, Fuchs H, Paton V, Bajamonde A, Fleming T, Eiermann W, Wolter J, Pegram M, Baselga J, Norton L (2001) Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med 344(11):783–792. https://doi.org/10.1056/NEJM200103153441101

    Article  CAS  PubMed  Google Scholar 

  11. Diéras V, Miles D, Verma S, Pegram M, Welslau M, Baselga J, Krop IE, Blackwell K, Hoersch S, Xu J, Green M, Gianni L (2017) Trastuzumab emtansine versus capecitabine plus lapatinib in patients with previously treated HER2-positive advanced breast cancer (EMILIA): a descriptive analysis of final overall survival results from a randomised, open-label, phase 3 trial. Lancet Oncol 18(6):732–742. https://doi.org/10.1016/S1470-2045(17)30312-1

    Article  PubMed  PubMed Central  Google Scholar 

  12. Geyer CE, Forster J, Lindquist D, Chan S, Romieu CG, Pienkowski T, Jagiello-Gruszfeld A, Crown J, Chan A, Kaufman B, Skarlos D, Campone M, Davidson N, Berger M, Oliva C, Rubin SD, Stein S, Cameron D (2006) Lapatinib plus capecitabine for HER2-positive advanced breast cancer. N Engl J Med 355(26):2733–2743. https://doi.org/10.1056/NEJMoa064320

    Article  CAS  PubMed  Google Scholar 

  13. Swain SM, Miles D, Kim S-B, Im Y-H, Im S-A, Semiglazov V, Ciruelos E, Schneeweiss A, Loi S, Monturus E, Clark E, Knott A, Restuccia E, Benyunes MC, Cortés J, Agajanian R, Ahmad R, Aktas B, Alencar VH, Youn Oh D (2020) Pertuzumab, trastuzumab, and docetaxel for HER2-positive metastatic breast cancer (CLEOPATRA): end-of-study results from a double-blind, randomised, placebo-controlled, phase 3 study. Lancet Oncol 21(4):519–530. https://doi.org/10.1016/S1470-2045(19)30863-0

  14. Chan A, Moy B, Mansi J, Ejlertsen B, Holmes FA, Chia S, Iwata H, Gnant M, Loibl S, Barrios CH, Somali I, Smichkoska S, Martinez N, Alonso MG, Link JS, Mayer IA, Cold S, Murillo SM, Senecal F, Martin M (2021) Final efficacy results of neratinib in HER2-positive hormone receptor-positive early-stage breast cancer from the phase III ExteNET trial. Clin Breast Cancer 21(1):80-91.e7. https://doi.org/10.1016/j.clbc.2020.09.014

    Article  CAS  PubMed  Google Scholar 

  15. von Minckwitz G, Huang C-S, Mano MS, Loibl S, Mamounas EP, Untch M, Wolmark N, Rastogi P, Schneeweiss A, Redondo A, Fischer HH, Jacot W, Conlin AK, Arce-Salinas C, Wapnir IL, Jackisch C, DiGiovanna MP, Fasching PA, Crown JP, Geyer CE (2019) Trastuzumab emtansine for residual invasive HER2-positive breast cancer. N Engl J Med 380(7):617–628. https://doi.org/10.1056/NEJMoa1814017

    Article  Google Scholar 

  16. von Minckwitz G, Procter M, de Azambuja E, Zardavas D, Benyunes M, Viale G, Suter T, Arahmani A, Rouchet N, Clark E, Knott A, Lang I, Levy C, Yardley DA, Bines J, Gelber RD, Piccart M, Baselga J (2017) Adjuvant pertuzumab and trastuzumab in early HER2-positive breast cancer. N Engl J Med 377(2):122–131. https://doi.org/10.1056/NEJMoa1703643

    Article  Google Scholar 

  17. https://www.accessdata.fda.gov/drugsatfda_docs/label/2010/103792s5250lbl.pdf. (n.d.)

  18. https://www.ema.europa.eu/en/documents/product-information/herceptin-epar-product-information_en.pdf. (n.d.)

  19. https://www.accessdata.fda.gov/drugsatfda_docs/label/2013/125409s051lbl.pdf. (n.d.)

  20. https://www.ema.europa.eu/en/documents/product-information/perjeta-epar-product-information_en.pdf. (n.d.)

  21. https://www.accessdata.fda.gov/drugsatfda_docs/label/2020/761150s000lbl.pdf. (n.d.)

  22. https://www.accessdata.fda.gov/drugsatfda_docs/label/2018/022059s023lbl.pdf. (n.d.)

  23. https://www.ema.europa.eu/en/documents/product-information/tyverb-epar-product-information_en.pdf. (n.d.)

  24. https://www.accessdata.fda.gov/drugsatfda_docs/label/2020/208051s005s006lbl.pdf. (n.d.)

  25. https://www.ema.europa.eu/en/documents/product-information/nerlynx-epar-product-information_en.pdf. (n.d.)

  26. https://www.accessdata.fda.gov/drugsatfda_docs/label/2020/213411s000lbl.pdf. (n.d.)

  27. https://www.ema.europa.eu/en/documents/product-information/tukysa-epar-product-information_en.pdf. (n.d.)

  28. https://www.accessdata.fda.gov/drugsatfda_docs/label/2013/125427lbl.pdf. (n.d.)

  29. https://www.ema.europa.eu/en/documents/product-information/kadcyla-epar-product-information_en.pdf. (n.d.)

  30. https://www.accessdata.fda.gov/drugsatfda_docs/appletter/2022/761139Orig1s017;%20s020ltr.pdf. (n.d.)

  31. https://www.accessdata.fda.gov/drugsatfda_docs/label/2021/761139s011lbl.pdf. (n.d.)

  32. https://www.ema.europa.eu/en/documents/product-information/enhertu-epar-product-information_en.pdf. (n.d.).

  33. Mandó P, Rivero SG, Rizzo MM, Pinkasz M, Levy EM (2021) Targeting ADCC: a different approach to HER2 breast cancer in the immunotherapy era. Breast 60:15–25. https://doi.org/10.1016/j.breast.2021.08.007

    Article  PubMed  PubMed Central  Google Scholar 

  34. Smith AE, Ferraro E, Safonov A, Morales CB, Lahuerta EJA, Li Q, Kulick A, Ross D, Solit DB, de Stanchina E, Reis-Filho J, Rosen N, Arribas J, Razavi P, Chandarlapaty S (2021) HER2 + breast cancers evade anti-HER2 therapy via a switch in driver pathway. Nat Commun 12(1):6667. https://doi.org/10.1038/s41467-021-27093-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Abès R, Teillaud J-L (2011) Modulation of tumor immunity by therapeutic monoclonal antibodies. Cancer Metastasis Rev 30(1):111–124. https://doi.org/10.1007/s10555-011-9282-3

    Article  CAS  PubMed  Google Scholar 

  36. Krasniqi E, Barchiesi G, Pizzuti L, Mazzotta M, Venuti A, Maugeri-Saccà M, Sanguineti G, Massimiani G, Sergi D, Carpano S, Marchetti P, Tomao S, Gamucci T, de Maria R, Tomao F, Natoli C, Tinari N, Ciliberto G, Barba M, Vici P (2019) Immunotherapy in HER2-positive breast cancer: state of the art and future perspectives. J Hematol Oncol 12(1):111. https://doi.org/10.1186/s13045-019-0798-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Baselga J, Tripathy D, Mendelsohn J, Baughman S, Benz CC, Dantis L, Sklarin NT, Seidman AD, Hudis CA, Moore J, Rosen PP, Twaddell T, Henderson IC, Norton L (1996) Phase II study of weekly intravenous recombinant humanized anti-p185HER2 monoclonal antibody in patients with HER2/neu-overexpressing metastatic breast cancer. J Clin Oncol 14(3):737–744. https://doi.org/10.1200/JCO.1996.14.3.737

    Article  CAS  PubMed  Google Scholar 

  38. Takada M, Toi M (2020) Neoadjuvant treatment for HER2-positive breast cancer. Chin Clin Oncol 9(3):32–32. https://doi.org/10.21037/cco-20-123

  39. Vogel CL, Cobleigh MA, Tripathy D, Gutheil JC, Harris LN, Fehrenbacher L, Slamon DJ, Murphy M, Novotny WF, Burchmore M, Shak S, Stewart SJ, Press M (2002) Efficacy and safety of trastuzumab as a single agent in first-line treatment of HER2 -overexpressing metastatic breast cancer. J Clin Oncol 20(3):719–726. https://doi.org/10.1200/JCO.2002.20.3.719

    Article  CAS  PubMed  Google Scholar 

  40. Adams CW, Allison DE, Flagella K, Presta L, Clarke J, Dybdal N, McKeever K, Sliwkowski MX (2006) Humanization of a recombinant monoclonal antibody to produce a therapeutic HER dimerization inhibitor, pertuzumab. Cancer Immunol Immunother 55(6):717–727. https://doi.org/10.1007/s00262-005-0058-x

    Article  CAS  PubMed  Google Scholar 

  41. Agus DB, Akita RW, Fox WD, Lewis GD, Higgins B, Pisacane PI, Lofgren JA, Tindell C, Evans DP, Maiese K, Scher HI, Sliwkowski MX (2002) Targeting ligand-activated ErbB2 signaling inhibits breast and prostate tumor growth. Cancer Cell 2(2):127–137. https://doi.org/10.1016/S1535-6108(02)00097-1

    Article  CAS  PubMed  Google Scholar 

  42. Swain SM, Baselga J, Kim S-B, Ro J, Semiglazov V, Campone M, Ciruelos E, Ferrero J-M, Schneeweiss A, Heeson S, Clark E, Ross G, Benyunes MC, Cortés J (2015) Pertuzumab, trastuzumab, and docetaxel in HER2-positive metastatic breast cancer. N Engl J Med 372(8):724–734. https://doi.org/10.1056/NEJMoa1413513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Gianni L, Pienkowski T, Im Y-H, Roman L, Tseng L-M, Liu M-C, Lluch A, Staroslawska E, de la Haba-Rodriguez J, Im S-A, Pedrini JL, Poirier B, Morandi P, Semiglazov V, Srimuninnimit V, Bianchi G, Szado T, Ratnayake J, Ross G, Valagussa P (2012) Efficacy and safety of neoadjuvant pertuzumab and trastuzumab in women with locally advanced, inflammatory, or early HER2-positive breast cancer (NeoSphere): a randomised multicentre, open-label, phase 2 trial. Lancet Oncol 13(1):25–32. https://doi.org/10.1016/S1470-2045(11)70336-9

    Article  CAS  PubMed  Google Scholar 

  44. van Ramshorst MS, van der Voort A, van Werkhoven ED, Mandjes IA, Kemper I, Dezentjé VO, Oving IM, Honkoop AH, Tick LW, van de Wouw AJ, Mandigers CM, van Warmerdam LJ, Wesseling J, Vrancken Peeters M-JT, Linn SC, Sonke GS (2018) Neoadjuvant chemotherapy with or without anthracyclines in the presence of dual HER2 blockade for HER2-positive breast cancer (TRAIN-2): a multicentre, open-label, randomised, phase 3 trial. Lancet Oncol 19(12):1630–1640. https://doi.org/10.1016/S1470-2045(18)30570-9

    Article  PubMed  Google Scholar 

  45. Cortazar P, Zhang L, Untch M, Mehta K, Costantino JP, Wolmark N, Bonnefoi H, Cameron D, Gianni L, Valagussa P, Swain SM, Prowell T, Loibl S, Wickerham DL, Bogaerts J, Baselga J, Perou C, Blumenthal G, Blohmer J, von Minckwitz G (2014) Pathological complete response and long-term clinical benefit in breast cancer: the CTNeoBC pooled analysis. Lancet 384(9938):164–172. https://doi.org/10.1016/S0140-6736(13)62422-8

    Article  PubMed  Google Scholar 

  46. van der Voort A, van Ramshorst MS, van Werkhoven ED, Mandjes IA, Kemper I, Vulink AJ, Oving IM, Honkoop AH, Tick LW, van de Wouw AJ, Mandigers CM, van Warmerdam LJ, Wesseling J, Vrancken Peeters M-JT, Linn SC, Sonke GS (2021) Three-year follow-up of neoadjuvant chemotherapy with or without anthracyclines in the presence of dual ERBB2 blockade in patients with ERBB2 -positive breast cancer. JAMA Oncol 7(7):978. https://doi.org/10.1001/jamaoncol.2021.1371

    Article  PubMed  Google Scholar 

  47. Nordstrom JL, Gorlatov S, Zhang W, Yang Y, Huang L, Burke S, Li H, Ciccarone V, Zhang T, Stavenhagen J, Koenig S, Stewart SJ, Moore PA, Johnson S, Bonvini E (2011) Anti-tumor activity and toxicokinetics analysis of MGAH22, an anti-HER2 monoclonal antibody with enhanced Fcγ receptor binding properties. Breast Cancer Res 13(6):R123. https://doi.org/10.1186/bcr3069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Bang YJ, Giaccone G, Im SA, Oh DY, Bauer TM, Nordstrom JL, Li H, Chichili GR, Moore PA, Hong S, Stewart SJ, Baughman JE, Lechleider RJ, Burris HA (2017) First-in-human phase 1 study of margetuximab (MGAH22), an Fc-modified chimeric monoclonal antibody, in patients with HER2-positive advanced solid tumors. Ann Oncol 28(4):855–861. https://doi.org/10.1093/annonc/mdx002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Rugo HS, Im S-A, Cardoso F, Cortés J, Curigliano G, Musolino A, Pegram MD, Wright GS, Saura C, Escrivá-de-Romaní S, de Laurentiis M, Levy C, Brown-Glaberman U, Ferrero J-M, de Boer M, Kim S-B, Petráková K, Yardley DA, Freedman O, Gradishar WJ (2021) Efficacy of margetuximab vs trastuzumab in patients with pretreated ERBB2-positive advanced breast cancer. JAMA Oncol 7(4):573. https://doi.org/10.1001/jamaoncol.2020.7932

    Article  PubMed  Google Scholar 

  50. Loibl S, Gianni L (2017) HER2-positive breast cancer. Lancet 389(10087):2415–2429. https://doi.org/10.1016/S0140-6736(16)32417-5

    Article  CAS  PubMed  Google Scholar 

  51. Xuhong J-C, Qi X-W, Zhang Y, Jiang J (2019) Mechanism, safety and efficacy of three tyrosine kinase inhibitors lapatinib, neratinib and pyrotinib in HER2-positive breast cancer. Am J Cancer Res 9(10):2103–2119

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Schlam I, Swain SM (2021) HER2-positive breast cancer and tyrosine kinase inhibitors: the time is now. Npj Breast Cancer 7(1):56. https://doi.org/10.1038/s41523-021-00265-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Xia W, Mullin RJ, Keith BR, Liu L-H, Ma H, Rusnak DW, Owens G, Alligood KJ, Spector NL (2002) Anti-tumor activity of GW572016: a dual tyrosine kinase inhibitor blocks EGF activation of EGFR/erbB2 and downstream Erk1/2 and AKT pathways. Oncogene 21(41):6255–6263. https://doi.org/10.1038/sj.onc.1205794

    Article  CAS  PubMed  Google Scholar 

  54. Baselga J, Bradbury I, Eidtmann H, di Cosimo S, de Azambuja E, Aura C, Gómez H, Dinh P, Fauria K, van Dooren V, Aktan G, Goldhirsch A, Chang T-W, Horváth Z, Coccia-Portugal M, Domont J, Tseng L-M, Kunz G, Sohn JH, Piccart-Gebhart M (2012) Lapatinib with trastuzumab for HER2-positive early breast cancer (NeoALTTO): a randomised, open-label, multicentre, phase 3 trial. Lancet 379(9816):633–640. https://doi.org/10.1016/S0140-6736(11)61847-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Piccart-Gebhart M, Holmes E, Baselga J, de Azambuja E, Dueck AC, Viale G, Zujewski JA, Goldhirsch A, Armour A, Pritchard KI, McCullough AE, Dolci S, McFadden E, Holmes AP, Tonghua L, Eidtmann H, Dinh P, di Cosimo S, Harbeck N, Perez EA (2016) Adjuvant lapatinib and trastuzumab for early human epidermal growth factor receptor 2–positive breast cancer: results from the randomized phase III adjuvant lapatinib and/or trastuzumab treatment optimization trial. J Clin Oncol 34(10):1034–1042. https://doi.org/10.1200/JCO.2015.62.1797

    Article  CAS  PubMed  Google Scholar 

  56. Saura C, Oliveira M, Feng Y-H, Dai M-S, Chen S-W, Hurvitz SA, Kim S-B, Moy B, Delaloge S, Gradishar W, Masuda N, Palacova M, Trudeau ME, Mattson J, Yap YS, Hou M-F, de Laurentiis M, Yeh Y-M, Chang H-T, Brufsky A (2020) Neratinib plus capecitabine versus lapatinib plus capecitabine in HER2-positive metastatic breast cancer previously treated with ≥ 2 HER2-directed regimens: phase III NALA trial. J Clin Oncol 38(27):3138–3149. https://doi.org/10.1200/JCO.20.00147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Martin M, Holmes FA, Ejlertsen B, Delaloge S, Moy B, Iwata H, von Minckwitz G, Chia SKL, Mansi J, Barrios CH, Gnant M, Tomašević Z, Denduluri N, Šeparović R, Gokmen E, Bashford A, Ruiz Borrego M, Kim S-B, Jakobsen EH, Charif M (2017) Neratinib after trastuzumab-based adjuvant therapy in HER2-positive breast cancer (ExteNET): 5-year analysis of a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol 18(12):1688–1700. https://doi.org/10.1016/S1470-2045(17)30717-9

    Article  CAS  PubMed  Google Scholar 

  58. Kulukian A, Lee P, Taylor J, Rosler R, de Vries P, Watson D, Forero-Torres A, Peterson S (2020) Preclinical activity of HER2-selective tyrosine kinase inhibitor tucatinib as a single agent or in combination with trastuzumab or docetaxel in solid tumor models. Mol Cancer Ther 19(4):976–987. https://doi.org/10.1158/1535-7163.MCT-19-0873

    Article  CAS  PubMed  Google Scholar 

  59. O’Brien N, Conklin D, McDermott M, Luo T, Ayala R, Issakhanian S, Salgar S, Hurvitz S, Slamon D (2019) Abstract P6-17-11: the small molecule inhibitor of HER2, tucatinib, has potent and highly selective activity in preclinical modes of HER2-driven cancer. Poster Session Abstracts, P6-17-11-P6-17-11. https://doi.org/10.1158/1538-7445.SABCS18-P6-17-11

  60. Murthy RK, Loi S, Okines A, Paplomata E, Hamilton E, Hurvitz SA, Lin NU, Borges V, Abramson V, Anders C, Bedard PL, Oliveira M, Jakobsen E, Bachelot T, Shachar SS, Müller V, Braga S, Duhoux FP, Greil R, Winer EP (2020) Tucatinib, trastuzumab, and capecitabine for HER2-positive metastatic breast cancer. N Engl J Med 382(7):597–609. https://doi.org/10.1056/NEJMoa1914609

    Article  CAS  PubMed  Google Scholar 

  61. Ma F, Ouyang Q, Li W, Jiang Z, Tong Z, Liu Y, Li H, Yu S, Feng J, Wang S, Hu X, Zou J, Zhu X, Xu B (2019) Pyrotinib or lapatinib combined with capecitabine in HER2–positive metastatic breast cancer with prior taxanes, anthracyclines, and/or trastuzumab: a randomized, phase II study. J Clin Oncol 37(29):2610–2619. https://doi.org/10.1200/JCO.19.00108

    Article  CAS  PubMed  Google Scholar 

  62. Xu B, Yan M, Ma F, Hu X, Feng J, Ouyang Q, Tong Z, Li H, Zhang Q, Sun T, Wang X, Yin Y, Cheng Y, Li W, Gu Y, Chen Q, Liu J, Cheng J, Geng C, Zou J (2021) Pyrotinib plus capecitabine versus lapatinib plus capecitabine for the treatment of HER2-positive metastatic breast cancer (PHOEBE): a multicentre, open-label, randomised, controlled, phase 3 trial. Lancet Oncol 22(3):351–360. https://doi.org/10.1016/S1470-2045(20)30702-6

    Article  CAS  PubMed  Google Scholar 

  63. Blair HA (2018) Pyrotinib: first global approval. Drugs 78(16):1751–1755. https://doi.org/10.1007/s40265-018-0997-0

    Article  PubMed  Google Scholar 

  64. Drago JZ, Modi S, Chandarlapaty S (2021) Unlocking the potential of antibody–drug conjugates for cancer therapy. Nat Rev Clin Oncol 18(6):327–344. https://doi.org/10.1038/s41571-021-00470-8

    Article  PubMed  PubMed Central  Google Scholar 

  65. Pondé N, Aftimos P, Piccart M (2019) Antibody-drug conjugates in breast cancer: a comprehensive review. Curr Treat Options Oncol 20(5):37. https://doi.org/10.1007/s11864-019-0633-6

    Article  PubMed  Google Scholar 

  66. Corti C, Giugliano F, Nicolò E, Ascione L, Curigliano G (2021) Antibody-drug conjugates for the treatment of breast cancer. Cancers 13(12):2898. https://doi.org/10.3390/cancers13122898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. el Bairi K, al Jarroudi O, Afqir S (2021) Revisiting antibody-drug conjugates and their predictive biomarkers in platinum-resistant ovarian cancer. Semin Cancer Biol 77:42–55. https://doi.org/10.1016/j.semcancer.2021.03.031

  68. Lewis Phillips GD, Li G, Dugger DL, Crocker LM, Parsons KL, Mai E, Blättler WA, Lambert JM, Chari RVJ, Lutz RJ, Wong WLT, Jacobson FS, Koeppen H, Schwall RH, Kenkare-Mitra SR, Spencer SD, Sliwkowski MX (2008) Targeting HER2-positive breast cancer with trastuzumab-DM1, an antibody-cytotoxic drug conjugate. Can Res 68(22):9280–9290. https://doi.org/10.1158/0008-5472.CAN-08-1776

    Article  CAS  Google Scholar 

  69. Costa RLB, Czerniecki BJ (2020) Clinical development of immunotherapies for HER2+ breast cancer: a review of HER2-directed monoclonal antibodies and beyond. Npj Breast Cancer 6(1):10. https://doi.org/10.1038/s41523-020-0153-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Verma S, Miles D, Gianni L, Krop IE, Welslau M, Baselga J, Pegram M, Oh D-Y, Diéras V, Guardino E, Fang L, Lu MW, Olsen S, Blackwell K (2012) Trastuzumab emtansine for HER2-positive advanced breast cancer. N Engl J Med 367(19):1783–1791. https://doi.org/10.1056/NEJMoa1209124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Krop IE, Kim S-B, González-Martín A, LoRusso PM, Ferrero J-M, Smitt M, Yu R, Leung ACF, Wildiers H (2014) Trastuzumab emtansine versus treatment of physician’s choice for pretreated HER2-positive advanced breast cancer (TH3RESA): a randomised, open-label, phase 3 trial. Lancet Oncol 15(7):689–699. https://doi.org/10.1016/S1470-2045(14)70178-0

    Article  CAS  PubMed  Google Scholar 

  72. Doi T, Shitara K, Naito Y, Shimomura A, Fujiwara Y, Yonemori K, Shimizu C, Shimoi T, Kuboki Y, Matsubara N, Kitano A, Jikoh T, Lee C, Fujisaki Y, Ogitani Y, Yver A, Tamura K (2017) Safety, pharmacokinetics, and antitumour activity of trastuzumab deruxtecan (DS-8201), a HER2-targeting antibody–drug conjugate, in patients with advanced breast and gastric or gastro-oesophageal tumours: a phase 1 dose-escalation study. Lancet Oncol 18(11):1512–1522. https://doi.org/10.1016/S1470-2045(17)30604-6

    Article  CAS  PubMed  Google Scholar 

  73. Ogitani Y, Aida T, Hagihara K, Yamaguchi J, Ishii C, Harada N, Soma M, Okamoto H, Oitate M, Arakawa S, Hirai T, Atsumi R, Nakada T, Hayakawa I, Abe Y, Agatsuma T (2016) DS-8201a, a novel HER2-targeting ADC with a Novel DNA topoisomerase I inhibitor, demonstrates a promising antitumor efficacy with differentiation from T-DM1. Clin Cancer Res 22(20):5097–5108. https://doi.org/10.1158/1078-0432.CCR-15-2822

    Article  CAS  PubMed  Google Scholar 

  74. Ogitani Y, Hagihara K, Oitate M, Naito H, Agatsuma T (2016) Bystander killing effect of <scp>DS</scp> -8201a, a novel anti-human epidermal growth factor receptor 2 antibody–drug conjugate, in tumors with human epidermal growth factor receptor 2 heterogeneity. Cancer Sci 107(7):1039–1046. https://doi.org/10.1111/cas.12966

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Ferraro E, Drago JZ, Modi S (2021) Implementing antibody-drug conjugates (ADCs) in HER2-positive breast cancer: state of the art and future directions. Breast Cancer Res 23(1):84. https://doi.org/10.1186/s13058-021-01459-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Modi S, Saura C, Yamashita T, Park YH, Kim S-B, Tamura K, Andre F, Iwata H, Ito Y, Tsurutani J, Sohn J, Denduluri N, Perrin C, Aogi K, Tokunaga E, Im S-A, Lee KS, Hurvitz SA, Cortes J, Krop I (2020) Trastuzumab deruxtecan in previously treated HER2-positive breast cancer. N Engl J Med 382(7):610–621. https://doi.org/10.1056/NEJMoa1914510

    Article  CAS  PubMed  Google Scholar 

  77. Modi S, Saura C, Yamashita T, Park YH, Kim S-B, Tamura K, Andre F, Iwata H, Ito Y, Tsurutani J, Sohn J, Denduluri N, Perrin C, Aogi K, Tokunaga E, Im S-A, Lee KS, Hurvitz SA, Cortes J, Krop IE (2021) Abstract PD3–06: updated results from DESTINY-breast01, a phase 2 trial of trastuzumab deruxtecan (T-DXd ) in HER2 positive metastatic breast cancer. Poster Spotlight Session Abstracts, PD3-06-PD3-06. https://doi.org/10.1158/1538-7445.SABCS20-PD3-06

  78. Cortés J, Kim S-B, Chung W-P, Im S-A, Park YH, Hegg R, Kim MH, Tseng L-M, Petry V, Chung C-F, Iwata H, Hamilton E, Curigliano G, Xu B, Huang C-S, Kim JH, Chiu JWY, Pedrini JL, Lee C, Hurvitz SA (2022) Trastuzumab deruxtecan versus trastuzumab emtansine for breast cancer. N Engl J Med 386(12):1143–1154. https://doi.org/10.1056/NEJMoa2115022

    Article  PubMed  Google Scholar 

  79. Tarantino P, Modi S, Tolaney SM, Cortés J, Hamilton EP, Kim S-B, Toi M, Andrè F, Curigliano G (2021) Interstitial lung disease induced by anti-ERBB2 antibody-drug conjugates. JAMA Oncol 7(12):1873. https://doi.org/10.1001/jamaoncol.2021.3595

    Article  PubMed  Google Scholar 

  80. Modi S, Jacot W, Yamashita T, Sohn J, Vidal M, Tokunaga E, Tsurutani J, Ueno NT, Prat A, Chae YS, Lee KS, Niikura N, Park YH, Xu B, Wang X, Gil-Gil M, Li W, Pierga J-Y, Im S-A, Cameron DA (2022) Trastuzumab deruxtecan in previously treated HER2-low advanced breast cancer. N Engl J Med 387(1):9–20. https://doi.org/10.1056/NEJMoa2203690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Dokter W, Ubink R, van der Lee M, van der Vleuten M, van Achterberg T, Jacobs D, Loosveld E, van den Dobbelsteen D, Egging D, Mattaar E, Groothuis P, Beusker P, Coumans R, Elgersma R, Menge W, Joosten J, Spijker H, Huijbregts T, de Groot V, Timmers M (2014) Preclinical profile of the HER2-targeting ADC SYD983/SYD985: introduction of a new duocarmycin-based linker-drug platform. Mol Cancer Ther 13(11):2618–2629. https://doi.org/10.1158/1535-7163.MCT-14-0040-T

    Article  CAS  PubMed  Google Scholar 

  82. van der Lee MMC, Groothuis PG, Ubink R, van der Vleuten MAJ, van Achterberg TA, Loosveld EM, Damming D, Jacobs DCH, Rouwette M, Egging DF, van den Dobbelsteen D, Beusker PH, Goedings P, Verheijden GFM, Lemmens JM, Timmers M, Dokter WHA (2015) The preclinical profile of the duocarmycin-based HER2-targeting ADC SYD985 predicts for clinical benefit in low HER2-expressing breast cancers. Mol Cancer Ther 14(3):692–703. https://doi.org/10.1158/1535-7163.MCT-14-0881-T

    Article  CAS  PubMed  Google Scholar 

  83. Banerji U, van Herpen CML, Saura C, Thistlethwaite F, Lord S, Moreno V, Macpherson IR, Boni V, Rolfo C, de Vries EGE, Rottey S, Geenen J, Eskens F, Gil-Martin M, Mommers EC, Koper NP, Aftimos P (2019) Trastuzumab duocarmazine in locally advanced and metastatic solid tumours and HER2-expressing breast cancer: a phase 1 dose-escalation and dose-expansion study. Lancet Oncol 20(8):1124–1135. https://doi.org/10.1016/S1470-2045(19)30328-6

    Article  CAS  PubMed  Google Scholar 

  84. Manich CS, O’Shaughnessy J, Aftimos PG, van den Tweel E (2021) LBA15—primary outcome of the phase III SYD985.002/TULIP trial comparing [vic-]trastuzumab duocarmazine to physician’s choice treatment in patients with pre-treated HER-positive locally advanced or metastatic breast cancer. Ann Oncol 32(suppl_5):1283–1346

    Google Scholar 

  85. Deeks ED (2021) Disitamab vedotin: first approval. Drugs 81(16):1929–1935. https://doi.org/10.1007/s40265-021-01614-x

    Article  CAS  PubMed  Google Scholar 

  86. Gong J, Shen L, Wang W, Fang J (2018) Safety, pharmacokinetics and efficacy of RC48-ADC in a phase I study in patients with HER2-overexpression advanced solid cancer. J Clin Oncol 36(15_suppl):e16059–e16059. https://doi.org/10.1200/JCO.2018.36.15_suppl.e16059

  87. Xu B, Wang J, Zhang Q, Liu Y, Feng JF, Wang W, Fang J (2018) An open-label, multicenter, phase Ib study to evaluate RC48-ADC in patients with HER2-positive metastatic breast cancer. J Clin Oncol 36(15_suppl):1028–1028. https://doi.org/10.1200/JCO.2018.36.15_suppl.1028

  88. le Joncour V, Martins A, Puhka M, Isola J, Salmikangas M, Laakkonen P, Joensuu H, Barok M (2019) A novel anti-HER2 antibody-drug conjugate XMT-1522 for HER2-positive breast and gastric cancers resistant to trastuzumab emtansine. Mol Cancer Ther 18(10):1721–1730. https://doi.org/10.1158/1535-7163.MCT-19-0207

    Article  PubMed  Google Scholar 

  89. Hamilton EP, Barve MA, Bardia A, Beeram M, Bendell JC, Mosher R, Hailman E, Bergstrom DA, Burris HA, Soliman HH (2018) Phase 1 dose escalation of XMT-1522, a novel HER2-targeting antibody-drug conjugate (ADC), in patients (pts) with HER2-expressing breast, lung and gastric tumors. J Clin Oncol 36(15_suppl):2546–2546. https://doi.org/10.1200/JCO.2018.36.15_suppl.2546

  90. Miller K, Cortes J, Hurvitz SA, Krop IE, Tripathy D, Verma S, Riahi K, Reynolds JG, Wickham TJ, Molnar I, Yardley DA (2016) HERMIONE: a randomized Phase 2 trial of MM-302 plus trastuzumab versus chemotherapy of physician’s choice plus trastuzumab in patients with previously treated, anthracycline-naïve, HER2-positive, locally advanced/metastatic breast cancer. BMC Cancer 16(1):352. https://doi.org/10.1186/s12885-016-2385-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Munster P, Krop IE, LoRusso P, Ma C, Siegel BA, Shields AF, Molnár I, Wickham TJ, Reynolds J, Campbell K, Hendriks BS, Adiwijaya BS, Geretti E, Moyo V, Miller KD (2018) Safety and pharmacokinetics of MM-302, a HER2-targeted antibody–liposomal doxorubicin conjugate, in patients with advanced HER2-positive breast cancer: a phase 1 dose-escalation study. Br J Cancer 119(9):1086–1093. https://doi.org/10.1038/s41416-018-0235-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Hu X, Zhang J, Liu R, Gao S, Qing Y, Yi S, Yuan J, Chen H, Fan B, Zheng H, Wang J (2021) Phase I study of A166 in patients with HER2-expressing locally advanced or metastatic solid tumors. J Clin Oncol 39(15_suppl):1024–1024. https://doi.org/10.1200/JCO.2021.39.15_suppl.1024

  93. Liu Y, Lian W, Zhao X, Qi W, Xu J, Xiao L, Qing Y, Xue T, Wang J (2020) A first in-human study of A166 in patients with locally advanced/metastatic solid tumors which are HER2-positive or HER2-amplified who did not respond or stopped responding to approved therapies. J Clin Oncol 38(15_suppl):1049–1049. https://doi.org/10.1200/JCO.2020.38.15_suppl.1049

  94. Hu X, Zhang J, Liu R, Gao S, Wu J, Wang Y, Hao Y, Ge J, Qing Y, Yi S, Yang Q, Rao H, Yuan J (2022) Updated results and biomarker analyses from the phase I trial of A166 in patients with HER2-expressing locally advanced or metastatic solid tumors. J Clin Oncol 40(16_suppl):1037–1037. https://doi.org/10.1200/JCO.2022.40.16_suppl.1037

  95. Barok M, le Joncour V, Martins A, Isola J, Salmikangas M, Laakkonen P, Joensuu H (2020) ARX788, a novel anti-HER2 antibody-drug conjugate, shows anti-tumor effects in preclinical models of trastuzumab emtansine-resistant HER2-positive breast cancer and gastric cancer. Cancer Lett 473:156–163. https://doi.org/10.1016/j.canlet.2019.12.037

    Article  CAS  PubMed  Google Scholar 

  96. Zhang J, Ji D, Shen W, Xiao Q, Gu Y, O’Shaughnessy J, Hu X (2022) Phase I trial of a novel anti-HER2 antibody-drug conjugate, ARX788, for the treatment of HER2-positive metastatic breast cancer. Clin Cancer Res 28(19):4212–4221. https://doi.org/10.1158/1078-0432.CCR-22-0456

    Article  CAS  Google Scholar 

  97. Meric-Bernstam F, Calvo E, Moreno V, Chung HC, Park YH, Bang Y-J, Rosen LS, Mita MM, Garrido-Laguna I, Leung ACF, Dube H, Zhong W, Chen X, Dawaher R, Curigliano G (2020) A phase I dose escalation study evaluating the safety and tolerability of a novel anti-HER2 antibody-drug conjugate (PF-06804103) in patients with HER2-positive solid tumors. J Clin Oncol 38(15_suppl):1039–1039. https://doi.org/10.1200/JCO.2020.38.15_suppl.1039

  98. Yu J, Fang T, Yun C, Liu X, Cai X (2022) Antibody-drug conjugates targeting the human epidermal growth factor receptor family in cancers. Front Mol Biosci 9. https://doi.org/10.3389/fmolb.2022.847835

  99. Gligorov J, Richard S, Todorovic V (2017) New anti-HER2 agents: from second-generation tyrosine kinases inhibitors to bifunctional antibodies. Curr Opin Oncol 29(6):405–410. https://doi.org/10.1097/CCO.0000000000000412

    Article  CAS  PubMed  Google Scholar 

  100. Pernas S, Tolaney SM (2019) HER2-positive breast cancer: new therapeutic frontiers and overcoming resistance. Ther Adv Med Oncol 11:175883591983351. https://doi.org/10.1177/1758835919833519

    Article  CAS  Google Scholar 

  101. Antonarelli G, Giugliano F, Corti C, Repetto M, Tarantino P, Curigliano G (2021) Research and clinical landscape of bispecific antibodies for the treatment of solid malignancies. Pharmaceuticals 14(9):884. https://doi.org/10.3390/ph14090884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Wermke M, Alt J, Kauh J, Back J, Salhi Y, Reddy V, Barve M, Ochsenreither S (2018) Preliminary results from a phase I study of GBR 1302, a bispecific antibody T-cell engager, in HER2 positive cancers. Ann Oncol 29:viii408–viii409. https://doi.org/10.1093/annonc/mdy288.020

  103. Piha-Paul S, Bendell J, Tolcher A, Hurvitz S, Patnaik A, Shroff R, Pohlmann P, Zettl M, Hahn N, Krishnamurthy A, Duerr M, Mei J, Aviano K, Yusuf R, Matis L, Olwill S, Bruns I, Ku G (2020) O82 A phase 1 dose escalation study of PRS-343, a HER2/4–1BB bispecific molecule, in patients with HER2-positive malignancies. Oral Presentations A1.2-A2. https://doi.org/10.1136/LBA2019.2

  104. Yu S, Zhang J, Yan Y, Yao X, Fang L, Xiong H, Liu Y, Chu Q, Zhou P, Wu K (2019) A novel asymmetrical anti-HER2/CD3 bispecific antibody exhibits potent cytotoxicity for HER2-positive tumor cells. J Exp Clin Cancer Res 38(1):355. https://doi.org/10.1186/s13046-019-1354-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Rius Ruiz I, Vicario R, Morancho B, Morales CB, Arenas EJ, Herter S, Freimoser-Grundschober A, Somandin J, Sam J, Ast O, Barriocanal ÁM, Luque A, Escorihuela M, Varela I, Cuartas I, Nuciforo P, Fasani R, Peg V, Rubio I, Arribas J (2018) p95HER2-T cell bispecific antibody for breast cancer treatment. Sci Transl Med 10(461). https://doi.org/10.1126/scitranslmed.aat1445

  106. Oberg HH, Kellner C, Gonnermann D, Sebens S, Bauerschlag D, Gramatzki M, Kabelitz D, Peipp M, Wesch D (2018) Tribody [(HER2)2xCD16] is more effective than trastuzumab in enhancing γδ T cell and natural killer cell cytotoxicity against HER2-expressing cancer cells. Front Immunol 9. https://doi.org/10.3389/fimmu.2018.00814

  107. Zhang H, Lam L, Nagai Y, Zhu Z, Chen X, Ji MQ, Greene MI (2018) A targeted immunotherapy approach for HER2/neu transformed tumors by coupling an engineered effector domain with interferon-γ. OncoImmunology 7(4):e1300739. https://doi.org/10.1080/2162402X.2017.1300739

    Article  PubMed  PubMed Central  Google Scholar 

  108. Kiewe P, Thiel E (2008) Ertumaxomab: a trifunctional antibody for breast cancer treatment. Expert Opin Investig Drugs 17(10):1553–1558. https://doi.org/10.1517/13543784.17.10.1553

    Article  CAS  PubMed  Google Scholar 

  109. Haense N, Atmaca A, Pauligk C, Steinmetz K, Marmé F, Haag GM, Rieger M, Ottmann OG, Ruf P, Lindhofer H, Al-Batran S-E (2016) A phase I trial of the trifunctional anti Her2 × anti CD3 antibody ertumaxomab in patients with advanced solid tumors. BMC Cancer 16(1):420. https://doi.org/10.1186/s12885-016-2449-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Meric-Bernstam F, Beeram M, Mayordomo JI, Hanna DL, Ajani JA, Blum Murphy MA, Murthy RK, Piha-Paul SA, Bauer TM, Bendell JC, El-Khoueiry AB, Lenz H-J, Press MF, Royer N, Hausman DF, Hamilton EP (2018) Single agent activity of ZW25, a HER2-targeted bispecific antibody, in heavily pretreated HER2-expressing cancers. J Clin Oncol 36(15_suppl):2500–2500. https://doi.org/10.1200/JCO.2018.36.15_suppl.2500

  111. Ji D, Zhang J, Shen W, Du Y, Xu J, Yang J, Luo X, Kong P, Yang F, Hu X-C (2020) Preliminary safety, efficacy and pharmacokinetics (PK) results of KN026, a HER2 bispecific antibody in patients (pts) with HER2-positive metastatic breast cancer. J Clin Oncol 38(15_suppl):1041–1041. https://doi.org/10.1200/JCO.2020.38.15_suppl.1041

  112. Geuijen C, Rovers E, Nijhuis R, den Blanken-Smit R, Visser T, Bartelink W, Kramer A, Zondag-van der Zande V, Clements C, Kaldenberg L, Nieuwenhuizen N, van Loo PF, Roovers R, Gallenne T, Price L, van Driel Shamsili S, Bakker L, Logtenberg T, de Kruif J, Throsby M (2014) Preclinical activity of MCLA-128, an ADCC enhanced bispecific IgG1 antibody targeting the HER2:HER3 heterodimer. J Clin Oncol 32(15_suppl):560–560. https://doi.org/10.1200/jco.2014.32.15_suppl.560

  113. Hamilton EP, Petit T, Pistilli B, Goncalves A, Ferreira AA, Dalenc F, Cardoso F, Mita MM, Dezentjé VO, Manso L, Graff SL, Bidard FC, Aftimos PG, Escrivá S, Afonso N, Wasserman E, Bol K, Stalbovskaya V, Vliet A, Bachelot T (2020) Clinical activity of MCLA-128 (zenocutuzumab), trastuzumab, and vinorelbine in HER2 amplified metastatic breast cancer (MBC) patients (pts) who had progressed on anti-HER2 ADCs. J Clin Oncol 38(15_suppl):3093–3093. https://doi.org/10.1200/JCO.2020.38.15_suppl.3093

  114. Higgins MJ, Gabrail NY, Miller K, Agresta Sv, Sharma S, McDonagh C, Murray J, Andreas K, Frye S, Moyo VM, Niyikiza C, Ryan PD (2011) A phase I/II study of MM-111, a novel bispecific antibody that targets the ErB2/ErB3 heterodimer, in combination with trastuzumab in advanced refractory HER2-positive breast cancer. J Clin Oncol 29(15_suppl):TPS119–TPS119. https://doi.org/10.1200/jco.2011.29.15_suppl.tps119

  115. Richards DA, Braiteh FS, Garcia AA, Denlinger CS, Conkling PR, Edenfield WJ, Anthony SP, Hellerstedt BA, Raju RN, Becerra C, Harb WA, Smith DA, McDonagh CF, Kawash K-L, Frye S, Moyo VM (2014) A phase 1 study of MM-111, a bispecific HER2/HER3 antibody fusion protein, combined with multiple treatment regimens in patients with advanced HER2-positive solid tumors. J Clin Oncol 32(15_suppl):651–651. https://doi.org/10.1200/jco.2014.32.15_suppl.651

  116. Nicolò E, Zagami P, Curigliano G (2020) Antibody–drug conjugates in breast cancer: the chemotherapy of the future? Curr Opin Oncol 32(5):494–502. https://doi.org/10.1097/CCO.0000000000000656

    Article  CAS  PubMed  Google Scholar 

  117. Trail PA, Dubowchik GM, Lowinger TB (2018) Antibody drug conjugates for treatment of breast cancer: novel targets and diverse approaches in ADC design. Pharmacol Ther 181:126–142. https://doi.org/10.1016/j.pharmthera.2017.07.013

    Article  CAS  PubMed  Google Scholar 

  118. Hamblett K, Barnscher S, Davies R, Hammond P, Hernandez A, Wickman G, Fung V, Ding T, Garnett G, Galey A, Zwierzchowski P, Clavette B, Winters G, Rich J, Rowse G, Babcook J, Hausman D (2019) Abstract P6-17-13: ZW49, a HER2 targeted biparatopic antibody drug conjugate for the treatment of HER2 expressing cancers. Poster Sess Abstr. P6-17-13-P6-17-13. https://doi.org/10.1158/1538-7445.SABCS18-P6-17-13

  119. Oganesyan V, Peng L, Bee JS, Li J, Perry SR, Comer F, Xu L, Cook K, Senthil K, Clarke L, Rosenthal K, Gao C, Damschroder M, Wu H, Dall’Acqua W (2018) Structural insights into the mechanism of action of a biparatopic anti-HER2 antibody. J Biol Chem 293(22):8439–8448. https://doi.org/10.1074/jbc.M117.818013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Li JY, Perry SR, Muniz-Medina V, Wang X, Wetzel LK, Rebelatto MC, Hinrichs MJM, Bezabeh BZ, Fleming RL, Dimasi N, Feng H, Toader D, Yuan AQ, Xu L, Lin J, Gao C, Wu H, Dixit R, Osbourn JK, Coats SR (2016) A biparatopic HER2-targeting antibody-drug conjugate induces tumor regression in primary models refractory to or ineligible for HER2-targeted therapy. Cancer Cell 29(1):117–129. https://doi.org/10.1016/j.ccell.2015.12.008

    Article  CAS  PubMed  Google Scholar 

  121. Li JY, Perry SR, Muniz-Medina V, Wang X, Wetzel LK, Rebelatto MC, Masson Hinrichs MJ, Bezabeh BZ, Fleming RL, Dimasi N, Feng H, Toader D, Yuan AQ, Xu L, Lin J, Gao C, Wu H, Dixit R, Osbourn JK, Coats SR (2019) A biparatopic HER2-targeting antibody-drug conjugate induces tumor regression in primary models refractory to or ineligible for HER2-targeted therapy. Cancer Cell 35(6):948–949. https://doi.org/10.1016/j.ccell.2019.05.010

    Article  CAS  PubMed  Google Scholar 

  122. Pegram M, Hamilton E, Tan AR, Storniolo AM, Elgeioushi N, Marshall S, Abdullah S, Patel M (2018) Phase 1 study of bispecific HER2 antibody-drug conjugate MEDI4276 in patients with advanced HER2-positive breast or gastric cancer. Ann Oncol 29, iii8. https://doi.org/10.1093/annonc/mdy048.005

  123. Behravan J, Razazan A, Behravan G (2019) Towards breast cancer vaccines, progress and challenges. Curr Drug Discov Technol 16(3):251–258. https://doi.org/10.2174/1570163815666180502164652

    Article  CAS  PubMed  Google Scholar 

  124. Clifton GT, Peoples GE, Mittendorf EA (2016) The development and use of the E75 (HER2 369–377) peptide vaccine. Future Oncol 12(11):1321–1329. https://doi.org/10.2217/fon-2015-0054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Mittendorf EA, Clifton GT, Holmes JP, Clive KS, Patil R, Benavides LC, Gates JD, Sears AK, Stojadinovic A, Ponniah S, Peoples GE (2012) Clinical trial results of the HER-2/ neu (E75) vaccine to prevent breast cancer recurrence in high-risk patients. Cancer 118(10):2594–2602. https://doi.org/10.1002/cncr.26574

    Article  CAS  PubMed  Google Scholar 

  126. Mittendorf EA, Lu B, Melisko M, Price Hiller J, Bondarenko I, Brunt AM, Sergii G, Petrakova K, Peoples GE (2019) Efficacy and safety analysis of nelipepimut-s vaccine to prevent breast cancer recurrence: a randomized, multicenter, phase III clinical trial. Clin Cancer Res 25(14):4248–4254. https://doi.org/10.1158/1078-0432.CCR-18-2867

    Article  CAS  PubMed  Google Scholar 

  127. Brown TA, Mittendorf EA, Hale DF, Myers JW, Peace KM, Jackson DO, Greene JM, Vreeland TJ, Clifton GT, Ardavanis A, Litton JK, Shumway NM, Symanowski J, Murray JL, Ponniah S, Anastasopoulou EA, Pistamaltzian NF, Baxevanis CN, Perez SA, Peoples GE (2020) Prospective, randomized, single-blinded, multi-center phase II trial of two HER2 peptide vaccines, GP2 and AE37, in breast cancer patients to prevent recurrence. Breast Cancer Res Treat 181(2):391–401. https://doi.org/10.1007/s10549-020-05638-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Patel S, McWilliams D, Fischette CT, Thompson J, Patel M, Daugherty FJ (2021) Final five-year median follow-up safety data from a prospective, randomized, placebo-controlled, single-blinded, multicenter, phase IIb study evaluating the use of HER2/neu peptide GP2 + GM-CSF vs. GM-CSF alone after adjuvant trastuzumab in HER2-positive women with operable breast cancer. J Clin Oncol 39(15_suppl):542–542. https://doi.org/10.1200/JCO.2021.39.15_suppl.542

  129. Patel SS, McWilliams DB, Patel MS, Fischette CT, Thompson J, Daugherty FJ (2021) Abstract PS10–23: five year median follow-up data from a prospective, randomized, placebo-controlled, single-blinded, multicenter, phase IIb study evaluating the reduction of recurrences using HER2/neu peptide GP2 + GM-CSF vs. GM-CSF alone after adjuvant trastuzumab in HER2 positive women with operable breast cancer. Poster Session Abstracts, PS10-23-PS10-23. https://doi.org/10.1158/1538-7445.SABCS20-PS10-23

  130. McCarthy PM, Clifton GT, Vreeland TJ, Adams AM, O’Shea AE, Peoples GE (2021) AE37: a HER2-targeted vaccine for the prevention of breast cancer recurrence. Expert Opin Investig Drugs 30(1):5–11. https://doi.org/10.1080/13543784.2021.1849140

    Article  CAS  PubMed  Google Scholar 

  131. Disis ML, Schiffman K, Guthrie K, Salazar LG, Knutson KL, Goodell V, dela Rosa C, Cheever MA (2004) Effect of dose on immune response in patients vaccinated with an her-2/neu intracellular domain protein-based vaccine. J Clin Oncology : Off J Am Soc Clin Oncol 22(10):1916–1925. https://doi.org/10.1200/JCO.2004.09.005

  132. Seyedmirzaei H, Keshavarz-Fathi M, Razi S, Gity M, Rezaei N (2021) Recent progress in immunotherapy of breast cancer targeting the human epidermal growth factor receptor 2 (HER2). J Oncol Pharm Pract 27(5):1235–1244. https://doi.org/10.1177/1078155221991636

    Article  CAS  PubMed  Google Scholar 

  133. Corti C, Giachetti PPMB, Eggermont AMM, Delaloge S, Curigliano G (2022) Therapeutic vaccines for breast cancer: has the time finally come? Eur J Cancer 160:150–174. https://doi.org/10.1016/j.ejca.2021.10.027

    Article  CAS  PubMed  Google Scholar 

  134. Park JW, Melisko ME, Esserman LJ, Jones LA, Wollan JB, Sims R (2007) Treatment with autologous antigen-presenting cells activated with the HER-2 based antigen Lapuleucel-T: results of a phase I study in immunologic and clinical activity in HER-2 overexpressing breast cancer. J Clin Oncol: Off J Am Soc Clin Oncol 25(24):3680–3687. https://doi.org/10.1200/JCO.2006.10.5718

    Article  CAS  Google Scholar 

  135. Wculek SK, Cueto FJ, Mujal AM, Melero I, Krummel MF, Sancho D (2020) Dendritic cells in cancer immunology and immunotherapy. Nat Rev Immunol 20(1):7–24. https://doi.org/10.1038/s41577-019-0210-z

    Article  CAS  PubMed  Google Scholar 

  136. Czerniecki BJ, Koski GK, Koldovsky U, Xu S, Cohen PA, Mick R, Nisenbaum H, Pasha T, Xu M, Fox KR, Weinstein S, Orel SG, Vonderheide R, Coukos G, DeMichele A, Araujo L, Spitz FR, Rosen M, Levine BL, Zhang PJ (2007) Targeting HER-2/neu in early breast cancer development using dendritic cells with staged interleukin-12 burst secretion. Can Res 67(4):1842–1852. https://doi.org/10.1158/0008-5472.CAN-06-4038

    Article  CAS  Google Scholar 

  137. Koski GK, Koldovsky U, Xu S, Mick R, Sharma A, Fitzpatrick E, Weinstein S, Nisenbaum H, Levine BL, Fox K, Zhang P, Czerniecki BJ (2012) A novel dendritic cell-based immunization approach for the induction of durable Th1-polarized anti-HER-2/neu responses in women with early breast cancer. J Immunother (Hagerstown, Md. : 1997), 35(1):54–65. https://doi.org/10.1097/CJI.0b013e318235f512

  138. Lowenfeld L, Mick R, Datta J, Xu S, Fitzpatrick E, Fisher CS, Fox KR, DeMichele A, Zhang PJ, Weinstein SP, Roses RE, Czerniecki BJ (2017) Dendritic cell vaccination enhances immune responses and induces regression of HER2pos DCIS independent of route: results of randomized selection design trial. Clin Cancer Res: Off J Am Assoc Cancer Res 23(12):2961–2971. https://doi.org/10.1158/1078-0432.CCR-16-1924

    Article  CAS  Google Scholar 

  139. Marchini C, Kalogris C, Garulli C, Pietrella L, Gabrielli F, Curcio C, Quaglino E, Cavallo F, Amici A (2013) Tailoring DNA vaccines: designing strategies against HER2-positive cancers. Front Oncol 3. https://doi.org/10.3389/fonc.2013.00122

  140. Norell H, Poschke I, Charo J, Wei WZ, Erskine C, Piechocki MP, Knutson KL, Bergh J, Lidbrink E, Kiessling R (2010) Vaccination with a plasmid DNA encoding HER-2/neu together with low doses of GM-CSF and IL-2 in patients with metastatic breast carcinoma: a pilot clinical trial. J Transl Med 8(1):53. https://doi.org/10.1186/1479-5876-8-53

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Pilipow K, Darwich A, Losurdo A (2021) T-cell-based breast cancer immunotherapy. Semin Cancer Biol 72:90–101. https://doi.org/10.1016/j.semcancer.2020.05.019

    Article  CAS  PubMed  Google Scholar 

  142. Williams AD, Payne KK, Posey AD, Hill C, Conejo-Garcia J, June CH, Tchou J (2017) Immunotherapy for breast cancer: current and future strategies. Curr Surg Rep 5(12):31. https://doi.org/10.1007/s40137-017-0194-1

    Article  PubMed  PubMed Central  Google Scholar 

  143. Maus Mv, Levine BL (2016) Chimeric antigen receptor T-cell therapy for the community oncologist. Oncologist 21(5):608–617. https://doi.org/10.1634/theoncologist.2015-0421

  144. Kuznetsova M, Lopatnikova J, Khantakova J, Maksyutov R, Maksyutov A, Sennikov S (2017) Generation of populations of antigen-specific cytotoxic T cells using DCs transfected with DNA construct encoding HER2/neu tumor antigen epitopes. BMC Immunol 18(1):31. https://doi.org/10.1186/s12865-017-0219-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Wilkie S, van Schalkwyk MCI, Hobbs S, Davies DM, van der Stegen SJC, Pereira ACP, Burbridge SE, Box C, Eccles SA, Maher J (2012) Dual targeting of ErbB2 and MUC1 in breast cancer using chimeric antigen receptors engineered to provide complementary signaling. J Clin Immunol 32(5):1059–1070. https://doi.org/10.1007/s10875-012-9689-9

    Article  CAS  PubMed  Google Scholar 

  146. Castaneda CA, Cortes-Funes H, Gomez HL, Ciruelos EM (2010) The phosphatidyl inositol 3-kinase/AKT signaling pathway in breast cancer. Cancer Metastasis Rev 29(4):751–759. https://doi.org/10.1007/s10555-010-9261-0

  147. Saini KS, Loi S, de Azambuja E, Metzger-Filho O, Saini ML, Ignatiadis M, Dancey JE, Piccart-Gebhart MJ (2013) Targeting the PI3K/AKT/mTOR and Raf/MEK/ERK pathways in the treatment of breast cancer. Cancer Treat Rev 39(8):935–946. https://doi.org/10.1016/j.ctrv.2013.03.009

    Article  CAS  PubMed  Google Scholar 

  148. Berns K, Horlings HM, Hennessy BT, Madiredjo M, Hijmans EM, Beelen, K., Linn SC, Gonzalez-Angulo AM, Stemke-Hale K, Hauptmann M, Beijersbergen RL, Mills GB, van de Vijver MJ, Bernards R (2007) A functional genetic approach identifies the PI3K pathway as a major determinant of trastuzumab resistance in breast cancer. Cancer Cell 12(4):395–402. https://doi.org/10.1016/j.ccr.2007.08.030

  149. Fujimoto Y, Morita TY, Ohashi A, Haeno H, Hakozaki Y, Fujii M, Kashima Y, Kobayashi SS, Mukohara T (2020) Combination treatment with a PI3K/Akt/mTOR pathway inhibitor overcomes resistance to anti-HER2 therapy in PIK3CA-mutant HER2-positive breast cancer cells. Sci Rep 10(1):21762. https://doi.org/10.1038/s41598-020-78646-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Jain S, Shah AN, Santa-Maria CA, Siziopikou K, Rademaker A, Helenowski I, Cristofanilli M, Gradishar WJ (2018) Phase I study of alpelisib (BYL-719) and trastuzumab emtansine (T-DM1) in HER2-positive metastatic breast cancer (MBC) after trastuzumab and taxane therapy. Breast Cancer Res Treat 171(2):371–381. https://doi.org/10.1007/s10549-018-4792-0

    Article  CAS  PubMed  Google Scholar 

  151. André F, O’Regan R, Ozguroglu M, Toi M, Xu B, Jerusalem G, Masuda N, Wilks S, Arena F, Isaacs C, Yap Y-S, Papai Z, Lang I, Armstrong A, Lerzo G, White M, Shen K, Litton J, Chen D, Gianni L (2014) Everolimus for women with trastuzumab-resistant, HER2-positive, advanced breast cancer (BOLERO-3): a randomised, double-blind, placebo-controlled phase 3 trial. Lancet Oncol 15(6):580–591. https://doi.org/10.1016/S1470-2045(14)70138-X

    Article  CAS  PubMed  Google Scholar 

  152. Finn RS, Dering J, Conklin D, Kalous O, Cohen DJ, Desai AJ, Ginther C, Atefi M, Chen I, Fowst C, Los G, Slamon DJ (2009) PD 0332991, a selective cyclin D kinase 4/6 inhibitor, preferentially inhibits proliferation of luminal estrogen receptor-positive human breast cancer cell lines in vitro. Breast Cancer Res: BCR 11(5):R77. https://doi.org/10.1186/bcr2419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. George MA, Qureshi S, Omene C, Toppmeyer DL, Ganesan S (2021) Clinical and pharmacologic differences of CDK4/6 inhibitors in breast cancer. Front Oncol 11. https://doi.org/10.3389/fonc.2021.693104

  154. Goel S, Wang Q, Watt AC, Tolaney SM, Dillon DA, Li W, Ramm S, Palmer AC, Yuzugullu H, Varadan V, Tuck D, Harris LN, Wong K-K, Liu XS, Sicinski P, Winer EP, Krop IE, Zhao JJ (2016) Overcoming therapeutic resistance in HER2-positive breast cancers with CDK4/6 inhibitors. Cancer Cell 29(3):255–269. https://doi.org/10.1016/j.ccell.2016.02.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Corona SP, Ravelli A, Cretella D, Cappelletti MR, Zanotti L, Dester M, Gobbi A, Petronini PG, Generali D (2017) CDK4/6 inhibitors in HER2-positive breast cancer. Crit Rev Oncol Hematol 112:208–214. https://doi.org/10.1016/j.critrevonc.2017.02.022

    Article  PubMed  Google Scholar 

  156. Lane HA, Beuvink I, Motoyama AB, Daly JM, Neve RM, Hynes NE (2000) ErbB2 potentiates breast tumor proliferation through modulation of p27(Kip1)-Cdk2 complex formation: receptor overexpression does not determine growth dependency. Mol Cell Biol 20(9):3210–3223. https://doi.org/10.1128/MCB.20.9.3210-3223.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Tolaney SM, Wardley AM, Zambelli S, Hilton JF, Troso-Sandoval TA, Ricci F, Im S-A, Kim S-B, Johnston SR, Chan A, Goel S, Catron K, Chapman SC, Price GL, Yang Z, Gainford MC, André F (2020) Abemaciclib plus trastuzumab with or without fulvestrant versus trastuzumab plus standard-of-care chemotherapy in women with hormone receptor-positive, HER2-positive advanced breast cancer (monarcHER): a randomised, open-label, phase 2 trial. Lancet Oncol 21(6):763–775. https://doi.org/10.1016/S1470-2045(20)30112-1

    Article  CAS  PubMed  Google Scholar 

  158. Ciruelos E, Villagrasa P, Pascual T, Oliveira M, Pernas S, Paré L, Escrivá-de-Romaní S, Manso L, Adamo B, Martínez E, Cortés J, Vazquez S, Perelló A, Garau I, Melé M, Martínez N, Montaño A, Bermejo B, Morales S, Prat A (2020) Palbociclib and trastuzumab in HER2-positive advanced breast cancer: results from the phase II SOLTI-1303 PATRICIA trial. Clin Cancer Res 26(22):5820–5829. https://doi.org/10.1158/1078-0432.CCR-20-0844

    Article  CAS  PubMed  Google Scholar 

  159. Goel S, Pernas S, Tan-Wasielewski Z, Barry WT, Bardia A, Rees R, Andrews C, Tahara RK, Trippa L, Mayer EL, Winer EP, Spring LM, Tolaney SM (2019) Ribociclib plus trastuzumab in advanced HER2-positive breast cancer: results of a phase 1b/2 Trial. Clin Breast Cancer 19(6):399–404. https://doi.org/10.1016/j.clbc.2019.05.010

    Article  CAS  PubMed  Google Scholar 

  160. Park S, Jiang Z, Mortenson ED, Deng L, Radkevich-Brown O, Yang X, Sattar H, Wang Y, Brown NK, Greene M, Liu Y, Tang J, Wang S, Fu Y-X (2010) The therapeutic effect of anti-HER2/neu antibody depends on both innate and adaptive immunity. Cancer Cell 18(2):160–170. https://doi.org/10.1016/j.ccr.2010.06.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Kumagai S, Koyama S, Nishikawa H (2021) Antitumour immunity regulated by aberrant ERBB family signalling. Nat Rev Cancer 21(3):181–197. https://doi.org/10.1038/s41568-020-00322-0

    Article  CAS  PubMed  Google Scholar 

  162. Andre F, Dieci Mv, Dubsky P, Sotiriou C, Curigliano G, Denkert C, Loi S (2013) Molecular pathways: involvement of immune pathways in the therapeutic response and outcome in breast cancer. Clin Cancer Res 19(1):28–33. https://doi.org/10.1158/1078-0432.CCR-11-2701

  163. Bianchini G, Gianni L (2014) The immune system and response to HER2-targeted treatment in breast cancer. Lancet Oncol 15(2):e58–e68. https://doi.org/10.1016/S1470-2045(13)70477-7

    Article  CAS  PubMed  Google Scholar 

  164. Gennari R, Menard S, Fagnoni F, Ponchio L, Scelsi M, Tagliabue E, Castiglioni F, Villani L, Magalotti C, Gibelli N, Oliviero B, Ballardini B, da Prada G, Zambelli A, Costa A (2004) Pilot study of the mechanism of action of preoperative trastuzumab in patients with primary operable breast tumors overexpressing HER2. Clin Cancer Res 10(17):5650–5655. https://doi.org/10.1158/1078-0432.CCR-04-0225

    Article  CAS  PubMed  Google Scholar 

  165. Denkert C, von Minckwitz G, Darb-Esfahani S, Lederer B, Heppner BI, Weber KE, Budczies J, Huober J, Klauschen F, Furlanetto J, Schmitt WD, Blohmer J-U, Karn T, Pfitzner BM, Kümmel S, Engels K, Schneeweiss A, Hartmann A, Noske A, Loibl S (2018) Tumour-infiltrating lymphocytes and prognosis in different subtypes of breast cancer: a pooled analysis of 3771 patients treated with neoadjuvant therapy. Lancet Oncol 19(1):40–50. https://doi.org/10.1016/S1470-2045(17)30904-X

    Article  PubMed  Google Scholar 

  166. Dieci MV, Miglietta F, Guarneri V (2021) Immune infiltrates in breast cancer: recent updates and clinical implications. Cells 10(2):223. https://doi.org/10.3390/cells10020223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Nuciforo P, Pascual T, Cortés J, Llombart-Cussac A, Fasani R, Paré L, Oliveira M, Galvan P, Martínez N, Bermejo B, Vidal M, Pernas S, López R, Muñoz M, Garau I, Manso L, Alarcón J, Martínez E, Rodrik-Outmezguine V, Holgado E (2018) A predictive model of pathologic response based on tumor cellularity and tumor-infiltrating lymphocytes (CelTIL) in HER2-positive breast cancer treated with chemo-free dual HER2 blockade. Ann Oncol 29(1):170–177. https://doi.org/10.1093/annonc/mdx647

    Article  CAS  PubMed  Google Scholar 

  168. Ahn SG, Jeong J, Hong S, Jung WH (2015) Current issues and clinical evidence in tumor-infiltrating lymphocytes in breast cancer. J Pathol Transl Med 49(5):355–363. https://doi.org/10.4132/jptm.2015.07.29

    Article  PubMed  PubMed Central  Google Scholar 

  169. Lee HJ, Kim JY, Park IA, Song IH, Yu JH, Ahn J-H, Gong G (2015) Prognostic significance of tumor-infiltrating lymphocytes and the tertiary lymphoid structures in HER2-positive breast cancer treated with adjuvant trastuzumab. Am J Clin Pathol 144(2):278–288. https://doi.org/10.1309/AJCPIXUYDVZ0RZ3G

    Article  CAS  PubMed  Google Scholar 

  170. Barroso-Sousa R, Barry WT, Guo H, Dillon D, Tan YB, Fuhrman K, Osmani W, Getz A, Baltay M, Dang C, Yardley D, Moy B, Marcom PK, Mittendorf EA, Krop IE, Winer EP, Tolaney SM (2019) The immune profile of small HER2-positive breast cancers: a secondary analysis from the APT trial. Ann Oncol 30(4):575–581. https://doi.org/10.1093/annonc/mdz047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Bianchini G, Pusztai L, Pienkowski T, Im Y-H, Bianchi GV, Tseng L-M, Liu M-C, Lluch A, Galeota E, Magazzù D, de la Haba-Rodríguez J, Oh D-Y, Poirier B, Pedrini JL, Semiglazov V, Valagussa P, Gianni L (2015) Immune modulation of pathologic complete response after neoadjuvant HER2-directed therapies in the NeoSphere trial. Ann Oncol 26(12):2429–2436. https://doi.org/10.1093/annonc/mdv395

    Article  CAS  PubMed  Google Scholar 

  172. Dieci MV, Prat A, Tagliafico E, Paré L, Ficarra G, Bisagni G, Piacentini F, Generali DG, Conte P, Guarneri V (2016) Integrated evaluation of PAM50 subtypes and immune modulation of pCR in HER2-positive breast cancer patients treated with chemotherapy and HER2-targeted agents in the CherLOB trial. Ann Oncol 27(10):1867–1873. https://doi.org/10.1093/annonc/mdw262

    Article  CAS  PubMed  Google Scholar 

  173. Ochi T, Bianchini G, Ando M, Nozaki F, Kobayashi D, Criscitiello C, Curigliano G, Iwamoto T, Niikura N, Takei H, Yoshida A, Takei J, Suzuki K, Yamauchi H, Hayashi N (2019) Predictive and prognostic value of stromal tumour-infiltrating lymphocytes before and after neoadjuvant therapy in triple negative and HER2-positive breast cancer. Eur J Cancer 118:41–48. https://doi.org/10.1016/j.ejca.2019.05.014

    Article  CAS  PubMed  Google Scholar 

  174. Salgado R, Denkert C, Campbell C, Savas P, Nuciforo P, Aura C, de Azambuja E, Eidtmann H, Ellis CE, Baselga J, Piccart-Gebhart MJ, Michiels S, Bradbury I, Sotiriou C, Loi S (2015) Tumor-infiltrating lymphocytes and associations with pathological complete response and event-free survival in HER2-positive early-stage breast cancer treated with lapatinib and trastuzumab. JAMA Oncol 1(4):448. https://doi.org/10.1001/jamaoncol.2015.0830

    Article  PubMed  PubMed Central  Google Scholar 

  175. Müller P, Kreuzaler M, Khan T, Thommen DS, Martin K, Glatz K, Savic S, Harbeck N, Nitz U, Gluz O, von Bergwelt-Baildon M, Kreipe H, Reddy S, Christgen M, Zippelius A (2015) Trastuzumab emtansine (T-DM1) renders HER2 + breast cancer highly susceptible to CTLA-4/PD-1 blockade. Sci Transl Med 7(315). https://doi.org/10.1126/scitranslmed.aac4925

  176. Stagg J, Loi S, Divisekera U, Ngiow SF, Duret H, Yagita H, Teng MW, Smyth MJ (2011) Anti–ErbB-2 mAb therapy requires type I and II interferons and synergizes with anti–PD-1 or anti-CD137 mAb therapy. Proc Natl Acad Sci 108(17):7142–7147. https://doi.org/10.1073/pnas.1016569108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Emens LA, Esteva FJ, Beresford M, Saura C, de Laurentiis M, Kim S-B, Im S-A, Wang Y, Salgado R, Mani A, Shah J, Lambertini C, Liu H, de Haas SL, Patre M, Loi S (2020) Trastuzumab emtansine plus atezolizumab versus trastuzumab emtansine plus placebo in previously treated, HER2-positive advanced breast cancer (KATE2): a phase 2, multicentre, randomised, double-blind trial. Lancet Oncol 21(10):1283–1295. https://doi.org/10.1016/S1470-2045(20)30465-4

    Article  CAS  PubMed  Google Scholar 

  178. Loi S, Giobbie-Hurder A, Gombos A, Bachelot T, Hui R, Curigliano G, Campone M, Biganzoli L, Bonnefoi H, Jerusalem G, Bartsch R, Rabaglio-Poretti M, Kammler R, Maibach R, Smyth MJ, di Leo A, Colleoni M, Viale G, Regan MM (2019) International breast cancer study group and the breast international group. Pembrolizumab plus trastuzumab in trastuzumab-resistant, advanced, HER2-positive breast cancer (PANACEA): a single-arm, multicentre, phase 1b-2 trial. The Lancet. Oncology 20(3):371–382. https://doi.org/10.1016/S1470-2045(18)30812-X

  179. Chia S, Bedard PL, Hilton J, Amir E, Gelmon K, Goodwin R, Villa D, Cabanero M, Tu D, Tsao M, Seymour L (2019) A phase Ib trial of durvalumab in combination with trastuzumab in HER2-positive metastatic breast cancer (CCTG IND.229). Oncologist 24(11):1439–1445. https://doi.org/10.1634/theoncologist.2019-0321

  180. Hamilton E, Shapiro CL, Petrylak D, Boni V, Martin M, Conte G del, Cortes J, Agarwal L, Arkenau H-T, Tan AR, Debruyne P, Minchom A, Rutten A, Valdes-Albini F, Yu EY, Augustine B, D’Amelio A, Barrios D, Hurvitz SA (2021) Abstract PD3-07: Trastuzumab deruxtecan (T-DXd; DS-8201) with nivolumab in patients with HER2-expressing, advanced breast cancer: a 2-part, phase 1b, multicenter, open-label study. Poster spotlight session abstracts, PD3-07-PD3-07. https://doi.org/10.1158/1538-7445.SABCS20-PD3-07

  181. Loi S, Michiels S, Salgado R, Sirtaine N, Jose V, Fumagalli D, Kellokumpu-Lehtinen P-L, Bono P, Kataja V, Desmedt C, Piccart MJ, Loibl S, Denkert C, Smyth MJ, Joensuu H, Sotiriou C (2014) Tumor infiltrating lymphocytes are prognostic in triple negative breast cancer and predictive for trastuzumab benefit in early breast cancer: results from the FinHER trial. Ann Oncol 25(8):1544–1550. https://doi.org/10.1093/annonc/mdu112

    Article  CAS  PubMed  Google Scholar 

  182. Perez EA, Ballman Kv, Tenner KS, Thompson EA, Badve SS, Bailey H, Baehner FL (2016) Association of stromal tumor-infiltrating lymphocytes with recurrence-free survival in the N9831 adjuvant trial in patients with early-stage HER2-positive breast cancer. JAMA Oncol 2(1):56. https://doi.org/10.1001/jamaoncol.2015.3239

  183. Denkert C, von Minckwitz G, Brase JC, Sinn Bv, Gade S, Kronenwett R, Pfitzner BM, Salat C, Loi S, Schmitt WD, Schem C, Fisch K, Darb-Esfahani S, Mehta K, Sotiriou C, Wienert S, Klare P, André F, Klauschen F, Loibl S (2015) Tumor-infiltrating lymphocytes and response to neoadjuvant chemotherapy with or without carboplatin in human epidermal growth factor receptor 2–positive and triple-negative primary breast cancers. J Clin Oncol 33(9):983–991. https://doi.org/10.1200/JCO.2014.58.1967

  184. Huober J, Barrios CH, Niikura N, Jarzab M, Chang Y-C, Huggins-Puhalla SL, Graupner V, Eiger D, Henschel V, Gochitashvili N, Lambertini C, Restuccia E, Zhang H (2021) VP6-2021: IMpassion050: a phase III study of neoadjuvant atezolizumab + pertuzumab + trastuzumab + chemotherapy (neoadj A + PH + CT) in high-risk, HER2-positive early breast cancer (EBC). Ann Oncol 32(8):1061–1062. https://doi.org/10.1016/j.annonc.2021.05.800

    Article  Google Scholar 

  185. Kuemmel S, Gluz O, Reinisch M, Kostara A, Scheffen I, Graeser M, Wuerstlein R, Nitz U, Luedtke-Heckenkamp K, Hartkopf A, Hilpert F, Kentsch A, Ziske C, Depenbusch R, Braun M, Blohmer J, zu Eulenburg C, Christgen M, Bartels S, Harbeck N (2022) Abstract PD10–11: keyriched-1- a prospective, multicenter, open label, neoadjuvant phase ii single arm study with pembrolizumab in combination with dual anti-HER2 blockade with trastuzumab and pertuzumab in early breast cancer patients with molecular HER2-enriched intrinsic subtype. Cancer Res 82(4_Supplement):PD10-11-PD10-11. https://doi.org/10.1158/1538-7445.SABCS21-PD10-11

  186. Wolff AC, Hammond MEH, Hicks DG, Dowsett M, McShane LM, Allison KH, Allred DC, Bartlett JMS, Bilous M, Fitzgibbons P, Hanna W, Jenkins RB, Mangu PB, Paik S, Perez EA, Press MF, Spears PA, Vance GH, Viale G, Hayes DF (2013) Recommendations for human epidermal growth factor receptor 2 testing in breast cancer: American society of clinical oncology/college of American pathologists clinical practice guideline update. J Clin Oncol 31(31):3997–4013. https://doi.org/10.1200/JCO.2013.50.9984

    Article  PubMed  Google Scholar 

  187. Lin L, Sirohi D, Coleman JF, Gulbahce HE (2019) American society of clinical oncology/college of American pathologists 2018 focused update of breast cancer HER2 FISH testing guidelinesresults from a national reference laboratory. Am J Clin Pathol 152(4):479–485. https://doi.org/10.1093/ajcp/aqz061

    Article  CAS  PubMed  Google Scholar 

  188. Wolff AC, Hammond MEH, Hicks DG, Dowsett M, McShane LM, Allison KH, Allred DC, Bartlett JMS, Bilous M, Fitzgibbons P, Hanna W, Jenkins RB, Mangu PB, Paik S, Perez EA, Press MF, Spears PA, Vance GH, Viale G (2013) College of American pathologists. Recommendations for human epidermal growth factor receptor 2 testing in breast cancer: American society of clinical oncology/college of American pathologists clinical practice guideline update. J Clin Oncol: Off J Am Soc Clin Oncol 31(31):3997–4013. https://doi.org/10.1200/JCO.2013.50.9984

  189. Tarantino P, Hamilton E, Tolaney SM, Cortes J, Morganti S, Ferraro E, Marra A, Viale G, Trapani D, Cardoso F, Penault-Llorca F, Viale G, Andrè F, Curigliano G (2020) HER2-low breast cancer: pathological and clinical landscape. J Clin Oncol 38(17):1951–1962. https://doi.org/10.1200/JCO.19.02488

    Article  CAS  PubMed  Google Scholar 

  190. Paik S, Kim C, Wolmark N (2008) HER2 status and benefit from adjuvant trastuzumab in breast cancer. N Engl J Med 358(13):1409–1411. https://doi.org/10.1056/NEJMc0801440

    Article  CAS  PubMed  Google Scholar 

  191. Perez EA, Reinholz MM, Hillman DW, Tenner KS, Schroeder MJ, Davidson NE, Martino S, Sledge GW, Harris LN, Gralow JR, Dueck AC, Ketterling RP, Ingle JN, Lingle WL, Kaufman PA, Visscher DW, Jenkins RB (2010) HER2 and chromosome 17 effect on patient outcome in the N9831 adjuvant trastuzumab trial. J Clin Oncol 28(28):4307–4315. https://doi.org/10.1200/JCO.2009.26.2154

    Article  PubMed  PubMed Central  Google Scholar 

  192. Perez EA, Romond EH, Suman VJ, Jeong J-H, Sledge G, Geyer CE, Martino S, Rastogi P, Gralow J, Swain SM, Winer EP, Colon-Otero G, Davidson NE, Mamounas E, Zujewski JA, Wolmark N (2014) Trastuzumab plus adjuvant chemotherapy for human epidermal growth factor receptor 2–positive breast cancer: planned joint analysis of overall survival from NSABP B-31 and NCCTG N9831. J Clin Oncol 32(33):3744–3752. https://doi.org/10.1200/JCO.2014.55.5730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Fehrenbacher L, Cecchini RS, Geyer CE Jr, Rastogi P, Costantino JP, Atkins JN, Crown JP, Polikoff J, Boileau J-F, Provencher L, Stokoe C, Moore TD, Robidoux A, Flynn PJ, Borges VF, Albain KS, Swain SM, Paik S, Mamounas EP, Wolmark N (2020) NSABP B-47/NRG oncology phase III randomized trial comparing adjuvant chemotherapy with or without trastuzumab in high-risk invasive breast cancer negative for HER2 by FISH and with IHC 1+ or 2+. J Clin Oncol 38(5):444–453. https://doi.org/10.1200/JCO.19.01455

    Article  CAS  PubMed  Google Scholar 

  194. Gianni L, Lladó A, Bianchi G, Cortes J, Kellokumpu-Lehtinen P-L, Cameron DA, Miles D, Salvagni S, Wardley A, Goeminne J-C, Hersberger V, Baselga J (2010) Open-label, phase II, multicenter, randomized study of the efficacy and safety of two dose levels of Pertuzumab, a human epidermal growth factor receptor 2 dimerization inhibitor, in patients with human epidermal growth factor receptor 2-negative metastatic breast cancer. J Clin Oncol: Off J Am Soc Clin Oncol 28(7):1131–1137. https://doi.org/10.1200/JCO.2009.24.1661

    Article  CAS  Google Scholar 

  195. Burris HA, Rugo HS, Vukelja SJ, Vogel CL, Borson RA, Limentani S, Tan-Chiu E, Krop IE, Michaelson RA, Girish S, Amler L, Zheng M, Chu Y-W, Klencke B, O’Shaughnessy JA (2011) Phase II study of the antibody drug conjugate trastuzumab-DM1 for the treatment of human epidermal growth factor receptor 2 (HER2) –positive breast cancer after prior HER2-directed therapy. J Clin Oncol 29(4):398–405. https://doi.org/10.1200/JCO.2010.29.5865

    Article  CAS  PubMed  Google Scholar 

  196. Hurvitz SA, Martin M, Jung KH, Huang C-S, Harbeck N, Valero V, Stroyakovskiy D, Wildiers H, Campone M, Boileau J-F, Fasching PA, Afenjar K, Spera G, Lopez-Valverde V, Song C, Trask P, Boulet T, Sparano JA, Symmans WF, Slamon D (2019) Neoadjuvant trastuzumab emtansine and pertuzumab in human epidermal growth factor receptor 2–positive breast cancer: three-year outcomes from the phase III KRISTINE study. J Clin Oncol 37(25):2206–2216. https://doi.org/10.1200/JCO.19.00882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Iwata H, Tamura K, Doi T, Tsurutani J, Modi S, Park H, Krop IE, Sagara Y, Redfern CH, Murthy RK, Redman RA, Shitara K, Fujisaki Y, Sugihara M, Zhang L, Shahidi J, Yver A, Takahashi S (2018) Trastuzumab deruxtecan (DS-8201a) in subjects with HER2-expressing solid tumors: Long-term results of a large phase 1 study with multiple expansion cohorts. J Clin Oncol 36(15_suppl):2501–2501. https://doi.org/10.1200/JCO.2018.36.15_suppl.2501

  198. Modi S, Park H, Murthy RK, Iwata H, Tamura K, Tsurutani J, Moreno-Aspitia A, Doi T, Sagara Y, Redfern C, Krop IE, Lee C, Fujisaki Y, Sugihara M, Zhang L, Shahidi J, Takahashi S (2020) Antitumor activity and safety of trastuzumab deruxtecan in patients with HER2-low–expressing advanced breast cancer: results from a phase Ib study. J Clin Oncol 38(17):1887–1896. https://doi.org/10.1200/JCO.19.02318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Eiger D, Agostinetto E, Saúde-Conde R, de Azambuja E (2021) The exciting new field of HER2-low breast cancer treatment. Cancers 13(5):1015. https://doi.org/10.3390/cancers13051015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Hanna WM, Rüschoff J, Bilous M, Coudry RA, Dowsett M, Osamura RY, Penault-Llorca F, van de Vijver M, Viale G (2014) HER2 in situ hybridization in breast cancer: clinical implications of polysomy 17 and genetic heterogeneity. Mod Pathol 27(1):4–18. https://doi.org/10.1038/modpathol.2013.103

    Article  CAS  PubMed  Google Scholar 

  201. Marchiò C, Annaratone L, Marques A, Casorzo L, Berrino E, Sapino A (2021) Evolving concepts in HER2 evaluation in breast cancer: heterogeneity, HER2-low carcinomas and beyond. Semin Cancer Biol 72:123–135. https://doi.org/10.1016/J.SEMCANCER.2020.02.016

    Article  PubMed  Google Scholar 

  202. Prat A, Guarneri V, Pascual T, Brasó-Maristany F, Sanfeliu E, Paré L, Schettini F, Martínez D, Jares P, Griguolo G, Dieci MV, Cortés J, Llombart-Cussac A, Conte B, Marín-Aguilera M, Chic N, Puig-Butillé JA, Martínez A, Galván P, Perou CM (2022) Development and validation of the new HER2DX assay for predicting pathological response and survival outcome in early-stage HER2-positive breast cancer. EBio Med 75:103801. https://doi.org/10.1016/j.ebiom.2021.103801

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Curigliano .

Editor information

Editors and Affiliations

Ethics declarations

GC received honoraria for speaker, consultancy, or advisory rule from AstraZeneca, Roche, Pfizer, Novartis, Seattle Genetics, Lilly, Ellipses Pharma, Foundation Medicine, Daiichi Sankyo, and Samsung. The other authors have no disclosures to report.

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Taurelli Salimbeni, B., Ferraro, E., Boscolo Bielo, L., Curigliano, G. (2023). Innovative Therapeutic Approaches for Patients with HER2-Positive Breast Cancer. In: Al Jarroudi, O., El Bairi, K., Curigliano, G. (eds) Breast Cancer Research and Treatment. Cancer Treatment and Research, vol 188. Springer, Cham. https://doi.org/10.1007/978-3-031-33602-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-33602-7_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-33601-0

  • Online ISBN: 978-3-031-33602-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics