Skip to main content

Antibody–Drug Conjugates: A New Therapeutic Approach for Triple-Negative Breast Cancer

  • Chapter
  • First Online:
Breast Cancer Research and Treatment

Part of the book series: Cancer Treatment and Research ((CTAR,volume 188))

Abstract

Triple-negative breast cancer (TNBC) is an aggressive breast cancer subset associated with a worse prognosis and poor response to conventional chemotherapy. Despite recent advances in drug discovery, its management is still a challenge for clinicians, illuminating the unmet need to develop novel treatment approaches. Antibody–drug conjugates (ADC) are innovative oncology drugs that combine the specificity of monoclonal antibodies and the high efficacy of anticancer payloads, to deliver cytotoxic drugs selectively to cancer cells. Various ADCs were investigated for TNBC and have provided a promise for this aggressive women’s cancer including the FDA-approved sacituzumab govitecan. In this chapter, we reviewed different ADCs studied for TNBC including their mechanisms of action, efficacy, and tolerability. Moreover, we have also discussed their therapeutic potential based on combinatorial approaches with other targeted therapies in early and metastatic TNBC.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Al jarroudi O, Abda N, Brahmi S, Afqir S (2017) Triple negative breast cancer at the University Hospital Mohammed VI—Oujda. Asian Pac J Cancer Prevention : APJCP 18(1):195–200. https://doi.org/10.22034/APJCP.2017.18.1.195

  2. Vidula N, Ellisen LW, Bardia A (2020) Novel agents for metastatic triple-negative breast cancer: finding the positive in the negative. J Natl Compr Cancer Netw: JNCCN 1–9. https://doi.org/10.6004/jnccn.2020.7600

  3. Lehmann BD, Bauer JA, Chen X, Sanders ME, Chakravarthy AB, Shyr Y, Pietenpol JA (2011) Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. J Clin Investig 121(7):2750–2767. https://doi.org/10.1172/JCI45014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kim S-B, Dent R, Im S-A, Espié M, Blau S, Tan AR, Isakoff SJ, Oliveira M, Saura C, Wongchenko MJ, Kapp AV, Chan WY, Singel SM, Maslyar DJ, Baselga J (2017) LOTUS investigators. Ipatasertib plus paclitaxel versus placebo plus paclitaxel as first-line therapy for metastatic triple-negative breast cancer (LOTUS): a multicentre, randomised, double-blind, placebo-controlled, phase 2 trial. Lancet Oncol 18(10):1360–1372. https://doi.org/10.1016/S1470-2045(17)30450-3

  5. Schmid P, Abraham J, Chan S, Wheatley D, Brunt AM, Nemsadze G, Baird RD, Park YH, Hall PS, Perren T, Stein RC, Mangel L, Ferrero J-M, Phillips M, Conibear J, Cortes J, Foxley A, de Bruin EC, McEwen R et al (2020) Capivasertib plus paclitaxel versus placebo plus paclitaxel as first-line therapy for metastatic triple-negative breast cancer: the PAKT trial. J Clin Oncol: Off J Am Soc Clin Oncol 38(5):423–433. https://doi.org/10.1200/JCO.19.00368

  6. McDermott DF, Atkins MB (2013) PD-1 as a potential target in cancer therapy. Cancer Med 2(5):662–673. https://doi.org/10.1002/cam4.106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Mittendorf EA, Philips AV, Meric-Bernstam F, Qiao N, Wu Y, Harrington S, Su X, Wang Y, Gonzalez-Angulo AM, Akcakanat A, Chawla A, Curran M, Hwu P, Sharma P, Litton JK, Molldrem JJ, Alatrash G (2014) PD-L1 expression in triple-negative breast cancer. Cancer Immunol Res 2(4):361–370. https://doi.org/10.1158/2326-6066.CIR-13-0127

  8. Litton JK, Rugo HS, Ettl J, Hurvitz SA, Gonçalves A, Lee K-H, Fehrenbacher L, Yerushalmi R, Mina LA, Martin M, Roché H, Im Y-H, Quek RGW, Markova D, Tudor IC, Hannah AL, Eiermann W, Blum JL (2018) Talazoparib in patients with advanced breast cancer and a germline BRCA mutation. N Engl J Med 379(8):753–763. https://doi.org/10.1056/NEJMoa1802905

  9. Robson M, Im S-A, Senkus E, Xu B, Domchek SM, Masuda N, Delaloge S, Li W, Tung N, Armstrong A, Wu W, Goessl C, Runswick S, Conte P (2017) Olaparib for metastatic breast cancer in patients with a germline BRCA mutation. N Engl J Med 377(6):523–533. https://doi.org/10.1056/NEJMoa1706450

  10. El Bairi K, Al Jarroudi O, Afqir S (2021) Revisiting antibody-drug conjugates and their predictive biomarkers in platinum-resistant ovarian cancerSemin Cancer Biol 77, 42–55. https://doi.org/10.1016/j.semcancer.2021.03.031

  11. Lambert JM, Morris CQ (2017) Antibody-drug conjugates (ADCs) for personalized treatment of solid tumors: a review. Adv Ther 34(5):1015–1035. https://doi.org/10.1007/s12325-017-0519-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Nagayama A, Vidula N, Ellisen L, Bardia A (2020) Novel antibody-drug conjugates for triple negative breast cancer. Ther Adv Med Oncol 12:1758835920915980. https://doi.org/10.1177/1758835920915980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Tsuchikama K, An Z (2018) Antibody-drug conjugates: Recent advances in conjugation and linker chemistries. Protein Cell 9(1):33–46. https://doi.org/10.1007/s13238-016-0323-0

    Article  CAS  PubMed  Google Scholar 

  14. Bargh JD, Isidro-Llobet A, Parker JS, Spring DR (2019) Cleavable linkers in antibody–drug conjugates. Chem Soc Rev 48(16):4361–4374. https://doi.org/10.1039/C8CS00676H

  15. Nicolaou KC, Rigol S (2021) Corrigendum: the role of organic synthesis in the emergence and development of antibody-drug conjugates as targeted cancer therapies. Angewandte Chemie (International Ed. in English), 60(32):17246–17247. https://doi.org/10.1002/anie.202108147

  16. Diamantis N, Banerji U (2016) Antibody-drug conjugates—an emerging class of cancer treatment. Br J Cancer 114(4):362–367. https://doi.org/10.1038/bjc.2015.435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Li W-Q, Guo H-F, Li L-Y, Zhang Y-F, Cui J-W (2021) The promising role of antibody drug conjugate in cancer therapy: combining targeting ability with cytotoxicity effectively. Cancer Med 10(14):4677–4696. https://doi.org/10.1002/cam4.4052

  18. Staudacher AH, Brown MP (2017) Antibody drug conjugates and bystander killing: is antigen-dependent internalisation required? Br J Cancer 117(12):1736–1742. https://doi.org/10.1038/bjc.2017.367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Redman JM, Hill EM, AlDeghaither D, Weiner LM (2015) Mechanisms of action of therapeutic antibodies for cancer. Mol Immunol 67(2 Pt A):28–45. https://doi.org/10.1016/j.molimm.2015.04.002

  20. Tai Y-T, Mayes PA, Acharya C, Zhong MY, Cea M, Cagnetta A, Craigen J, Yates J, Gliddon L, Fieles W, Hoang B, Tunstead J, Christie AL, Kung AL, Richardson P, Munshi NC, Anderson KC (2014) Novel anti-B-cell maturation antigen antibody-drug conjugate (GSK2857916) selectively induces killing of multiple myeloma. Blood 123(20):3128–3138. https://doi.org/10.1182/blood-2013-10-535088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Tray N, Adams S, Esteva FJ (2018) Antibody-drug conjugates in triple negative breast cancer. Futur Oncol (London, England) 14(25):2651–2661. https://doi.org/10.2217/fon-2018-0131

    Article  CAS  Google Scholar 

  22. Bardia A, Tolaney SM, Punie K, Loirat D, Oliveira M, Kalinsky K, Zelnak A, Aftimos P, Dalenc F, Sardesai S, Hamilton E, Sharma P, Recalde S, Gil EC, Traina T, O’Shaughnessy J, Cortes J, Tsai M, Vahdat L et al (2021) Biomarker analyses in the phase III ASCENT study of sacituzumab govitecan versus chemotherapy in patients with metastatic triple-negative breast cancer. Ann Oncol: Off J Eur Soc Med Oncol 32(9):1148–1156. https://doi.org/10.1016/j.annonc.2021.06.002

  23. Bardia A, Mayer IA, Vahdat LT, Tolaney SM, Isakoff SJ, Diamond JR, O’Shaughnessy J, Moroose RL, Santin AD, Abramson VG, Shah NC, Rugo HS, Goldenberg DM, Sweidan AM, Iannone R, Washkowitz S, Sharkey RM, Wegener WA, Kalinsky K (2019) Sacituzumab govitecan-hziy in refractory metastatic triple-negative breast cancer. N Engl J Med 380(8):741–751. https://doi.org/10.1056/NEJMoa1814213

    Article  CAS  PubMed  Google Scholar 

  24. Brenner AJ, Pandey R, Chiou J, Floyd J, Garcia M, Surapaneni P, Kaklamani V, Lathrop K, Crownover R, Caron JL, Tiziani S (2020) 373MO delivery and activity of SN-38 by sacituzumab govitecan in CNS tumours. Ann Oncol 31:S401. https://doi.org/10.1016/j.annonc.2020.08.482

    Article  Google Scholar 

  25. Modi S, Pusztal L, Forero A, et al (2017) Phase 1 study of the antibody-drug conjugate ladiratuzumab vedotin (SGNLIV1A) in patients with heavily pretreated triple-negative metastatic breast cancer. Poster presented at: 2017 San Antonio Breast Cancer Symposium; December 5–9. San Antonio, Texas. Poster PD3–14. sabcs17.posterview.com/nosl/p/PD3-14.

  26. Beckwith H, Schwab R, Yau C et al (2020) Evaluation of SGN-LIV1a followed by AC in high-risk HER2 negative stage II/III breast cancer: results from the I-SPY 2 TRIAL. 2020 San Antonio Breast Cancer Symposium, Dec 8–11. Abstract No. PD1–10

    Google Scholar 

  27. Banerji U, van Herpen CML, Saura C, Thistlethwaite F, Lord S, Moreno V, Macpherson IR, Boni V, Rolfo C, de Vries EGE, Rottey S, Geenen J, Eskens F, Gil-Martin M, Mommers EC, Koper NP, Aftimos P (2019) Trastuzumab duocarmazine in locally advanced and metastatic solid tumours and HER2-expressing breast cancer: A phase 1 dose-escalation and dose-expansion study. Lancet Oncol 20(8):1124–1135. https://doi.org/10.1016/S1470-2045(19)30328-6

  28. Zaman S, Jadid H, Denson AC, Gray JE (2019) Targeting Trop-2 in solid tumors: future prospects. Onco Targets Ther 12:1781–1790. https://doi.org/10.2147/OTT.S162447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Guo X, Zhu X, Zhao L, Li X, Cheng D, Feng K (2017) Tumor-associated calcium signal transducer 2 regulates neovascularization of non-small-cell lung cancer via activating ERK1/2 signaling pathway. Tumour Biol: J Int Soc Oncodevelopmental Biol Med 39(3):1010428317694324. https://doi.org/10.1177/1010428317694324

    Article  CAS  Google Scholar 

  30. Bardia A, Mayer IA, Diamond JR, Moroose RL, Isakoff SJ, Starodub AN, Shah NC, O’Shaughnessy J, Kalinsky K, Guarino M, Abramson V, Juric D, Tolaney SM, Berlin J, Messersmith WA, Ocean AJ, Wegener WA, Maliakal P, Sharkey RM et al (2017) Efficacy and safety of anti-trop-2 antibody drug conjugate Sacituzumab Govitecan (IMMU-132) in heavily pretreated patients with metastatic triple-negative breast cancer. J Clin Oncol: Off J Am Soc Clin Oncol 35(19):2141–2148. https://doi.org/10.1200/JCO.2016.70.8297

  31. Lin H, Huang J-F, Qiu J-R, Zhang H-L, Tang X-J, Li H, Wang C-J, Wang Z-C, Feng Z-Q, Zhu J (2013) Significantly upregulated TACSTD2 and Cyclin D1 correlate with poor prognosis of invasive ductal breast cancer. Exp Mol Pathol 94(1):73–78. https://doi.org/10.1016/j.yexmp.2012.08.004

  32. Pommier Y (2009) DNA topoisomerase I inhibitors: chemistry, biology and interfacial inhibition. Chem Rev 109(7):2894–2902. https://doi.org/10.1021/cr900097c

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Goldenberg DM, Cardillo TM, Govindan SV, Rossi EA, Sharkey RM (2015) Trop-2 is a novel target for solid cancer therapy with sacituzumab govitecan (IMMU-132), an antibody-drug conjugate (ADC). Oncotarget 6(26):22496–22512. https://doi.org/10.18632/oncotarget.4318

  34. Starodub AN, Ocean AJ, Shah MA, Guarino MJ, Picozzi VJ, Vahdat LT, Thomas SS, Govindan SV, Maliakal PP, Wegener WA, Hamburger SA, Sharkey RM, Goldenberg DM (2015) First-in-human trial of a novel anti-trop-2 antibody-sn-38 conjugate, sacituzumab govitecan, for the treatment of diverse metastatic solid tumors. Clin Cancer Res: Off J Am Assoc Cancer Res 21(17):3870–3878. https://doi.org/10.1158/1078-0432.CCR-14-3321

    Article  CAS  Google Scholar 

  35. Bardia A, Spring LM, Juric D, Partridge A, Ligibel J, Kuter I, Peppercorn J, Parsons H, Ryan P, Chawla D, Attaya V, Fitzgerald DM, Viscosi E, Lormill B, Shellock M, Moy B, Tolaney SM, Ellisen LW (2020a) 358TiP Phase Ib/II study of antibody-drug conjugate, sacituzumab govitecan, in combination with the PARP inhibitor, talazoparib, in metastatic triple-negative breast cancer. Annals Oncol 31:S394. https://doi.org/10.1016/j.annonc.2020.08.460

  36. Hurvitz SA, Tolaney SM, Punie K, Loirat D, Oliveira M, Kalinsky K, Zelnak A, Aftimos P, Dalenc F, Sardesai S, Hamiltion E, Sharma P, Recalde S, Gil EC, Traina T, O’Shaughnessy J, Cortes J, Tsai M, Vahdat L et al (2021) Biomarker evaluation in the phase 3 ASCENT study of sacituzumab govitecan versus chemotherapy in patients with metastatic triple-negative breast cancer. Cancer Res 81(4). https://lirias.kuleuven.be/3463376

  37. Dieras V, Weaver R, Tolaney SM, Bardia A, Punie K, Brufsky A, Rugo HS, Kalinsky K, Traina T, Klein L, Loirat D, Lynce F, Daniel B, Ademuyiwa F, Hurvitz SA, Goldenberg DM, Hong Q, Olivo M, Itri LM, Carey L (2021) Subgroup analysis of patients with brain metastases from the phase 3 ASCENT study of sacituzumab govitecan versus chemotherapy in metastatic triple-negative breast cancer. Cancer Res 81(4). https://lirias.kuleuven.be/3420263

  38. Marmé F, Stickeler E, Furlanetto J, Denkert C, Schmidt M, Reinisch M, Reimer T, Janni W, Untch M, Sinn BV, Moebus V, Michel L, Schoellhorn L, Schmatloch S, Rey J, Loibl S (637570656000000000) Phase III postneoadjuvant study evaluating sacituzumab govitecan, an antibody drug conjugate in primary HER2-negative breast cancer patients with high relapse risk after standard neoadjuvant treatment: SASCIA. J Clin Oncol 39(15_suppl):TPS602–TPS602. https://doi.org/10.1200/jco.2021.39.15_suppl.tps602

  39. Adams S, Schmid P, Rugo HS, Winer EP, Loirat D, Awada A, Cescon DW, Iwata H, Campone M, Nanda R, Hui R, Curigliano G, Toppmeyer D, O’Shaughnessy J, Loi S, Paluch-Shimon S, Card D, Zhao J, Karantza V, Cortes J (2017) Phase 2 study of pembrolizumab (pembro) monotherapy for previously treated metastatic triple-negative breast cancer (mTNBC): KEYNOTE-086 cohort A. J Clin Oncol 35(15_suppl):1008–1008. https://doi.org/10.1200/JCO.2017.35.15_suppl.1008

  40. Kagihara JA, Shagisultanova E, Afghahi A, Diamond JR (2021) Moving towards targeted therapies for triple-negative breast cancer. Curr Breast Cancer Rep 13(3):216–226. https://doi.org/10.1007/s12609-021-00416-0

    Article  PubMed  PubMed Central  Google Scholar 

  41. Bardia A, Tolaney SM, Loirat D, Punie K, Oliveira M, Rugo HS, Brufsky A, Kalinsky K, Cortés J, O’Shaughnessy J, Dieras VC, Carey LA, Gianni L, Piccart M, Loibl S, Goldenberg D, Hong Q, Olivo MS, Itri LM, Hurvitz SA (2020b) LBA17 ASCENT: a randomized phase III study of sacituzumab govitecan (SG) versus treatment of physician’s choice (TPC) in patients (pts) with previously treated metastatic triple-negative breast cancer (mTNBC). Annals Oncol 31:S1149–S1150. https://doi.org/10.1016/j.annonc.2020.08.2245

  42. Tan AR, Wright GS, Thummala AR, Danso MA, Popovic L, Pluard TJ, Han HS, Vojnović Ž, Vasev N, Ma L, Richards DA, Wilks ST, Milenković D, Yang Z, Antal JM, Morris SR, O’Shaughnessy J (2019) Trilaciclib plus chemotherapy versus chemotherapy alone in patients with metastatic triple-negative breast cancer: a multicentre, randomised, open-label, phase 2 trial. Lancet Oncol 20(11):1587–1601. https://doi.org/10.1016/S1470-2045(19)30616-3

    Article  CAS  PubMed  Google Scholar 

  43. Tan AR, Wright GS, Thummala AR, Danso MA, Popovic L, Pluard TJ, Han HS, Vojnović Ž, Vasev N, Ma L, Richards DA, Wilks ST, Milenković D, Xiao J, Sorrentino J, Horton J, O’Shaughnessy J (2022) Trilaciclib prior to chemotherapy in patients with metastatic triple-negative breast cancer: final efficacy and subgroup analysis from a randomized phase II study. Clin Cancer Res: Off J Am Assoc Cancer Res 28(4):629–636. https://doi.org/10.1158/1078-0432.CCR-21-2272

    Article  CAS  Google Scholar 

  44. Taylor KM, Morgan HE, Smart K, Zahari NM, Pumford S, Ellis IO, Robertson JFR, Nicholson RI (2007) The emerging role of the LIV-1 subfamily of zinc transporters in breast cancer. Mol Med 13(7–8):396–406. https://doi.org/10.2119/2007-00040.Taylor

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Taylor KM, Hiscox S, Nicholson RI (2004) Zinc transporter LIV-1: a link between cellular development and cancer progression. Trends Endocrinol Metab 15(10):461–463. https://doi.org/10.1016/j.tem.2004.10.003

    Article  CAS  PubMed  Google Scholar 

  46. Forero-Torres A, Modi S, Specht J, Miller K, Weise A, Burris H, III, Liu M, Krop I, Pusztai L, Kostic A, Li M, Mita M (2017) Abstract P6–12–04: Phase 1 study of the antibody-drug conjugate (ADC) SGN-LIV1A in patients with heavily pretreated metastatic breast cancer. Cancer Res 77(4_Supplement):P6–12–04. https://doi.org/10.1158/1538-7445.SABCS16-P6-12-04

  47. Unno J, Satoh K, Hirota M, Kanno A, Hamada S, Ito H, Masamune A, Tsukamoto N, Motoi F, Egawa S, Unno M, Horii A, Shimosegawa T (2009) LIV-1 enhances the aggressive phenotype through the induction of epithelial to mesenchymal transition in human pancreatic carcinoma cells. Int J Oncol 35(4):813–821. https://doi.org/10.3892/ijo_00000394

    Article  CAS  PubMed  Google Scholar 

  48. Lue H-W, Yang X, Wang R, Qian W, Xu RZH, Lyles R, Osunkoya AO, Zhou BP, Vessella RL, Zayzafoon M, Liu Z-R, Zhau HE, Chung LWK (2011) LIV-1 promotes prostate cancer epithelial-to-mesenchymal transition and metastasis through HB-EGF shedding and EGFR-mediated ERK signaling. PLoS ONE 6(11):e27720. https://doi.org/10.1371/journal.pone.0027720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Sussman D, Smith LM, Anderson ME, Duniho S, Hunter JH, Kostner H, Miyamoto JB, Nesterova A, Westendorf L, Van Epps HA, Whiting N, Benjamin DR (2014) SGN-LIV1A: A novel antibody-drug conjugate targeting LIV-1 for the treatment of metastatic breast cancer. Mol Cancer Ther 13(12):2991–3000. https://doi.org/10.1158/1535-7163.MCT-13-0896

  50. Barroso-Sousa R, Tolaney SM (2021) Clinical development of new antibody-drug conjugates in breast cancer: to infinity and beyond. BioDrugs: Clin Immunother, Biopharm Gene Ther 35(2):159–174. https://doi.org/10.1007/s40259-021-00472-z

  51. Modi S, Pusztai L, Forero A, Mita M, Miller K, Weise A, Krop I, Burris H, III, Kalinsky K, Tsai M, Liu M, Hurvitz S, Wilks S, Ademuyiwa F, Diab S, Han H, Kato G, Nanda R, O’Shaughnessy J et al (2018) Abstract PD3–14: phase 1 study of the antibody-drug conjugate SGN-LIV1A in patients with heavily pretreated triple-negative metastatic breast cancer. Cancer Res 78(4_Supplement):PD3–14. https://doi.org/10.1158/1538-7445.SABCS17-PD3-14

  52. Tsai M, Han HS, Montero AJ et al (2021) 259P Weekly ladiratuzumab vedotin monotherapy for metastatic triplenegative breast cancer. Ann Oncol 32:S474–S475. https://doi.org/10.1016/j.annonc.2021.08.542

  53. Saini KS, Punie K, Twelves C, Bortini S, de Azambuja E, Anderson S, Criscitiello C, Awada A, Loi S (2021) Antibody-drug conjugates, immune-checkpoint inhibitors, and their combination in breast cancer therapeutics. Expert Opin Biol Ther 21(7):945–962. https://doi.org/10.1080/14712598.2021.1936494

  54. Rizzo A, Cusmai A, Acquafredda S, Rinaldi L, Palmiotti G (2022) Ladiratuzumab vedotin for metastatic triple negative cancer: preliminary results, key challenges, and clinical potential. Expert Opin Investig Drugs 1–4. https://doi.org/10.1080/13543784.2022.2042252

  55. Cao AT, Higgins S, Stevens N, Gardai SJ, Sussman D (2018) Abstract 2742: additional mechanisms of action of ladiratuzumab vedotin contribute to increased immune cell activation within the tumor. Cancer Res 78(13_Supplement):2742. https://doi.org/10.1158/1538-7445.AM2018-2742

  56. Nandini D, Jennifer A, Pradip D (2021) Therapeutic strategies for metastatic triple-negative breast cancers: from negative to positive. Pharmaceuticals 14(5):455. https://doi.org/10.3390/ph14050455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Young JA, Tan AR (2021) Targeted treatment of triple-negative breast cancer. Cancer J 27(1):50–58. https://doi.org/10.1097/PPO.0000000000000495

    Article  CAS  PubMed  Google Scholar 

  58. Yardley D, Abu-Khalaf M, Boni V, Brufsky A, Emens L, Gutierrez M, Hurvitz S, Im S-A, Loi S, McCune S, Schmid P, O’Hear C, Zhang X, Vidal G (2019) Abstract OT2–06–04: MORPHEUS: a phase Ib/II trial platform evaluating the safety and efficacy of multiple cancer immunotherapy combinations in patients with hormone receptor–positive and triple-negative breast cancer. Cancer Res 79(4_Supplement):OT2–06–04. https://doi.org/10.1158/1538-7445.SABCS18-OT2-06-04

  59. Doi T, Shitara K, Naito Y, Shimomura A, Fujiwara Y, Yonemori K, Shimizu C, Shimoi T, Kuboki Y, Matsubara N, Kitano A, Jikoh T, Lee C, Fujisaki Y, Ogitani Y, Yver A, Tamura K (2017) Safety, pharmacokinetics, and antitumour activity of trastuzumab deruxtecan (DS-8201), a HER2-targeting antibody–drug conjugate, in patients with advanced breast and gastric or gastro-oesophageal tumours: a phase 1 dose-escalation study. Lancet Oncol 18(11):1512–1522. https://doi.org/10.1016/S1470-2045(17)30604-6

    Article  CAS  PubMed  Google Scholar 

  60. Tarantino P, Hamilton E, Tolaney SM, Cortes J, Morganti S, Ferraro E, Marra A, Viale G, Trapani D, Cardoso F, Penault-Llorca F, Viale G, Andrè F, Curigliano G (2020) HER2-low breast cancer: pathological and clinical landscape. J Clin Oncol: Off J Am Soc Clin Oncol 38(17):1951–1962. https://doi.org/10.1200/JCO.19.02488

  61. Ogitani Y, Aida T, Hagihara K, Yamaguchi J, Ishii C, Harada N, Soma M, Okamoto H, Oitate M, Arakawa S, Hirai T, Atsumi R, Nakada T, Hayakawa I, Abe Y, Agatsuma T (2016) DS-8201a, a novel HER2-targeting ADC with a novel DNA topoisomerase I inhibitor, demonstrates a promising antitumor efficacy with differentiation from T-DM1. Clin Cancer Res 22(20):5097–5108. https://doi.org/10.1158/1078-0432.CCR-15-2822

    Article  CAS  PubMed  Google Scholar 

  62. Modi S, Park H, Murthy RK, Iwata H, Tamura K, Tsurutani J, Moreno-Aspitia A, Doi T, Sagara Y, Redfern C, Krop IE, Lee C, Fujisaki Y, Sugihara M, Zhang L, Shahidi J, Takahashi S (2020) Antitumor activity and safety of Trastuzumab Deruxtecan in Patients With HER2-Low–expressing advanced breast cancer: results from a phase Ib study. J Clin Oncol 38(17):1887–1896. https://doi.org/10.1200/JCO.19.02318

  63. Hamilton E, Shapiro CL, Petrylak D, Boni V, Martin M, Conte GD, Cortes J, Agarwal L, Arkenau H-T, Tan AR, Debruyne P, Minchom A, Rutten A, Valdes-Albini F, Yu EY, Augustine B, D’Amelio A, Jr, Barrios D, Hurvitz SA (2021a) Abstract PD3–07: trastuzumab deruxtecan (T-DXd; DS-8201) with nivolumab in patients with HER2-expressing, advanced breast cancer: A 2-part, phase 1b, multicenter, open-label study. Cancer Res 81(4_Supplement):PD3–07. https://doi.org/10.1158/1538-7445.SABCS20-PD3-07

  64. Costa RLB, Czerniecki BJ (2020) Clinical development of immunotherapies for HER2+ breast cancer: a review of HER2-directed monoclonal antibodies and beyond. Npj Breast Cancer 6(1):1–11. https://doi.org/10.1038/s41523-020-0153-3

    Article  CAS  Google Scholar 

  65. D’Amico L, Menzel U, Prummer M, Müller P, Buchi M, Kashyap A, Haessler U, Yermanos A, Gébleux R, Briendl M, Hell T, Wolter FI, Beerli RR, Truxova I, Radek Š, Vlajnic T, Grawunder U, Reddy S, Zippelius A (2019) A novel anti-HER2 anthracycline-based antibody-drug conjugate induces adaptive anti-tumor immunity and potentiates PD-1 blockade in breast cancer. J Immunother Cancer 7. https://doi.org/10.1186/s40425-018-0464-1

  66. Huang L, Wang R, Xie K, Zhang J, Tao F, Pi C, Feng Y, Gu H, Fang J (2022) A HER2 target antibody drug conjugate combined with anti-PD-(L)1 treatment eliminates hHER2+ tumors in hPD-1 transgenic mouse model and contributes immune memory formation. Breast Cancer Res Treat 191(1):51–61. https://doi.org/10.1007/s10549-021-06384-4

    Article  CAS  PubMed  Google Scholar 

  67. Hamilton E, Shastry M, Shiller SM, Ren R (2021b) Targeting HER2 heterogeneity in breast cancer. Cancer Treat Rev 100:102286. https://doi.org/10.1016/j.ctrv.2021.102286

  68. Rinnerthaler G, Gampenrieder SP, Greil R (2019) HER2 directed antibody-drug-conjugates beyond T-DM1 in breast cancer. Int J Mol Sci 20(5):1115. https://doi.org/10.3390/ijms20051115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Deeks ED (2021) Disitamab vedotin: first approval. Drugs 81(16):1929–1935. https://doi.org/10.1007/s40265-021-01614-x

    Article  CAS  PubMed  Google Scholar 

  70. Wang J, Liu Y, Zhang Q, Feng J, Fang J, Chen X, Han Y, Li Q, Zhang P, Yuan P, Ma F, Luo Y, Fan Y, Cai R, Chen S, Li Q, Li Y, Xu B (2021) RC48-ADC, a HER2-targeting antibody-drug conjugate, in patients with HER2-positive and HER2-low expressing advanced or metastatic breast cancer: a pooled analysis of two studies. J Clin Oncol 39(15_suppl):1022–1022. https://doi.org/10.1200/JCO.2021.39.15_suppl.1022

  71. Xu B, Wang J, Fang J, Chen X, Han Y, Li Q, Zhang P, Yuan P, Ma F, Luo Y, Fan Y, Cai R, Chen S, Li Q (2020) Abstract PD4–06: early clinical development of RC48-ADC in patients with HER2 positive metastatic breast cancer. Cancer Res 80(4_Supplement):PD4–06. https://doi.org/10.1158/1538-7445.SABCS19-PD4-06

  72. Corti C, Giugliano F, Nicolò E, Ascione L, Curigliano G (2021) Antibody-drug conjugates for the treatment of breast cancer. Cancers 13(12):2898. https://doi.org/10.3390/cancers13122898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Ogden A, Bhattarai S, Sahoo B, Mongan NP, Alsaleem M, Green AR, Aleskandarany M, Ellis IO, Pattni S, Li X (Bill), Moreno CS, Krishnamurti U, Janssen EA, Jonsdottir K, Rakha E, Rida P, Aneja R (2020) Combined HER3-EGFR score in triple-negative breast cancer provides prognostic and predictive significance superior to individual biomarkers. Sci Rep 10(1):1–8. https://doi.org/10.1038/s41598-020-59514-1

  74. Hashimoto Y, Koyama K, Kamai Y, Hirotani K, Ogitani Y, Zembutsu A, Abe M, Kaneda Y, Maeda N, Shiose Y, Iguchi T, Ishizaka T, Karibe T, Hayakawa I, Morita K, Nakada T, Nomura T, Wakita K, Kagari T et al (2019) A novel HER3-targeting antibody–drug conjugate, U3-1402, exhibits potent therapeutic efficacy through the delivery of cytotoxic payload by efficient internalization. Clin Cancer Res 25(23):7151–7161. https://doi.org/10.1158/1078-0432.CCR-19-1745

  75. Yonemori K, Masuda N, Takahashi S, Kogawa T, Nakayama T, Yamamoto Y, Takahashi M, Toyama T, Saeki T, Iwata H (2019) Single agent activity of U3–1402, a HER3-targeting antibody-drug conjugate, in HER3-overexpressing metastatic breast cancer: updated results from a phase I/II trial. Ann Oncol 30:iii48. https://doi.org/10.1093/annonc/mdz100.002

  76. Okines AFC, Ulrich L (2021) Investigational antibody-drug conjugates in clinical trials for the treatment of breast cancer. Expert Opin Investig Drugs 30(8):789–795. https://doi.org/10.1080/13543784.2021.1940950

    Article  CAS  PubMed  Google Scholar 

  77. Rose AAN, Grosset A-A, Dong Z, Russo C, MacDonald PA, Bertos NR, St-Pierre Y, Simantov R, Hallett M, Park M, Gaboury L, Siegel PM (2010) Glycoprotein nonmetastatic B is an independent prognostic indicator of recurrence and a novel therapeutic target in breast cancer. Clin Cancer Res 16(7):2147–2156. https://doi.org/10.1158/1078-0432.CCR-09-1611

  78. Huang Y-H, Chu P-Y, Chen J-L, Huang C-T, Huang C-C, Tsai Y-F, Wang Y-L, Lien P-J, Tseng L-M, Liu C-Y (2021) Expression pattern and prognostic impact of glycoprotein non-metastatic B (GPNMB) in triple-negative breast cancer. Sci Rep 11(1):12171. https://doi.org/10.1038/s41598-021-91588-3

  79. Yardley D, Weaver R, Melisko M, Saleh M, Arena F, Forero A, Cigler T, Stopeck A, Citrin D, Oliff I, Bechhold R, Loutfi R, Garcia A, Cruickshank S, Crowley E, Green J, Hawthorne T, Yellin M, Davis T, Vahdat L (2015) EMERGE: a randomized phase II study of the antibody-drug conjugate glembatumumab vedotin in advanced glycoprotein nmb-expressing breast cancer. J Clin Oncol: Off J Am Soc Clin Oncol 33(14):1609–1619

    Article  CAS  Google Scholar 

  80. Vahdat LT, Schmid P, Forero-Torres A, Blackwell K, Telli ML, Melisko M, Möbus V, Cortes J, Montero AJ, Ma C, Nanda R, Wright GS, He Y, Hawthorne T, Bagley RG, Halim A-B, Turner CD, Yardley DA (2021) Glembatumumab vedotin for patients with metastatic, gpNMB overexpressing, triple-negative breast cancer (‘METRIC’): a randomized multicenter study. NPJ Breast Cancer 7(1):57. https://doi.org/10.1038/s41523-021-00244-6

  81. Zoeller JJ, Vagodny A, Daniels VW, Taneja K, Tan BY, DeRose YS, Fujita M, Welm AL, Letai A, Leverson JD, Blot V, Bronson RT, Dillon DA, Brugge JS (2020) Navitoclax enhances the effectiveness of EGFR-targeted antibody-drug conjugates in PDX models of EGFR-expressing triple-negative breast cancer. Breast Cancer Res 22(1):132. https://doi.org/10.1186/s13058-020-01374-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Lakhani N, Chandana S, Tolcher A, Cole Y, Rivas K, Sinclair S, Nadler PI, Wood DL, Papadopoulos KP (2019) Abstract CT056: a phase Ia/IIa trial of AVID100, an anti-EGFR antibody-drug conjugate. Cancer Res 79(13_Supplement):CT056. https://doi.org/10.1158/1538-7445.AM2019-CT056

  83. Melear J, Lakhani N, O’Shaughnessy JA, Wilks ST, Khan S, Chandana SR, Tolcher AW, Papadopoulos KP, Cole Y, Rivas K, Ghosh R, Sinclair S, Lutz R, Nadler PI, Wood DL, Burtness B (2019) Abstract A088: novel anti-EGFR antibody-drug conjugate AVID100: a phase 2a trial in patients with EGFR-overexpressing advanced solid tumors. Mol Cancer Ther 18(12_Supplement):A088. https://doi.org/10.1158/1535-7163.TARG-19-A088

  84. Sharp LL, Chang C, Frey G, Wang J, Liu H, Xing C, Yalcin S, Walls M, Ben Y, Boyle WJ, Short JM (2018) Abstract 833: Anti-tumor efficacy of BA3021, a novel Conditionally Active Biologic (CAB) anti-ROR2 ADC. Cancer Res 78(13_Supplement):833. https://doi.org/10.1158/1538-7445.AM2018-833

  85. Harel ET, Drake PM, Barfield RM, Lui I, Farr-Jones S, Van’t Veer L, Gartner ZJ, Green EM, Lourenço AL, Cheng Y, Hann BC, Rabuka D, Craik CS (2019) Antibody-drug conjugates targeting the Urokinase Receptor (uPAR) as a possible treatment of aggressive breast cancer. Antibodies 8(4):54. https://doi.org/10.3390/antib8040054

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ouissam Al Jarroudi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Al Jarroudi, O., El Bairi, K., Curigliano, G., Afqir, S. (2023). Antibody–Drug Conjugates: A New Therapeutic Approach for Triple-Negative Breast Cancer. In: Al Jarroudi, O., El Bairi, K., Curigliano, G. (eds) Breast Cancer Research and Treatment. Cancer Treatment and Research, vol 188. Springer, Cham. https://doi.org/10.1007/978-3-031-33602-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-33602-7_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-33601-0

  • Online ISBN: 978-3-031-33602-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics