Abstract
Cardiac electrical and mechanical activity are closely interrelated, not only via the chain of events commonly referred to as ‘excitation-contraction coupling’ that links electrical excitation to contraction, but equally via feedback from the heart’s mechanical environment to the origin and spread of cardiac excitation. The latter has been termed mechano-electric coupling and complements excitation-contraction coupling to form an intracardiac electro-mechanical regulatory loop. This chapter will explore the relevance of mechano-electric coupling in the heart by reviewing its pro- and anti-arrhythmic effects on heart rate and rhythm, and the underlying mechanisms that may account for clinical and experimental observations.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bers DM. Cardiac excitation-contraction coupling. Nature. 2002;415:198–205.
Eisner DA, Caldwell JL, Kistamas K, Trafford AW. Calcium and excitation-contraction coupling in the heart. Circ Res. 2017;121:181–95.
Peyronnet R, Nerbonne JM, Kohl P. Cardiac mechano-gated ion channels and arrhythmias. Circ Res. 2016;118:311–29.
Quinn TA. The importance of non-uniformities in mechano-electric coupling for ventricular arrhythmias. J Interv Card Electrophysiol. 2014;39:25–35.
Quinn TA, Kohl P. Cardiac mechano-electric coupling: acute effects of mechanical stimulation on heart rate and rhythm. Physiol Rev. 2021;101:37–92.
Quinn TA, Kohl P, Ravens U. Cardiac mechano-electric coupling research: fifty years of progress and scientific innovation. Prog Biophys Mol Biol. 2014;115:71–5.
Bainbridge FA. The influence of venous filling upon the rate of the heart. J Physiol. 1915;50:65–84.
Quinn TA, Kohl P. The Bainbridge effect: stretching our understanding of cardiac pacemaking for more than a century. J Physiol. 2022;600:4377–9.
Donald DE, Shepherd JT. Reflexes from the heart and lungs: physiological curiosities or important regulatory mechanisms. Cardiovasc Res. 1978;12:446–69.
Blinks JR. Positive chronotropic effect of increasing right atrial pressure in the isolated mammalian heart. Am J Physiol. 1956;186:299–303.
Deck KA. Dehnungseffekte am spontanschlagenden, isolierten Sinusknoten. Pflugers Arch Gesamte Physiol Menschen Tiere. 1964;280:120–30.
Cooper PJ, Lei M, Cheng LX, Kohl P. Selected contribution: axial stretch increases spontaneous pacemaker activity in rabbit isolated sinoatrial node cells. J Appl Physiol. 2000;89:2099–104.
Yasuma F, Hayano J. Respiratory sinus arrhythmia: why does the heartbeat synchronize with respiratory rhythm? Chest. 2004;125:683–90.
Bernardi L, Keller F, Sanders M, Reddy PS, Griffith B, Meno F, et al. Respiratory sinus arrhythmia in the denervated human heart. J Appl Physiol. 1989;67:1447–55.
Bernardi L, Salvucci F, Suardi R, Solda PL, Calciati A, Perlini S, et al. Evidence for an intrinsic mechanism regulating heart rate variability in the transplanted and the intact heart during submaximal dynamic exercise? Cardiovasc Res. 1990;24:969–81.
Casadei B, Moon J, Johnston J, Caiazza A, Sleight P. Is respiratory sinus arrhythmia a good index of cardiac vagal tone in exercise? J Appl Physiol. 1996;81:556–64.
Brooks CM, Lu HH, Lange G, Mangi R, Shaw RB, Geoly K. Effects of localized stretch of the sinoatrial node region of the dog heart. Am J Physiol. 1966;211:1197–202.
Wilson SJ, Bolter CP. Do cardiac neurons play a role in the intrinsic control of heart rate in the rat? Exp Physiol. 2002;87:675–82.
Hagiwara N, Masuda H, Shoda M, Irisawa H. Stretch-activated anion currents of rabbit cardiac myocytes. J Physiol. 1992;456:285–302.
Lei M, Kohl P. Swelling-induced decrease in spontaneous pacemaker activity of rabbit isolated sino-atrial node cells. Acta Physiol Scand. 1998;164:1–12.
Clemo HF, Stambler BS, Baumgarten CM. Persistent activation of a swelling-activated cation current in ventricular myocytes from dogs with tachycardia-induced congestive heart failure. Circ Res. 1998;83:147–57.
Le Guennec JY, Peineau N, Argibay JA, Mongo KG, Garnier D. A new method of attachment of isolated mammalian ventricular myocytes for tension recording: length dependence of passive and active tension. J Mol Cell Cardiol. 1990;22:1083–93.
Craelius W, Chen V, el-Sherif N. Stretch activated ion channels in ventricular myocytes. Biosci Rep. 1988;8:407–14.
MacDonald EA, Stoyek MR, Rose RA, Quinn TA. Intrinsic regulation of sinoatrial node function and the zebrafish as a model of stretch effects on pacemaking. Prog Biophys Mol Biol. 2017;130:198–211.
Baillie JS, Gendernalik A, Garrity DM, Bark D Jr, Quinn TA. The in vivo study of cardiac mechano-electric and mechanomechanical coupling during heart development in zebrafish. Front Physiol. 2023;14:1086050.
Cooper PJ, Kohl P. Species- and preparation-dependence of stretch effects on sino-atrial node pacemaking. Ann N Y Acad Sci. 2005;1047:324–35.
Cooper PJ, Kohl P. Mechanical modulation of sino-atrial node pacemaking. In: Kohl P, Franz MR, Sachs F, editors. Cardiac mechano-electric feedback and arrhythmias: from pipette to patient. Philadelphia: Saunders (Elsevier); 2005. p. 72–82.
MacDonald EA, Madl J, Greiner J, Ramadan AF, Wells SM, Torrente AG, et al. Sinoatrial node structure, mechanics, electrophysiology and the chronotropic response to stretch in rabbit and mouse. Front Physiol. 2020;11:809.
Kohl P, Crampin EJ, Quinn TA, Noble D. Systems biology: an approach. Clin Pharmacol Ther. 2010;88:25–33.
Quinn TA, Kohl P. Combining wet and dry research: experience with model development for cardiac mechano-electric structure-function studies. Cardiovasc Res. 2013;97:601–11.
Suchyna TM, Johnson JH, Hamer K, Leykam JF, Gage DA, Clemo HF, et al. Identification of a peptide toxin from Grammostola spatulata spider venom that blocks cation-selective stretch-activated channels. J Gen Physiol. 2000;115:583–98.
Quinn TA, Kohl P. Systems biology of the heart: hype or hope? Ann N Y Acad Sci. 2011;1245:40–3.
Jansen HJ, Quinn TA, Rose RA. Cellular sinoatrial node and atrioventricular node activity in the heart. In: Vasan RS, Sawyer DB, editors. Encyclopedia of cardiovascular research and medicine. Amsterdam: Elsevier; 2018. p. 576–92.
MacDonald EA, Quinn TA. What keeps us ticking? Sinoatrial node mechano-sensitivity: the grandfather-clock of cardiac rhythm. Biophys Rev. 2021;13:707–16.
MacDonald EA, Rose RA, Quinn TA. Neurohumoral control of sinoatrial node activity and heart rate: insight from experimental models and findings from humans. Front Physiol. 2020;11:170.
Quinn TA, Kohl P. Mechano-sensitivity of cardiac pacemaker function: pathophysiological relevance, experimental implications, and conceptual integration with other mechanisms of rhythmicity. Prog Biophys Mol Biol. 2012;110:257–68.
Stockbridge LL, French AS. Stretch-activated cation channels in human fibroblasts. Biophys J. 1988;54:187–90.
Quinn TA, Camelliti P, Rog-Zielinska EA, Siedlecka U, Poggioli T, O’Toole ET, et al. Electrotonic coupling of excitable and nonexcitable cells in the heart revealed by optogenetics. Proc Natl Acad Sci U S A. 2016;113:14852–7.
Rubart M, Tao W, Lu XL, Conway SJ, Reuter SP, Lin SF, et al. Electrical coupling between ventricular myocytes and myofibroblasts in the infarcted mouse heart. Cardiovasc Res. 2018;114:389–400.
Camelliti P, Green CR, LeGrice I, Kohl P. Fibroblast network in rabbit sinoatrial node: structural and functional identification of homogeneous and heterogeneous cell coupling. Circ Res. 2004;94:828–35.
Kohl P, Kamkin AG, Kiseleva IS, Noble D. Mechanosensitive fibroblasts in the sino-atrial node region of rat heart: interaction with cardiomyocytes and possible role. Exp Physiol. 1994;79:943–56.
Atcha H, Jairaman A, Holt JR, Meli VS, Nagalla RR, Veerasubramanian PK, et al. Mechanically activated ion channel Piezo1 modulates macrophage polarization and stiffness sensing. Nat Commun. 2021;12:3256.
Simon-Chica A, Fernández MC, Wülfers EM, Lother A, Hilgendorf I, Seemann G, et al. Novel insights into the electrophysiology of murine cardiac macrophages: relevance of voltage-gated potassium channels. Cardiovasc Res. 2022;118:798–813.
Hulsmans M, Clauss S, Xiao L, Aguirre AD, King KR, Hanley A, et al. Macrophages facilitate electrical conduction in the heart. Cell. 2017;169:510–22.
Bolter CP, Wilson SJ. Influence of right atrial pressure on the cardiac pacemaker response to vagal stimulation. Am J Physiol. 1999;276:R1112–7.
Quinn TA, Kohl P. Rabbit models of cardiac mechano-electric and mechano-mechanical coupling. Prog Biophys Mol Biol. 2016;121:110–22.
Lakatta EG, Maltsev VA, Vinogradova TM. A coupled SYSTEM of intracellular Ca2+ clocks and surface membrane voltage clocks controls the timekeeping mechanism of the heart’s pacemaker. Circ Res. 2010;106:659–73.
Cameron BA, Kai H, Kaihara K, Iribe G, Quinn TA. Ischemia enhances the acute stretch-induced increase in calcium spark rate in ventricular myocytes. Front Physiol. 2020;11:289.
Iribe G, Ward CW, Camelliti P, Bollensdorff C, Mason F, Burton RA, et al. Axial stretch of rat single ventricular cardiomyocytes causes an acute and transient increase in Ca2+ spark rate. Circ Res. 2009;104:787–95.
Prosser BL, Ward CW, Lederer WJ. X-ROS signaling: rapid mechano-chemo transduction in heart. Science. 2011;333:1440–5.
Nesbitt AD, Cooper PJ, Kohl P. Rediscovering Commotio cordis. Lancet. 2001;357:1195–7.
Befeler B. Mechanical stimulation of the heart: its therapeutic value in tachyarrhythmias. Chest. 1978;73:832–8.
Quinn TA, Kohl P. Mechanical triggers and facilitators of ventricular tachy-arrhythmias. In: Kohl P, Sachs F, Franz M, editors. Cardiac mechano-electric coupling and arrhythmias. Oxford: Oxford University Press; 2011. p. 160–7.
Berdowski J, Tijssen JG, Koster RW. Chest compressions cause recurrence of ventricular fibrillation after the first successful conversion by defibrillation in out-of-hospital cardiac arrest. Circ Arrhythm Electrophysiol. 2010;3:72–8.
Orini M, Taggart P, Bhuva A, Roberts N, Di Salvo C, Yates M, et al. Direct in-vivo assessment of global and regional mechano-electric feedback in the intact human heart. Heart Rhythm. 2021;18(8):1406–13.
Levine JH, Guarnieri T, Kadish AH, White RI, Calkins H, Kan JS. Changes in myocardial repolarization in patients undergoing balloon valvuloplasty for congenital pulmonary stenosis: evidence for contraction-excitation feedback in humans. Circulation. 1988;77:70–7.
Ninio DM, Saint DA. The role of stretch-activated channels in atrial fibrillation and the impact of intracellular acidosis. Prog Biophys Mol Biol. 2008;97:401–16.
Kohl P, Hunter P, Noble D. Stretch-induced changes in heart rate and rhythm: clinical observations, experiments and mathematical models. Prog Biophys Mol Biol. 1999;71:91–138.
Cameron BA, Kohl P, Quinn TA. Cellular and subcellular mechanisms of ventricular mechano-arrhythmogenesis. In: Hecker M, Duncker DJ, editors. Cardiac mechanobiology in physiology and disease. Cham: Springer; 2023. p. 256–98.
Sutherland GR. Sudden cardiac death: the pro-arrhythmic interaction of an acute loading with an underlying substrate. Eur Heart J. 2017;38:2986–94.
Reiter MJ, Stromberg KD, Whitman TA, Adamson PB, Benditt DG, Gold MR. Influence of intracardiac pressure on spontaneous ventricular arrhythmias in patients with systolic heart failure: insights from the REDUCEhf trial. Circ Arrhythm Electrophysiol. 2013;6:272–8.
Waxman MB, Wald RW, Finley JP, Bonet JF, Downar E, Sharma AD. Valsalva termination of ventricular tachycardia. Circulation. 1980;62:843–51.
Franz MR, Cima R, Wang D, Profitt D, Kurz R. Electrophysiological effects of myocardial stretch and mechanical determinants of stretch-activated arrhythmias. Circulation. 1992;86:968–78.
Hansen DE, Craig CS, Hondeghem LM. Stretch-induced arrhythmias in the isolated canine ventricle. Evidence for the importance of mechanoelectrical feedback. Circulation. 1990;81:1094–105.
Schlomka G, Hinrichs A. Experimentelle Untersuchungen über den Einfluß stumpfer Brustkorbverletzungen auf das Elektrokardiogramm. Z Ges Exp Med. 1932;81:43–61.
Schlomka G, Hinrichs A. Untersuchungen über den Einfluß stumpfer Brustkorbtraumen auf das Elektrokardiogramm (II. Mitteilung). Z Ges Exp Med. 1932;83:779–91.
Link MS, Wang PJ, Pandian NG, Bharati S, Udelson JE, Lee MY, et al. An experimental model of sudden death due to low-energy chest-wall impact (Commotio cordis). N Engl J Med. 1998;338:1805–11.
Bode F, Franz M, Wilke I, Bonnemeier H, Schunkert H, Wiegand U. Ventricular fibrillation induced by stretch pulse: implications for sudden death due to Commotio cordis. J Cardiovasc Electrophysiol. 2006;17:1011–7.
Sung D, Mills RW, Schettler J, Narayan SM, Omens JH, McCulloch AD. Ventricular filling slows epicardial conduction and increases action potential duration in an optical mapping study of the isolated rabbit heart. J Cardiovasc Electrophysiol. 2003;14:739–49.
Ishikawa K, Watanabe S, Lee P, Akar FG, Lee A, Bikou O, et al. Acute left ventricular unloading reduces atrial stretch and inhibits atrial arrhythmias. J Am Coll Cardiol. 2018;72:738–50.
Kaufmann R, Theophile U. Automatie-fördernde Dehnungseffekte an Purkinje-Fäden, Papillarmuskeln und Vorhoftrabekeln von Rhesus-Affen. Pflugers Arch Gesamte Physiol Menschen Tiere. 1967;297:174–89.
Dominguez G, Fozzard HA. Effect of stretch on conduction velocity and cable properties of cardiac Purkinje fibers. Am J Physiol. 1979;237:C119–24.
Chang SL, Chen YC, Chen YJ, Wangcharoen W, Lee SH, Lin CI, et al. Mechanoelectrical feedback regulates the arrhythmogenic activity of pulmonary veins. Heart. 2007;93:82–8.
Al-Shammari H, Latif N, Sarathchandra P, McCormack A, Rog-Zielinska EA, Raja S, et al. Expression and function of mechanosensitive ion channels in human valve interstitial cells. PLoS One. 2020;15:e0240532.
Wang JH, Thampatty BP. Mechanobiology of adult and stem cells. Int Rev Cell Mol Biol. 2008;271:301–46.
Beaumont E, Salavatian S, Southerland EM, Vinet A, Jacquemet V, Armour JA, et al. Network interactions within the canine intrinsic cardiac nervous system: implications for reflex control of regional cardiac function. J Physiol. 2013;591:4515–33.
Link MS, Maron BJ, Wang PJ, VanderBrink BA, Zhu W, Estes NA 3rd. Upper and lower limits of vulnerability to sudden arrhythmic death with chest-wall impact (Commotio cordis). J Am Coll Cardiol. 2003;41:99–104.
Alsheikh-Ali AA, Akelman C, Madias C, Link MS. Endocardial mapping of ventricular fibrillation in Commotio cordis. Heart Rhythm. 2008;5:1355–6.
Cooper PJ, Epstein A, Macleod IA, Schaaf ST, Sheldon J, Boulin C, et al. Soft tissue impact characterisation kit (STICK) for ex situ investigation of heart rhythm responses to acute mechanical stimulation. Prog Biophys Mol Biol. 2006;90:444–68.
Quinn TA, Jin H, Lee P, Kohl P. Mechanically induced ectopy via stretch-activated cation-nonselective channels is caused by local tissue deformation and results in ventricular fibrillation if triggered on the repolarization wave edge (Commotio cordis). Circ Arrhythm Electrophysiol. 2017;10:e004777.
Quinn TA, Kohl P. Comparing maximum rate and sustainability of pacing by mechanical vs. electrical stimulation in the Langendorff-perfused rabbit heart. Europace. 2016;18:iv85-iv93.
Garny A, Kohl P. Mechanical induction of arrhythmias during ventricular repolarization: modeling cellular mechanisms and their interaction in two dimensions. Ann N Y Acad Sci. 2004;1015:133–43.
Seo K, Inagaki M, Nishimura S, Hidaka I, Sugimachi M, Hisada T, et al. Structural heterogeneity in the ventricular wall plays a significant role in the initiation of stretch-induced arrhythmias in perfused rabbit right ventricular tissues and whole heart preparations. Circ Res. 2010;106:176–84.
Parker KK, Lavelle JA, Taylor LK, Wang Z, Hansen DE. Stretch-induced ventricular arrhythmias during acute ischemia and reperfusion. J Appl Physiol. 2004;97:377–83.
Lu F, Jun-Xian C, Rong-Sheng X, Jia L, Ying H, Li-Qun Z, et al. The effect of streptomycin on stretch-induced electrophysiological changes of isolated acute myocardial infarcted hearts in rats. Europace. 2007;9:578–84.
Barrabes JA, Garcia-Dorado D, Padilla F, Agullo L, Trobo L, Carballo J, et al. Ventricular fibrillation during acute coronary occlusion is related to the dilation of the ischemic region. Basic Res Cardiol. 2002;97:445–51.
Chorro FJ, Trapero I, Guerrero J, Such LM, Canoves J, Mainar L, et al. Modification of ventricular fibrillation activation patterns induced by local stretching. J Cardiovasc Electrophysiol. 2005;16:1087–96.
Sachs F. Mechanical transduction by membrane ion channels: a mini review. Mol Cell Biochem. 1991;104:57–60.
Kohl P. Cardiac stretch-activated channels and mechano-electric transduction. In: Zipes DP, Jalife J, editors. Cardiac electrophysiology: from cell to bedside. Philadelphia: Saunders; 2009. p. 115–26.
Zabel M, Koller BS, Sachs F, Franz MR. Stretch-induced voltage changes in the isolated beating heart: importance of the timing of stretch. Cardiovasc Res. 1996;32:120–30.
Hansen DE, Borganelli M, Stacy GP, Taylor LK. Dose-dependent inhibition of stretch-induced arrhythmias by gadolinium in isolated canine ventricles. Evidence for a unique mode of antiarrhythmic action. Circ Res. 1991;69:820–31.
Craelius W. Stretch-activation of rat cardiac myocytes. Exp Physiol. 1993;78:411–23.
Bode F, Sachs F, Franz MR. Tarantula peptide inhibits atrial fibrillation. Nature. 2001;409:35–6.
Van Wagoner DR. Mechanosensitive gating of atrial ATP-sensitive potassium channels. Circ Res. 1993;72:973–83.
Link MS, Wang PJ, VanderBrink BA, Avelar E, Pandian NG, Maron BJ, et al. Selective activation of the K+(ATP) channel is a mechanism by which sudden death is produced by low-energy chest-wall impact (Commotio cordis). Circulation. 1999;100:413–8.
Garan AR, Maron BJ, Wang PJ, Estes NA 3rd, Link MS. Role of streptomycin-sensitive stretch-activated channel in chest wall impact induced sudden death (Commotio cordis). J Cardiovasc Electrophysiol. 2005;16:433–8.
Kohl P, Bollensdorff C, Garny A. Effects of mechanosensitive ion channels on ventricular electrophysiology: experimental and theoretical models. Exp Physiol. 2006;91:307–21.
Li W, Kohl P, Trayanova N. Induction of ventricular arrhythmias following mechanical impact: a simulation study in 3D. J Mol Histol. 2004;35:679–86.
Jie X, Gurev V, Trayanova N. Mechanisms of mechanically induced spontaneous arrhythmias in acute regional ischemia. Circ Res. 2010;106:185–92.
Morris CE, Juranka PF, Lin W, Morris TJ, Laitko U. Studying the mechanosensitivity of voltage-gated channels using oocyte patches. Methods Mol Biol. 2006;322:315–29.
Ter Keurs HE, Wakayama Y, Miura M, Shinozaki T, Stuyvers BD, Boyden PA, et al. Arrhythmogenic Ca2+ release from cardiac myofilaments. Prog Biophys Mol Biol. 2006;90:151–71.
Schott E. On ventricular standstill (Adam-Stokes attacks) together with other arrhythmias of temporary nature. Deutsches Archiv klinischer Medizin. 1920;131:211–29.
Quinn TA. Non-optogenetic approaches for leadless cardiac pacing: mechanically-induced excitation for extracorporeal control of cardiac rhythm. In: Nussinovitch U, editor. Emerging technologies for heart diseases: Volume 2: Treatments for myocardial ischemia and arrhythmias. Amsterdam: Elsevier; 2020. p. 891–905.
Hyman AS. Resuscitation of the stopped heart by intracardiac therapy. Arch Intern Med. 1930;46:553–68.
Lee HT, Cozine K. Incidental conversion to sinus rhythm from atrial fibrillation during external jugular venous catheterization. J Clin Anesth. 1997;9:664–7.
Scherf D, Bornemann C. Thumping of the precordium in ventricular standstill. Am J Cardiol. 1960;5:30–40.
Don Michael TA, Lond MB, Stanford RL. Precordial percussion in cardiac asystole. Lancet. 1963;699
Kohl P, King AM, Boulin C. Antiarrhythmic effects of acute mechanical stimulation. In: Kohl P, Franz MR, Sachs F, editors. Cardiac mechano-electric feedback and arrhythmias: from pipette to patient. Philadelphia: Saunders (Elsevier); 2005. p. 304–14.
Criley JM, Blaufuss AH, Kissel GL. Cough-induced cardiac compression: self-administered form of cardiopulmonary resuscitation. JAMA. 1976;236:1246–50.
Rajagopalan RS, Appu KS, Sultan SK, Jagannadhan TG, Nityanandan K, Sethuraman S. Precordial thump in ventricular tachycardia. J Assoc Physicians India. 1971;19:725–9.
Amir O, Schliamser JE, Nemer S, Arie M. Ineffectiveness of precordial thump for cardioversion of malignant ventricular tachyarrhythmias. Pacing Clin Electrophysiol. 2007;30:153–6.
Caldwell G, Millar G, Quinn E. Simple mechanical methods for cardioversion: Defence of the precordial thump and cough version. BMJ. 1985;291:627–30.
Haman L, Parizek P, Vojacek J. Precordial thump efficacy in termination of induced ventricular arrhythmias. Resuscitation. 2009;80:14–6.
Pellis T, Kette F, Lovisa D, Franceschino E, Magagnin L, Mercante WP, et al. Utility of pre-cordial thump for treatment of out of hospital cardiac arrest: A prospective study. Resuscitation. 2009;80:17–23.
Smith J, Judge B. BET 1: Effectiveness of the precordial thump in restoring heart rhythm following out-of-hospital cardiac arrest. Emerg Med J. 2016;33:366–7.
Baderman H, Robertson NR. Thumping the precordium. Lancet. 1965;2:1293.
Yakaitis RW, Redding JS. Precordial thumping during cardiac resuscitation. Crit Care Med. 1973;1:22–6.
Gertsch M, Hottinger S, Mettler D, Leupi F, Gurtner HP. Conversion of induced ventricular tachycardia by single and serial chest thumps: a study in domestic pigs 1 week after experimental myocardial infarction. Am Heart J. 1989;118:248–55.
Wada T, Ohara H, Nakamura Y, Cao X, Izumi-Nakaseko H, Ando K, et al. Efficacy of precordial percussion pacing assessed in a cardiac standstill microminipig model. Circ J. 2017;81:1137–43.
Li W, Kohl P, Trayanova N. Myocardial ischemia lowers precordial thump efficacy: an inquiry into mechanisms using three-dimensional simulations. Heart Rhythm. 2006;3:179–86.
Van Wagoner DR, Lamorgese M. Ischemia potentiates the mechanosensitive modulation of atrial ATP-sensitive potassium channels. Ann N Y Acad Sci. 1994;723:392–5.
Brooks SC, Anderson ML, Bruder E, Daya MR, Gaffney A, Otto CW, et al. Part 6: alternative techniques and ancillary devices for cardiopulmonary resuscitation: 2015 American Heart Association guidelines update for cardiopulmonary resuscitation and emergency cardiovascular care. Circulation. 2015;132:S436–43.
Link MS, Berkow LC, Kudenchuk PJ, Halperin HR, Hess EP, Moitra VK, et al. Part 7: adult advanced cardiovascular life support: 2015 American Heart Association guidelines update for cardiopulmonary resuscitation and emergency cardiovascular care. Circulation. 2015;132:S444–64.
Quinn TA. Cardiac mechano-electric coupling: a role in regulating normal function of the heart? Cardiovasc Res. 2015;108:1–3.
Kaufmann RL, Lab MJ, Hennekes R, Krause H. Feedback interaction of mechanical and electrical events in the isolated mammalian ventricular myocardium (cat papillary muscle). Pflugers Arch. 1971;324:100–23.
Acknowledgements
Work in the authors’ laboratories is supported by the Canadian Institutes of Health Research (MOP 342562 to TAQ), the Natural Sciences and Engineering Research Council of Canada (RGPIN-2016-04879 to TAQ), the Heart and Stroke Foundation of Canada (G-18-0022185 and National New Investigator Award to TAQ), and the German Research Foundation (Collaborative Research Centre ‘SFB 1425’ #422681845; PK). RAC was supported by the Wellcome Trust and Royal Society (109371/Z/15/Z).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 Springer Nature Switzerland AG
About this chapter
Cite this chapter
Quinn, T.A., Capel, R.A., Kohl, P. (2023). Mechano-Electric Coupling in the Heart: Effects on Heart Rate and Rhythm. In: Tripathi, O.N., Quinn, T.A., Ravens, U. (eds) Heart Rate and Rhythm. Springer, Cham. https://doi.org/10.1007/978-3-031-33588-4_7
Download citation
DOI: https://doi.org/10.1007/978-3-031-33588-4_7
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-33587-7
Online ISBN: 978-3-031-33588-4
eBook Packages: MedicineMedicine (R0)