Skip to main content

Mechano-Electric Coupling in the Heart: Effects on Heart Rate and Rhythm

  • Chapter
  • First Online:
Heart Rate and Rhythm

Abstract

Cardiac electrical and mechanical activity are closely interrelated, not only via the chain of events commonly referred to as ‘excitation-contraction coupling’ that links electrical excitation to contraction, but equally via feedback from the heart’s mechanical environment to the origin and spread of cardiac excitation. The latter has been termed mechano-electric coupling and complements excitation-contraction coupling to form an intracardiac electro-mechanical regulatory loop. This chapter will explore the relevance of mechano-electric coupling in the heart by reviewing its pro- and anti-arrhythmic effects on heart rate and rhythm, and the underlying mechanisms that may account for clinical and experimental observations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bers DM. Cardiac excitation-contraction coupling. Nature. 2002;415:198–205.

    Article  CAS  PubMed  Google Scholar 

  2. Eisner DA, Caldwell JL, Kistamas K, Trafford AW. Calcium and excitation-contraction coupling in the heart. Circ Res. 2017;121:181–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Peyronnet R, Nerbonne JM, Kohl P. Cardiac mechano-gated ion channels and arrhythmias. Circ Res. 2016;118:311–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Quinn TA. The importance of non-uniformities in mechano-electric coupling for ventricular arrhythmias. J Interv Card Electrophysiol. 2014;39:25–35.

    Article  PubMed  Google Scholar 

  5. Quinn TA, Kohl P. Cardiac mechano-electric coupling: acute effects of mechanical stimulation on heart rate and rhythm. Physiol Rev. 2021;101:37–92.

    Article  CAS  PubMed  Google Scholar 

  6. Quinn TA, Kohl P, Ravens U. Cardiac mechano-electric coupling research: fifty years of progress and scientific innovation. Prog Biophys Mol Biol. 2014;115:71–5.

    Article  PubMed  Google Scholar 

  7. Bainbridge FA. The influence of venous filling upon the rate of the heart. J Physiol. 1915;50:65–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Quinn TA, Kohl P. The Bainbridge effect: stretching our understanding of cardiac pacemaking for more than a century. J Physiol. 2022;600:4377–9.

    Article  CAS  PubMed  Google Scholar 

  9. Donald DE, Shepherd JT. Reflexes from the heart and lungs: physiological curiosities or important regulatory mechanisms. Cardiovasc Res. 1978;12:446–69.

    Article  CAS  PubMed  Google Scholar 

  10. Blinks JR. Positive chronotropic effect of increasing right atrial pressure in the isolated mammalian heart. Am J Physiol. 1956;186:299–303.

    Article  CAS  PubMed  Google Scholar 

  11. Deck KA. Dehnungseffekte am spontanschlagenden, isolierten Sinusknoten. Pflugers Arch Gesamte Physiol Menschen Tiere. 1964;280:120–30.

    Article  CAS  PubMed  Google Scholar 

  12. Cooper PJ, Lei M, Cheng LX, Kohl P. Selected contribution: axial stretch increases spontaneous pacemaker activity in rabbit isolated sinoatrial node cells. J Appl Physiol. 2000;89:2099–104.

    Article  CAS  PubMed  Google Scholar 

  13. Yasuma F, Hayano J. Respiratory sinus arrhythmia: why does the heartbeat synchronize with respiratory rhythm? Chest. 2004;125:683–90.

    Article  PubMed  Google Scholar 

  14. Bernardi L, Keller F, Sanders M, Reddy PS, Griffith B, Meno F, et al. Respiratory sinus arrhythmia in the denervated human heart. J Appl Physiol. 1989;67:1447–55.

    Article  CAS  PubMed  Google Scholar 

  15. Bernardi L, Salvucci F, Suardi R, Solda PL, Calciati A, Perlini S, et al. Evidence for an intrinsic mechanism regulating heart rate variability in the transplanted and the intact heart during submaximal dynamic exercise? Cardiovasc Res. 1990;24:969–81.

    Article  CAS  PubMed  Google Scholar 

  16. Casadei B, Moon J, Johnston J, Caiazza A, Sleight P. Is respiratory sinus arrhythmia a good index of cardiac vagal tone in exercise? J Appl Physiol. 1996;81:556–64.

    Article  CAS  PubMed  Google Scholar 

  17. Brooks CM, Lu HH, Lange G, Mangi R, Shaw RB, Geoly K. Effects of localized stretch of the sinoatrial node region of the dog heart. Am J Physiol. 1966;211:1197–202.

    Article  CAS  PubMed  Google Scholar 

  18. Wilson SJ, Bolter CP. Do cardiac neurons play a role in the intrinsic control of heart rate in the rat? Exp Physiol. 2002;87:675–82.

    Article  PubMed  Google Scholar 

  19. Hagiwara N, Masuda H, Shoda M, Irisawa H. Stretch-activated anion currents of rabbit cardiac myocytes. J Physiol. 1992;456:285–302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lei M, Kohl P. Swelling-induced decrease in spontaneous pacemaker activity of rabbit isolated sino-atrial node cells. Acta Physiol Scand. 1998;164:1–12.

    Article  CAS  PubMed  Google Scholar 

  21. Clemo HF, Stambler BS, Baumgarten CM. Persistent activation of a swelling-activated cation current in ventricular myocytes from dogs with tachycardia-induced congestive heart failure. Circ Res. 1998;83:147–57.

    Article  CAS  PubMed  Google Scholar 

  22. Le Guennec JY, Peineau N, Argibay JA, Mongo KG, Garnier D. A new method of attachment of isolated mammalian ventricular myocytes for tension recording: length dependence of passive and active tension. J Mol Cell Cardiol. 1990;22:1083–93.

    Article  PubMed  Google Scholar 

  23. Craelius W, Chen V, el-Sherif N. Stretch activated ion channels in ventricular myocytes. Biosci Rep. 1988;8:407–14.

    Article  CAS  PubMed  Google Scholar 

  24. MacDonald EA, Stoyek MR, Rose RA, Quinn TA. Intrinsic regulation of sinoatrial node function and the zebrafish as a model of stretch effects on pacemaking. Prog Biophys Mol Biol. 2017;130:198–211.

    Article  PubMed  Google Scholar 

  25. Baillie JS, Gendernalik A, Garrity DM, Bark D Jr, Quinn TA. The in vivo study of cardiac mechano-electric and mechanomechanical coupling during heart development in zebrafish. Front Physiol. 2023;14:1086050.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Cooper PJ, Kohl P. Species- and preparation-dependence of stretch effects on sino-atrial node pacemaking. Ann N Y Acad Sci. 2005;1047:324–35.

    Article  PubMed  Google Scholar 

  27. Cooper PJ, Kohl P. Mechanical modulation of sino-atrial node pacemaking. In: Kohl P, Franz MR, Sachs F, editors. Cardiac mechano-electric feedback and arrhythmias: from pipette to patient. Philadelphia: Saunders (Elsevier); 2005. p. 72–82.

    Google Scholar 

  28. MacDonald EA, Madl J, Greiner J, Ramadan AF, Wells SM, Torrente AG, et al. Sinoatrial node structure, mechanics, electrophysiology and the chronotropic response to stretch in rabbit and mouse. Front Physiol. 2020;11:809.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Kohl P, Crampin EJ, Quinn TA, Noble D. Systems biology: an approach. Clin Pharmacol Ther. 2010;88:25–33.

    Article  CAS  PubMed  Google Scholar 

  30. Quinn TA, Kohl P. Combining wet and dry research: experience with model development for cardiac mechano-electric structure-function studies. Cardiovasc Res. 2013;97:601–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Suchyna TM, Johnson JH, Hamer K, Leykam JF, Gage DA, Clemo HF, et al. Identification of a peptide toxin from Grammostola spatulata spider venom that blocks cation-selective stretch-activated channels. J Gen Physiol. 2000;115:583–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Quinn TA, Kohl P. Systems biology of the heart: hype or hope? Ann N Y Acad Sci. 2011;1245:40–3.

    Article  PubMed  Google Scholar 

  33. Jansen HJ, Quinn TA, Rose RA. Cellular sinoatrial node and atrioventricular node activity in the heart. In: Vasan RS, Sawyer DB, editors. Encyclopedia of cardiovascular research and medicine. Amsterdam: Elsevier; 2018. p. 576–92.

    Chapter  Google Scholar 

  34. MacDonald EA, Quinn TA. What keeps us ticking? Sinoatrial node mechano-sensitivity: the grandfather-clock of cardiac rhythm. Biophys Rev. 2021;13:707–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. MacDonald EA, Rose RA, Quinn TA. Neurohumoral control of sinoatrial node activity and heart rate: insight from experimental models and findings from humans. Front Physiol. 2020;11:170.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Quinn TA, Kohl P. Mechano-sensitivity of cardiac pacemaker function: pathophysiological relevance, experimental implications, and conceptual integration with other mechanisms of rhythmicity. Prog Biophys Mol Biol. 2012;110:257–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Stockbridge LL, French AS. Stretch-activated cation channels in human fibroblasts. Biophys J. 1988;54:187–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Quinn TA, Camelliti P, Rog-Zielinska EA, Siedlecka U, Poggioli T, O’Toole ET, et al. Electrotonic coupling of excitable and nonexcitable cells in the heart revealed by optogenetics. Proc Natl Acad Sci U S A. 2016;113:14852–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Rubart M, Tao W, Lu XL, Conway SJ, Reuter SP, Lin SF, et al. Electrical coupling between ventricular myocytes and myofibroblasts in the infarcted mouse heart. Cardiovasc Res. 2018;114:389–400.

    Article  CAS  PubMed  Google Scholar 

  40. Camelliti P, Green CR, LeGrice I, Kohl P. Fibroblast network in rabbit sinoatrial node: structural and functional identification of homogeneous and heterogeneous cell coupling. Circ Res. 2004;94:828–35.

    Article  CAS  PubMed  Google Scholar 

  41. Kohl P, Kamkin AG, Kiseleva IS, Noble D. Mechanosensitive fibroblasts in the sino-atrial node region of rat heart: interaction with cardiomyocytes and possible role. Exp Physiol. 1994;79:943–56.

    Article  CAS  PubMed  Google Scholar 

  42. Atcha H, Jairaman A, Holt JR, Meli VS, Nagalla RR, Veerasubramanian PK, et al. Mechanically activated ion channel Piezo1 modulates macrophage polarization and stiffness sensing. Nat Commun. 2021;12:3256.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Simon-Chica A, Fernández MC, Wülfers EM, Lother A, Hilgendorf I, Seemann G, et al. Novel insights into the electrophysiology of murine cardiac macrophages: relevance of voltage-gated potassium channels. Cardiovasc Res. 2022;118:798–813.

    Article  CAS  PubMed  Google Scholar 

  44. Hulsmans M, Clauss S, Xiao L, Aguirre AD, King KR, Hanley A, et al. Macrophages facilitate electrical conduction in the heart. Cell. 2017;169:510–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Bolter CP, Wilson SJ. Influence of right atrial pressure on the cardiac pacemaker response to vagal stimulation. Am J Physiol. 1999;276:R1112–7.

    CAS  PubMed  Google Scholar 

  46. Quinn TA, Kohl P. Rabbit models of cardiac mechano-electric and mechano-mechanical coupling. Prog Biophys Mol Biol. 2016;121:110–22.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Lakatta EG, Maltsev VA, Vinogradova TM. A coupled SYSTEM of intracellular Ca2+ clocks and surface membrane voltage clocks controls the timekeeping mechanism of the heart’s pacemaker. Circ Res. 2010;106:659–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Cameron BA, Kai H, Kaihara K, Iribe G, Quinn TA. Ischemia enhances the acute stretch-induced increase in calcium spark rate in ventricular myocytes. Front Physiol. 2020;11:289.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Iribe G, Ward CW, Camelliti P, Bollensdorff C, Mason F, Burton RA, et al. Axial stretch of rat single ventricular cardiomyocytes causes an acute and transient increase in Ca2+ spark rate. Circ Res. 2009;104:787–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Prosser BL, Ward CW, Lederer WJ. X-ROS signaling: rapid mechano-chemo transduction in heart. Science. 2011;333:1440–5.

    Article  CAS  PubMed  Google Scholar 

  51. Nesbitt AD, Cooper PJ, Kohl P. Rediscovering Commotio cordis. Lancet. 2001;357:1195–7.

    Article  CAS  PubMed  Google Scholar 

  52. Befeler B. Mechanical stimulation of the heart: its therapeutic value in tachyarrhythmias. Chest. 1978;73:832–8.

    Article  CAS  PubMed  Google Scholar 

  53. Quinn TA, Kohl P. Mechanical triggers and facilitators of ventricular tachy-arrhythmias. In: Kohl P, Sachs F, Franz M, editors. Cardiac mechano-electric coupling and arrhythmias. Oxford: Oxford University Press; 2011. p. 160–7.

    Chapter  Google Scholar 

  54. Berdowski J, Tijssen JG, Koster RW. Chest compressions cause recurrence of ventricular fibrillation after the first successful conversion by defibrillation in out-of-hospital cardiac arrest. Circ Arrhythm Electrophysiol. 2010;3:72–8.

    Article  PubMed  Google Scholar 

  55. Orini M, Taggart P, Bhuva A, Roberts N, Di Salvo C, Yates M, et al. Direct in-vivo assessment of global and regional mechano-electric feedback in the intact human heart. Heart Rhythm. 2021;18(8):1406–13.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Levine JH, Guarnieri T, Kadish AH, White RI, Calkins H, Kan JS. Changes in myocardial repolarization in patients undergoing balloon valvuloplasty for congenital pulmonary stenosis: evidence for contraction-excitation feedback in humans. Circulation. 1988;77:70–7.

    Article  CAS  PubMed  Google Scholar 

  57. Ninio DM, Saint DA. The role of stretch-activated channels in atrial fibrillation and the impact of intracellular acidosis. Prog Biophys Mol Biol. 2008;97:401–16.

    Article  CAS  PubMed  Google Scholar 

  58. Kohl P, Hunter P, Noble D. Stretch-induced changes in heart rate and rhythm: clinical observations, experiments and mathematical models. Prog Biophys Mol Biol. 1999;71:91–138.

    Article  CAS  PubMed  Google Scholar 

  59. Cameron BA, Kohl P, Quinn TA. Cellular and subcellular mechanisms of ventricular mechano-arrhythmogenesis. In: Hecker M, Duncker DJ, editors. Cardiac mechanobiology in physiology and disease. Cham: Springer; 2023. p. 256–98.

    Google Scholar 

  60. Sutherland GR. Sudden cardiac death: the pro-arrhythmic interaction of an acute loading with an underlying substrate. Eur Heart J. 2017;38:2986–94.

    CAS  PubMed  Google Scholar 

  61. Reiter MJ, Stromberg KD, Whitman TA, Adamson PB, Benditt DG, Gold MR. Influence of intracardiac pressure on spontaneous ventricular arrhythmias in patients with systolic heart failure: insights from the REDUCEhf trial. Circ Arrhythm Electrophysiol. 2013;6:272–8.

    Article  PubMed  Google Scholar 

  62. Waxman MB, Wald RW, Finley JP, Bonet JF, Downar E, Sharma AD. Valsalva termination of ventricular tachycardia. Circulation. 1980;62:843–51.

    Article  CAS  PubMed  Google Scholar 

  63. Franz MR, Cima R, Wang D, Profitt D, Kurz R. Electrophysiological effects of myocardial stretch and mechanical determinants of stretch-activated arrhythmias. Circulation. 1992;86:968–78.

    Article  CAS  PubMed  Google Scholar 

  64. Hansen DE, Craig CS, Hondeghem LM. Stretch-induced arrhythmias in the isolated canine ventricle. Evidence for the importance of mechanoelectrical feedback. Circulation. 1990;81:1094–105.

    Article  CAS  PubMed  Google Scholar 

  65. Schlomka G, Hinrichs A. Experimentelle Untersuchungen über den Einfluß stumpfer Brustkorbverletzungen auf das Elektrokardiogramm. Z Ges Exp Med. 1932;81:43–61.

    Article  Google Scholar 

  66. Schlomka G, Hinrichs A. Untersuchungen über den Einfluß stumpfer Brustkorbtraumen auf das Elektrokardiogramm (II. Mitteilung). Z Ges Exp Med. 1932;83:779–91.

    Article  Google Scholar 

  67. Link MS, Wang PJ, Pandian NG, Bharati S, Udelson JE, Lee MY, et al. An experimental model of sudden death due to low-energy chest-wall impact (Commotio cordis). N Engl J Med. 1998;338:1805–11.

    Article  CAS  PubMed  Google Scholar 

  68. Bode F, Franz M, Wilke I, Bonnemeier H, Schunkert H, Wiegand U. Ventricular fibrillation induced by stretch pulse: implications for sudden death due to Commotio cordis. J Cardiovasc Electrophysiol. 2006;17:1011–7.

    Article  PubMed  Google Scholar 

  69. Sung D, Mills RW, Schettler J, Narayan SM, Omens JH, McCulloch AD. Ventricular filling slows epicardial conduction and increases action potential duration in an optical mapping study of the isolated rabbit heart. J Cardiovasc Electrophysiol. 2003;14:739–49.

    Article  PubMed  Google Scholar 

  70. Ishikawa K, Watanabe S, Lee P, Akar FG, Lee A, Bikou O, et al. Acute left ventricular unloading reduces atrial stretch and inhibits atrial arrhythmias. J Am Coll Cardiol. 2018;72:738–50.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Kaufmann R, Theophile U. Automatie-fördernde Dehnungseffekte an Purkinje-Fäden, Papillarmuskeln und Vorhoftrabekeln von Rhesus-Affen. Pflugers Arch Gesamte Physiol Menschen Tiere. 1967;297:174–89.

    Article  CAS  PubMed  Google Scholar 

  72. Dominguez G, Fozzard HA. Effect of stretch on conduction velocity and cable properties of cardiac Purkinje fibers. Am J Physiol. 1979;237:C119–24.

    Article  CAS  PubMed  Google Scholar 

  73. Chang SL, Chen YC, Chen YJ, Wangcharoen W, Lee SH, Lin CI, et al. Mechanoelectrical feedback regulates the arrhythmogenic activity of pulmonary veins. Heart. 2007;93:82–8.

    Article  PubMed  Google Scholar 

  74. Al-Shammari H, Latif N, Sarathchandra P, McCormack A, Rog-Zielinska EA, Raja S, et al. Expression and function of mechanosensitive ion channels in human valve interstitial cells. PLoS One. 2020;15:e0240532.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Wang JH, Thampatty BP. Mechanobiology of adult and stem cells. Int Rev Cell Mol Biol. 2008;271:301–46.

    Article  CAS  PubMed  Google Scholar 

  76. Beaumont E, Salavatian S, Southerland EM, Vinet A, Jacquemet V, Armour JA, et al. Network interactions within the canine intrinsic cardiac nervous system: implications for reflex control of regional cardiac function. J Physiol. 2013;591:4515–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Link MS, Maron BJ, Wang PJ, VanderBrink BA, Zhu W, Estes NA 3rd. Upper and lower limits of vulnerability to sudden arrhythmic death with chest-wall impact (Commotio cordis). J Am Coll Cardiol. 2003;41:99–104.

    Article  PubMed  Google Scholar 

  78. Alsheikh-Ali AA, Akelman C, Madias C, Link MS. Endocardial mapping of ventricular fibrillation in Commotio cordis. Heart Rhythm. 2008;5:1355–6.

    Article  PubMed  Google Scholar 

  79. Cooper PJ, Epstein A, Macleod IA, Schaaf ST, Sheldon J, Boulin C, et al. Soft tissue impact characterisation kit (STICK) for ex situ investigation of heart rhythm responses to acute mechanical stimulation. Prog Biophys Mol Biol. 2006;90:444–68.

    Article  PubMed  Google Scholar 

  80. Quinn TA, Jin H, Lee P, Kohl P. Mechanically induced ectopy via stretch-activated cation-nonselective channels is caused by local tissue deformation and results in ventricular fibrillation if triggered on the repolarization wave edge (Commotio cordis). Circ Arrhythm Electrophysiol. 2017;10:e004777.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Quinn TA, Kohl P. Comparing maximum rate and sustainability of pacing by mechanical vs. electrical stimulation in the Langendorff-perfused rabbit heart. Europace. 2016;18:iv85-iv93.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Garny A, Kohl P. Mechanical induction of arrhythmias during ventricular repolarization: modeling cellular mechanisms and their interaction in two dimensions. Ann N Y Acad Sci. 2004;1015:133–43.

    Article  PubMed  Google Scholar 

  83. Seo K, Inagaki M, Nishimura S, Hidaka I, Sugimachi M, Hisada T, et al. Structural heterogeneity in the ventricular wall plays a significant role in the initiation of stretch-induced arrhythmias in perfused rabbit right ventricular tissues and whole heart preparations. Circ Res. 2010;106:176–84.

    Article  CAS  PubMed  Google Scholar 

  84. Parker KK, Lavelle JA, Taylor LK, Wang Z, Hansen DE. Stretch-induced ventricular arrhythmias during acute ischemia and reperfusion. J Appl Physiol. 2004;97:377–83.

    Article  PubMed  Google Scholar 

  85. Lu F, Jun-Xian C, Rong-Sheng X, Jia L, Ying H, Li-Qun Z, et al. The effect of streptomycin on stretch-induced electrophysiological changes of isolated acute myocardial infarcted hearts in rats. Europace. 2007;9:578–84.

    Article  Google Scholar 

  86. Barrabes JA, Garcia-Dorado D, Padilla F, Agullo L, Trobo L, Carballo J, et al. Ventricular fibrillation during acute coronary occlusion is related to the dilation of the ischemic region. Basic Res Cardiol. 2002;97:445–51.

    Article  PubMed  Google Scholar 

  87. Chorro FJ, Trapero I, Guerrero J, Such LM, Canoves J, Mainar L, et al. Modification of ventricular fibrillation activation patterns induced by local stretching. J Cardiovasc Electrophysiol. 2005;16:1087–96.

    Article  PubMed  Google Scholar 

  88. Sachs F. Mechanical transduction by membrane ion channels: a mini review. Mol Cell Biochem. 1991;104:57–60.

    Article  CAS  PubMed  Google Scholar 

  89. Kohl P. Cardiac stretch-activated channels and mechano-electric transduction. In: Zipes DP, Jalife J, editors. Cardiac electrophysiology: from cell to bedside. Philadelphia: Saunders; 2009. p. 115–26.

    Google Scholar 

  90. Zabel M, Koller BS, Sachs F, Franz MR. Stretch-induced voltage changes in the isolated beating heart: importance of the timing of stretch. Cardiovasc Res. 1996;32:120–30.

    Article  CAS  PubMed  Google Scholar 

  91. Hansen DE, Borganelli M, Stacy GP, Taylor LK. Dose-dependent inhibition of stretch-induced arrhythmias by gadolinium in isolated canine ventricles. Evidence for a unique mode of antiarrhythmic action. Circ Res. 1991;69:820–31.

    Article  CAS  PubMed  Google Scholar 

  92. Craelius W. Stretch-activation of rat cardiac myocytes. Exp Physiol. 1993;78:411–23.

    Article  CAS  PubMed  Google Scholar 

  93. Bode F, Sachs F, Franz MR. Tarantula peptide inhibits atrial fibrillation. Nature. 2001;409:35–6.

    Article  CAS  PubMed  Google Scholar 

  94. Van Wagoner DR. Mechanosensitive gating of atrial ATP-sensitive potassium channels. Circ Res. 1993;72:973–83.

    Article  PubMed  Google Scholar 

  95. Link MS, Wang PJ, VanderBrink BA, Avelar E, Pandian NG, Maron BJ, et al. Selective activation of the K+(ATP) channel is a mechanism by which sudden death is produced by low-energy chest-wall impact (Commotio cordis). Circulation. 1999;100:413–8.

    Article  CAS  PubMed  Google Scholar 

  96. Garan AR, Maron BJ, Wang PJ, Estes NA 3rd, Link MS. Role of streptomycin-sensitive stretch-activated channel in chest wall impact induced sudden death (Commotio cordis). J Cardiovasc Electrophysiol. 2005;16:433–8.

    Article  PubMed  Google Scholar 

  97. Kohl P, Bollensdorff C, Garny A. Effects of mechanosensitive ion channels on ventricular electrophysiology: experimental and theoretical models. Exp Physiol. 2006;91:307–21.

    Article  PubMed  Google Scholar 

  98. Li W, Kohl P, Trayanova N. Induction of ventricular arrhythmias following mechanical impact: a simulation study in 3D. J Mol Histol. 2004;35:679–86.

    PubMed  Google Scholar 

  99. Jie X, Gurev V, Trayanova N. Mechanisms of mechanically induced spontaneous arrhythmias in acute regional ischemia. Circ Res. 2010;106:185–92.

    Article  CAS  PubMed  Google Scholar 

  100. Morris CE, Juranka PF, Lin W, Morris TJ, Laitko U. Studying the mechanosensitivity of voltage-gated channels using oocyte patches. Methods Mol Biol. 2006;322:315–29.

    Article  CAS  PubMed  Google Scholar 

  101. Ter Keurs HE, Wakayama Y, Miura M, Shinozaki T, Stuyvers BD, Boyden PA, et al. Arrhythmogenic Ca2+ release from cardiac myofilaments. Prog Biophys Mol Biol. 2006;90:151–71.

    Article  PubMed  Google Scholar 

  102. Schott E. On ventricular standstill (Adam-Stokes attacks) together with other arrhythmias of temporary nature. Deutsches Archiv klinischer Medizin. 1920;131:211–29.

    Google Scholar 

  103. Quinn TA. Non-optogenetic approaches for leadless cardiac pacing: mechanically-induced excitation for extracorporeal control of cardiac rhythm. In: Nussinovitch U, editor. Emerging technologies for heart diseases: Volume 2: Treatments for myocardial ischemia and arrhythmias. Amsterdam: Elsevier; 2020. p. 891–905.

    Chapter  Google Scholar 

  104. Hyman AS. Resuscitation of the stopped heart by intracardiac therapy. Arch Intern Med. 1930;46:553–68.

    Article  Google Scholar 

  105. Lee HT, Cozine K. Incidental conversion to sinus rhythm from atrial fibrillation during external jugular venous catheterization. J Clin Anesth. 1997;9:664–7.

    Article  CAS  PubMed  Google Scholar 

  106. Scherf D, Bornemann C. Thumping of the precordium in ventricular standstill. Am J Cardiol. 1960;5:30–40.

    Article  CAS  PubMed  Google Scholar 

  107. Don Michael TA, Lond MB, Stanford RL. Precordial percussion in cardiac asystole. Lancet. 1963;699

    Google Scholar 

  108. Kohl P, King AM, Boulin C. Antiarrhythmic effects of acute mechanical stimulation. In: Kohl P, Franz MR, Sachs F, editors. Cardiac mechano-electric feedback and arrhythmias: from pipette to patient. Philadelphia: Saunders (Elsevier); 2005. p. 304–14.

    Google Scholar 

  109. Criley JM, Blaufuss AH, Kissel GL. Cough-induced cardiac compression: self-administered form of cardiopulmonary resuscitation. JAMA. 1976;236:1246–50.

    Article  CAS  PubMed  Google Scholar 

  110. Rajagopalan RS, Appu KS, Sultan SK, Jagannadhan TG, Nityanandan K, Sethuraman S. Precordial thump in ventricular tachycardia. J Assoc Physicians India. 1971;19:725–9.

    CAS  PubMed  Google Scholar 

  111. Amir O, Schliamser JE, Nemer S, Arie M. Ineffectiveness of precordial thump for cardioversion of malignant ventricular tachyarrhythmias. Pacing Clin Electrophysiol. 2007;30:153–6.

    Article  PubMed  Google Scholar 

  112. Caldwell G, Millar G, Quinn E. Simple mechanical methods for cardioversion: Defence of the precordial thump and cough version. BMJ. 1985;291:627–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Haman L, Parizek P, Vojacek J. Precordial thump efficacy in termination of induced ventricular arrhythmias. Resuscitation. 2009;80:14–6.

    Article  PubMed  Google Scholar 

  114. Pellis T, Kette F, Lovisa D, Franceschino E, Magagnin L, Mercante WP, et al. Utility of pre-cordial thump for treatment of out of hospital cardiac arrest: A prospective study. Resuscitation. 2009;80:17–23.

    Article  PubMed  Google Scholar 

  115. Smith J, Judge B. BET 1: Effectiveness of the precordial thump in restoring heart rhythm following out-of-hospital cardiac arrest. Emerg Med J. 2016;33:366–7.

    Article  PubMed  Google Scholar 

  116. Baderman H, Robertson NR. Thumping the precordium. Lancet. 1965;2:1293.

    Article  CAS  PubMed  Google Scholar 

  117. Yakaitis RW, Redding JS. Precordial thumping during cardiac resuscitation. Crit Care Med. 1973;1:22–6.

    Article  CAS  PubMed  Google Scholar 

  118. Gertsch M, Hottinger S, Mettler D, Leupi F, Gurtner HP. Conversion of induced ventricular tachycardia by single and serial chest thumps: a study in domestic pigs 1 week after experimental myocardial infarction. Am Heart J. 1989;118:248–55.

    Article  CAS  PubMed  Google Scholar 

  119. Wada T, Ohara H, Nakamura Y, Cao X, Izumi-Nakaseko H, Ando K, et al. Efficacy of precordial percussion pacing assessed in a cardiac standstill microminipig model. Circ J. 2017;81:1137–43.

    Article  CAS  PubMed  Google Scholar 

  120. Li W, Kohl P, Trayanova N. Myocardial ischemia lowers precordial thump efficacy: an inquiry into mechanisms using three-dimensional simulations. Heart Rhythm. 2006;3:179–86.

    Article  PubMed  Google Scholar 

  121. Van Wagoner DR, Lamorgese M. Ischemia potentiates the mechanosensitive modulation of atrial ATP-sensitive potassium channels. Ann N Y Acad Sci. 1994;723:392–5.

    Article  PubMed  Google Scholar 

  122. Brooks SC, Anderson ML, Bruder E, Daya MR, Gaffney A, Otto CW, et al. Part 6: alternative techniques and ancillary devices for cardiopulmonary resuscitation: 2015 American Heart Association guidelines update for cardiopulmonary resuscitation and emergency cardiovascular care. Circulation. 2015;132:S436–43.

    Article  PubMed  Google Scholar 

  123. Link MS, Berkow LC, Kudenchuk PJ, Halperin HR, Hess EP, Moitra VK, et al. Part 7: adult advanced cardiovascular life support: 2015 American Heart Association guidelines update for cardiopulmonary resuscitation and emergency cardiovascular care. Circulation. 2015;132:S444–64.

    Article  PubMed  Google Scholar 

  124. Quinn TA. Cardiac mechano-electric coupling: a role in regulating normal function of the heart? Cardiovasc Res. 2015;108:1–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Kaufmann RL, Lab MJ, Hennekes R, Krause H. Feedback interaction of mechanical and electrical events in the isolated mammalian ventricular myocardium (cat papillary muscle). Pflugers Arch. 1971;324:100–23.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Work in the authors’ laboratories is supported by the Canadian Institutes of Health Research (MOP 342562 to TAQ), the Natural Sciences and Engineering Research Council of Canada (RGPIN-2016-04879 to TAQ), the Heart and Stroke Foundation of Canada (G-18-0022185 and National New Investigator Award to TAQ), and the German Research Foundation (Collaborative Research Centre ‘SFB 1425’ #422681845; PK). RAC was supported by the Wellcome Trust and Royal Society (109371/Z/15/Z).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Alexander Quinn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Quinn, T.A., Capel, R.A., Kohl, P. (2023). Mechano-Electric Coupling in the Heart: Effects on Heart Rate and Rhythm. In: Tripathi, O.N., Quinn, T.A., Ravens, U. (eds) Heart Rate and Rhythm. Springer, Cham. https://doi.org/10.1007/978-3-031-33588-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-33588-4_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-33587-7

  • Online ISBN: 978-3-031-33588-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics