Skip to main content

Calmodulin Kinase II Regulation of Heart Rhythm and Disease

  • Chapter
  • First Online:
Heart Rate and Rhythm
  • 418 Accesses

Abstract

Calmodulin kinase II (CaMKII) is expressed in tissues throughout the body with essential roles in a wide variety of cellular functions from synaptic transmission in neurons to solute absorption in the epithelium to excitation–contraction coupling in cardiac myocytes. Importantly, CaMKII activity is sensitive to a variety of physiologically relevant stimuli, including intracellular Ca2+ and reactive oxygen species. In cardiomyocytes, CaMKII targets a host of intracellular substrates, including ion channels, Ca2+ cycling proteins, and transcription factors to regulate cardiac contractility, pacemaking, and electrical conduction. This chapter discusses the multiple roles of CaMKII in the heart and its emergence as an important determinant of the heart’s response to both acute and chronic stress relevant to normal physiology as well as disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Braun AP, Schulman H. The multifunctional calcium/calmodulin-dependent protein kinase: from form to function. Annu Rev Physiol. 1995;57:417–45.

    Article  CAS  PubMed  Google Scholar 

  2. Bayer KU, Schulman H. CaM kinase: still inspiring at 40. Neuron. 2019;103(3):380–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Swaminathan PD, et al. Calmodulin-dependent protein kinase II: linking heart failure and arrhythmias. Circ Res. 2012;110(12):1661–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Tobimatsu T, Fujisawa H. Tissue-specific expression of four types of rat calmodulin-dependent protein kinase II mRNAs. J Biol Chem. 1989;264(30):17907–12.

    Article  CAS  PubMed  Google Scholar 

  5. Edman CF, Schulman H. Identification and characterization of δB-CaM kinase and δC-CaM kinase from rat heart, two new multifunctional Ca2+/calmodulin-dependent protein kinase isoforms. Biochim Biophys Acta. 1994;1221(1):89–101.

    Article  CAS  PubMed  Google Scholar 

  6. Kreusser MM, et al. Cardiac CaM kinase II genes delta and gamma contribute to adverse remodeling but redundantly inhibit calcineurin-induced myocardial hypertrophy. Circulation. 2014;130(15):1262–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Gaertner TR, et al. Comparative analyses of the three-dimensional structures and enzymatic properties of α, β, γ and δ isoforms of Ca2+-calmodulin-dependent protein kinase II. J Biol Chem. 2004;279(13):12484–94.

    Article  CAS  PubMed  Google Scholar 

  8. Schulman H. Activity-dependent regulation of calcium/calmodulin-dependent protein kinase II localization. J Neurosci. 2004;24(39):8399–403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. De Koninck P, Schulman H. Sensitivity of CaM kinase II to the frequency of Ca2+ oscillations. Science. 1998;279(5348):227–30.

    Article  PubMed  Google Scholar 

  10. Lisman J, Schulman H, Cline H. The molecular basis of CaMKII function in synaptic and behavioural memory. Nat Rev Neurosci. 2002;3(3):175–90.

    Article  CAS  PubMed  Google Scholar 

  11. Kolodziej SJ, et al. Three-dimensional reconstructions of calcium/calmodulin-dependent (CaM) kinase IIα and truncated CaM kinase IIα reveal a unique organization for its structural core and functional domains. J Biol Chem. 2000;275(19):14354–9.

    Article  CAS  PubMed  Google Scholar 

  12. Hanson PI, et al. Dual role of calmodulin in autophosphorylation of multifunctional CaM kinase may underlie decoding of calcium signals. Neuron. 1994;12(5):943–56.

    Article  CAS  PubMed  Google Scholar 

  13. Kuret J, Schulman H. Mechanism of autophosphorylation of the multifunctional Ca2+/calmodulin-dependent protein kinase. J Biol Chem. 1985;260(10):6427–33.

    Article  CAS  PubMed  Google Scholar 

  14. Meyer T, et al. Calmodulin trapping by calcium-calmodulin-dependent protein kinase. Science. 1992;256(5060):1199–202.

    Article  CAS  PubMed  Google Scholar 

  15. Colbran RJ. Inactivation of Ca2+/calmodulin-dependent protein kinase II by basal autophosphorylation. J Biol Chem. 1993;268(10):7163–70.

    Article  CAS  PubMed  Google Scholar 

  16. Erickson JR, et al. A dynamic pathway for calcium-independent activation of CaMKII by methionine oxidation. Cell. 2008;133(3):462–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Erickson JR, et al. Diabetic hyperglycaemia activates CaMKII and arrhythmias by O-linked glycosylation. Nature. 2013;502(7471):372–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Erickson JR, et al. S-Nitrosylation induces both autonomous activation and inhibition of calcium/calmodulin-dependent protein kinase II delta. J Biol Chem. 2015;290(42):25646–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Curran J, et al. Nitric oxide-dependent activation of CaMKII increases diastolic sarcoplasmic reticulum calcium release in cardiac myocytes in response to adrenergic stimulation. PLoS One. 2014;9(2):e87495.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Zhang DM, et al. Intracellular signalling mechanism responsible for modulation of sarcolemmal ATP-sensitive potassium channels by nitric oxide in ventricular cardiomyocytes. J Physiol. 2014;592(5):971–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ouchi J, et al. alpha1-adrenoceptor stimulation potentiates L-type Ca2+ current through Ca2+/calmodulin-dependent PK II (CaMKII) activation in rat ventricular myocytes. Proc Natl Acad Sci U S A. 2005;102(26):9400–5.

    Article  CAS  PubMed  Google Scholar 

  22. Wu Y, et al. CaM kinase augments cardiac L-type Ca2+ current: a cellular mechanism for long Q-T arrhythmias. Am J Physiol Heart Circ Physiol. 1999;276(6 Pt 2):H2168–78.

    Article  CAS  Google Scholar 

  23. Timmins JM, et al. Calcium/calmodulin-dependent protein kinase II links ER stress with Fas and mitochondrial apoptosis pathways. J Clin Invest. 2009;119(10):2925–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wu X, et al. Local InsP3-dependent perinuclear Ca2+ signaling in cardiac myocyte excitation-transcription coupling. J Clin Invest. 2006;116(3):675–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wagner S, et al. Ca/calmodulin-dependent protein kinase II regulates cardiac Na channels. J Clin Invest. 2006;116(12):3127–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Li J, et al. Calmodulin kinase II inhibition shortens action potential duration by upregulation of K+ currents. Circ Res. 2006;99(10):1092–9.

    Article  CAS  PubMed  Google Scholar 

  27. Wagner S, et al. Ca/calmodulin kinase II differentially modulates potassium currents. Circ Arrhythm Electrophysiol. 2009;2(3):285–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hund TJ, et al. A betaIV spectrin/CaMKII signaling complex is essential for membrane excitability in mice. J Clin Invest. 2010;120(10):3508–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Unudurthi SD, et al. betaIV-Spectrin regulates STAT3 targeting to tune cardiac response to pressure overload. J Clin Invest. 2018;128(12):5561–72.

    Article  PubMed  PubMed Central  Google Scholar 

  30. McConnachie G, Langeberg LK, Scott JD. AKAP signaling complexes: getting to the heart of the matter. Trends Mol Med. 2006;12(7):317–23.

    Article  CAS  PubMed  Google Scholar 

  31. Bayer KU, et al. Interaction with the NMDA receptor locks CaMKII in an active conformation. Nature. 2001;411(6839):801–5.

    Article  CAS  PubMed  Google Scholar 

  32. Strack S, Colbran RJ. Autophosphorylation-dependent targeting of calcium/calmodulin-dependent protein kinase II by the NR2B subunit of the N-methyl- D-aspartate receptor. J Biol Chem. 1998;273(33):20689–92.

    Article  CAS  PubMed  Google Scholar 

  33. Hudmon A, et al. CaMKII tethers to L-type Ca2+ channels, establishing a local and dedicated integrator of Ca2+ signals for facilitation. J Cell Biol. 2005;171(3):537–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Grueter CE, et al. Differential regulated interactions of calcium/calmodulin-dependent protein kinase II with isoforms of voltage-gated calcium channel beta subunits. Biochemistry. 2008;47(6):1760–7.

    Article  CAS  PubMed  Google Scholar 

  35. Koval OM, et al. Ca2+/calmodulin-dependent protein kinase II-based regulation of voltage-gated Na+ channel in cardiac disease. Circulation. 2012;126(17):2084–94.

    Article  CAS  PubMed  Google Scholar 

  36. Glynn P, et al. Voltage-gated Sodium Channel phosphorylation at Ser571 regulates late current, arrhythmia, and cardiac function in vivo. Circulation. 2015;132(7):567–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Maier LS, Bers DM. Calcium, calmodulin, and calcium-calmodulin kinase II: heartbeat to heartbeat and beyond. J Mol Cell Cardiol. 2002;34(8):919–39.

    Article  CAS  PubMed  Google Scholar 

  38. Anderson ME, Brown JH, Bers DM. CaMKII in myocardial hypertrophy and heart failure. J Mol Cell Cardiol. 2011;51(4):468–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wehrens XH, et al. Ca2+/calmodulin-dependent protein kinase II phosphorylation regulates the cardiac ryanodine receptor. Circ Res. 2004;94(6):e61–70.

    Article  CAS  PubMed  Google Scholar 

  40. Witcher DR, et al. Unique phosphorylation site on the cardiac ryanodine receptor regulates calcium channel activity. J Biol Chem. 1991;266(17):11144–52.

    Article  CAS  PubMed  Google Scholar 

  41. Hain J, et al. Phosphorylation modulates the function of the calcium release channel of sarcoplasmic reticulum from cardiac muscle. J Biol Chem. 1995;270(5):2074–81.

    Article  CAS  PubMed  Google Scholar 

  42. Kohlhaas M, et al. Increased sarcoplasmic reticulum calcium leak but unaltered contractility by acute CaMKII overexpression in isolated rabbit cardiac myocytes. Circ Res. 2006;98(2):235–44.

    Article  CAS  PubMed  Google Scholar 

  43. Maier LS, et al. Transgenic CaMKIIδC overexpression uniquely alters cardiac myocyte Ca2+ handling: reduced SR Ca2+ load and activated SR Ca2+ release. Circ Res. 2003;92(8):904–11.

    Article  CAS  PubMed  Google Scholar 

  44. Wu Y, Colbran RJ, Anderson ME. Calmodulin kinase is a molecular switch for cardiac excitation-contraction coupling. Proc Natl Acad Sci U S A. 2001;98(5):2877–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ferrero P, et al. Ca2+/calmodulin kinase II increases ryanodine binding and Ca2+−induced sarcoplasmic reticulum Ca2+ release kinetics during beta-adrenergic stimulation. J Mol Cell Cardiol. 2007;43(3):281–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Dobrzynski H, Boyett MR, Anderson RH. New insights into pacemaker activity: promoting understanding of sick sinus syndrome. Circulation. 2007;115(14):1921–32.

    Article  PubMed  Google Scholar 

  47. Mangoni ME, Nargeot J. Genesis and regulation of the heart automaticity. Physiol Rev. 2008;88(3):919–82.

    Article  CAS  PubMed  Google Scholar 

  48. Wu Y, et al. Calmodulin kinase II is required for fight or flight sinoatrial node physiology. Proc Natl Acad Sci U S A. 2009;106(14):5972–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Eisner DA, Cerbai E. Beating to time: calcium clocks, voltage clocks, and cardiac pacemaker activity. Am J Physiol Heart Circ Physiol. 2009;296(3):H561–2.

    Article  CAS  PubMed  Google Scholar 

  50. Bogdanov KY, Vinogradova TM, Lakatta EG. Sinoatrial nodal cell ryanodine receptor and Na+-Ca2+ exchanger: molecular partners in pacemaker regulation. Circ Res. 2001;88(12):1254–8.

    Article  CAS  PubMed  Google Scholar 

  51. Huser J, Blatter LA, Lipsius SL. Intracellular Ca2+ release contributes to automaticity in cat atrial pacemaker cells. J Physiol. 2000;524(Pt 2):415–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Ling H, et al. Requirement for Ca2+/calmodulin-dependent kinase II in the transition from pressure overload-induced cardiac hypertrophy to heart failure in mice. J Clin Invest. 2009;119(5):1230–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Khoo M, et al. Calmodulin kinase activity is required for normal atrioventricular nodal conduction. Heart Rhythm. 2005;2:634–40.

    Article  PubMed  Google Scholar 

  54. Swaminathan PD, et al. Oxidized CaMKII causes sinus node dysfunction. J Clin Invest. 2011;121:3277–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Christensen MD, et al. Oxidized calmodulin kinase II regulates conduction following myocardial infarction: a computational analysis. PLoS Comput Biol. 2009;5(12):e1000583.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Aiba T, et al. Na+ channel regulation by Ca2+/calmodulin and Ca2+/calmodulin-dependent protein kinase II in Guinea-pig ventricular myocytes. Cardiovasc Res. 2010;85:454–63.

    Article  CAS  PubMed  Google Scholar 

  57. Yoon JY, et al. Constitutive CaMKII activity regulates Na+ channel in rat ventricular myocytes. J Mol Cell Cardiol. 2009;47(4):475–84.

    Article  CAS  PubMed  Google Scholar 

  58. Lehnart SE, et al. Inherited arrhythmias: a National Heart, Lung, and Blood Institute and Office of Rare Diseases workshop consensus report about the diagnosis, phenotyping, molecular mechanisms, and therapeutic approaches for primary cardiomyopathies of gene mutations affecting ion channel function. Circulation. 2007;116(20):2325–45.

    Article  CAS  PubMed  Google Scholar 

  59. Remme CA, Wilde AA, Bezzina CR. Cardiac sodium channel overlap syndromes: different faces of SCN5A mutations. Trends Cardiovasc Med. 2008;18(3):78–87.

    Article  CAS  PubMed  Google Scholar 

  60. Nattel S, et al. Arrhythmogenic ion-channel remodeling in the heart: heart failure, myocardial infarction, and atrial fibrillation. Physiol Rev. 2007;87(2):425–56.

    Article  CAS  PubMed  Google Scholar 

  61. Saumarez RC, et al. Sudden death in noncoronary heart disease is associated with delayed paced ventricular activation. Circulation. 2003;107(20):2595–600.

    Article  PubMed  Google Scholar 

  62. Wang Y, et al. Remodeling of early-phase repolarization: a mechanism of abnormal impulse conduction in heart failure. Circulation. 2006;113(15):1849–56.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Janse MJ, Wit AL. Electrophysiological mechanisms of ventricular arrhythmias resulting from myocardial ischemia and infarction. Physiol Rev. 1989;69(4):1049–169.

    Article  CAS  PubMed  Google Scholar 

  64. Grandi E, et al. Simulation of Ca-Calmodulin-dependent protein kinase II on rabbit ventricular myocyte ion currents and action potentials. Biophys J. 2007;93(11):3835–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Maltsev VA, et al. Modulation of late sodium current by Ca2+, calmodulin, and CaMKII in normal and failing dog cardiomyocytes: similarities and differences. Am J Physiol Heart Circ Physiol. 2008;294(4):H1597–608.

    Article  CAS  PubMed  Google Scholar 

  66. Marionneau C, et al. Mass spectrometry-based identification of native cardiac Nav1.5 channel alpha subunit phosphorylation sites. J Proteome Res. 2012;11(12):5994–6007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Ashpole NM, et al. Ca2+/calmodulin-dependent protein kinase II (CaMKII) regulates cardiac sodium channel NaV1.5 gating by multiple phosphorylation sites. J Biol Chem. 2012;287(24):19856–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Greer-Short A, et al. Calmodulin kinase II regulates atrial myocyte late sodium current, calcium handling, and atrial arrhythmia. Heart Rhythm. 2020;17(3):503–11.

    Article  PubMed  Google Scholar 

  69. Mustroph J, Maier LS, Wagner S. CaMKII regulation of cardiac K channels. Front Pharmacol. 2014;5:20.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Tessier S, et al. Regulation of the transient outward K+ current by Ca2+/calmodulin-dependent protein kinases II in human atrial myocytes. Circ Res. 1999;85(9):810–9.

    Article  CAS  PubMed  Google Scholar 

  71. Li J, et al. Calmodulin kinase II inhibition enhances ischemic preconditioning by augmenting ATP-sensitive K+ current. Channels (Austin). 2007;1(5):387–94.

    Article  PubMed  Google Scholar 

  72. El-Haou S, et al. Kv4 potassium channels form a tripartite complex with the anchoring protein SAP97 and CaMKII in cardiac myocytes. Circ Res. 2009;104(6):758–69.

    Article  CAS  PubMed  Google Scholar 

  73. Hoch B, et al. Identification and expression of delta-isoforms of the multifunctional Ca2+/calmodulin-dependent protein kinase in failing and nonfailing human myocardium. Circ Res. 1999;84(6):713–21.

    Article  CAS  PubMed  Google Scholar 

  74. Kirchhefer U, et al. Activity of cAMP-dependent protein kinase and Ca2+/calmodulin-dependent protein kinase in failing and nonfailing human hearts. Cardiovasc Res. 1999;42(1):254–61.

    Article  CAS  PubMed  Google Scholar 

  75. Zhang T, et al. The cardiac-specific nuclear δB isoform of Ca2+/calmodulin-dependent protein kinase II induces hypertrophy and dilated cardiomyopathy associated with increased protein phosphatase 2A activity. J Biol Chem. 2002;277(2):1261–7.

    Article  CAS  PubMed  Google Scholar 

  76. Zhang T, et al. The deltaC isoform of CaMKII is activated in cardiac hypertrophy and induces dilated cardiomyopathy and heart failure. Circ Res. 2003;92(8):912–9.

    Article  CAS  PubMed  Google Scholar 

  77. Ai X, et al. Ca2+/calmodulin-dependent protein kinase modulates cardiac ryanodine receptor phosphorylation and sarcoplasmic reticulum Ca2+ leak in heart failure. Circ Res. 2005;97(12):1314–22.

    Article  CAS  PubMed  Google Scholar 

  78. Bossuyt J, et al. Ca2+/calmodulin-dependent protein kinase IIδ and protein kinase D overexpression reinforce the histone deacetylase 5 redistribution in heart failure. Circ Res. 2008;102(6):695–702.

    Article  CAS  PubMed  Google Scholar 

  79. Chelu MG, et al. Calmodulin kinase II-mediated sarcoplasmic reticulum Ca2+ leak promotes atrial fibrillation in mice. J Clin Invest. 2009;119(7):1940–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. McCauley MD, Wehrens XH. Ryanodine receptor phosphorylation, calcium/calmodulin-dependent protein kinase II, and life-threatening ventricular arrhythmias. Trends Cardiovasc Med. 2011;21(2):48–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Said M, et al. Calcium-calmodulin dependent protein kinase II (CaMKII): a main signal responsible for early reperfusion arrhythmias. J Mol Cell Cardiol. 2011;51(6):936–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. van Oort RJ, et al. Ryanodine receptor phosphorylation by calcium/calmodulin-dependent protein kinase II promotes life-threatening ventricular arrhythmias in mice with heart failure. Circulation. 2010;122(25):2669–79.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Hunter JJ, Chien KR. Signaling pathways for cardiac hypertrophy and failure. N Engl J Med. 1999;341(17):1276–83.

    Article  CAS  PubMed  Google Scholar 

  84. Frey N, McKinsey TA, Olson EN. Decoding calcium signals involved in cardiac growth and function. Nat Med. 2000;6(11):1221–7.

    Article  CAS  PubMed  Google Scholar 

  85. Backs J, et al. The delta isoform of CaM kinase II is required for pathological cardiac hypertrophy and remodeling after pressure overload. Proc Natl Acad Sci U S A. 2009;106(7):2342–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Ramirez MT, et al. The nuclear δB isoform of Ca2+/calmodulin-dependent protein kinase II regulates atrial natriuretic factor gene expression in ventricular myocytes. J Biol Chem. 1997;272(49):31203–8.

    Article  CAS  PubMed  Google Scholar 

  87. Zhang T, Brown JH. Role of Ca2+/calmodulin-dependent protein kinase II in cardiac hypertrophy and heart failure. Cardiovasc Res. 2004;63(3):476–86.

    Article  CAS  PubMed  Google Scholar 

  88. Zhu W, et al. Ca2+/calmodulin-dependent kinase II and calcineurin play critical roles in endothelin-1-induced cardiomyocyte hypertrophy. J Biol Chem. 2000;275(20):15239–45.

    Article  CAS  PubMed  Google Scholar 

  89. MacDonnell SM, et al. CaMKII negatively regulates calcineurin-NFAT signaling in cardiac myocytes. Circ Res. 2009;105(4):316–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Xu X, et al. ASF/SF2-regulated CaMKIIdelta alternative splicing temporally reprograms excitation-contraction coupling in cardiac muscle. Cell. 2005;120(1):59–72.

    Article  CAS  PubMed  Google Scholar 

  91. Kreusser MM, et al. Inducible cardiomyocyte-specific deletion of CaM kinase II protects from pressure overload-induced heart failure. Basic Res Cardiol. 2016;111(6):65.

    Article  PubMed  Google Scholar 

  92. Suetomi T, Miyamoto S, Brown JH. Inflammation in nonischemic heart disease: initiation by cardiomyocyte CaMKII and NLRP3 inflammasome signaling. Am J Physiol Heart Circ Physiol. 2019;317(5):H877–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Suetomi T, et al. Inflammation and NLRP3 Inflammasome activation initiated in response to pressure overload by Ca(2+)/Calmodulin-dependent protein kinase II delta signaling in cardiomyocytes are essential for adverse cardiac remodeling. Circulation. 2018;138(22):2530–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Currie S, Smith GL. Calcium/calmodulin-dependent protein kinase II activity is increased in sarcoplasmic reticulum from coronary artery ligated rabbit hearts. FEBS Lett. 1999;459(2):244–8.

    Article  CAS  PubMed  Google Scholar 

  95. Hund TJ, et al. Role of activated CaMKII in abnormal calcium homeostasis and INa remodeling after myocardial infarction: insights from mathematical modeling. J Mol Cell Cardiol. 2008;45:420–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Netticadan T, et al. Sarcoplasmic reticulum Ca2+/Calmodulin-dependent protein kinase is altered in heart failure. Circ Res. 2000;86(5):596–605.

    Article  CAS  PubMed  Google Scholar 

  97. Said M, et al. Increased intracellular Ca2+ and SR Ca2+ load contribute to arrhythmias after acidosis in rat heart. Role of Ca2+/calmodulin-dependent protein kinase II. Am J Physiol Heart Circ Physiol. 2008;295(4):H1669–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Singh MV, et al. Ca2+/calmodulin-dependent kinase II triggers cell membrane injury by inducing complement factor B gene expression in the mouse heart. J Clin Invest. 2009;119(4):986–96.

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Zhang R, et al. Calmodulin kinase II inhibition protects against structural heart disease. Nat Med. 2005;11:409–17.

    Article  CAS  PubMed  Google Scholar 

  100. Damiano BP, Rosen MR. Effects of pacing on triggered activity induced by early afterdepolarizations. Circulation. 1984;69(5):1013–25.

    Article  CAS  PubMed  Google Scholar 

  101. Kinugawa S, et al. Treatment with dimethylthiourea prevents left ventricular remodeling and failure after experimental myocardial infarction in mice: role of oxidative stress. Circ Res. 2000;87(5):392–8.

    Article  CAS  PubMed  Google Scholar 

  102. Pinto JM, Boyden PA. Electrical remodeling in ischemia and infarction. Cardiovasc Res. 1999;42(2):284–97.

    Article  CAS  PubMed  Google Scholar 

  103. Ursell PC, et al. Structural and electrophysiological changes in the epicardial border zone of canine myocardial infarcts during infarct healing. Circ Res. 1985;56(3):436–51.

    Article  CAS  PubMed  Google Scholar 

  104. DeSantiago J, Maier LS, Bers DM. Phospholamban is required for CaMKII-dependent recovery of Ca transients and SR Ca reuptake during acidosis in cardiac myocytes. J Mol Cell Cardiol. 2004;36(1):67–74.

    Article  CAS  PubMed  Google Scholar 

  105. Mundina-Weilenmann C, et al. Role of phosphorylation of Thr(17) residue of phospholamban in mechanical recovery during hypercapnic acidosis. Cardiovasc Res. 2005;66(1):114–22.

    Article  CAS  PubMed  Google Scholar 

  106. Vila-Petroff M, et al. Ca(2+)/calmodulin-dependent protein kinase II contributes to intracellular pH recovery from acidosis via Na(+)/H(+) exchanger activation. J Mol Cell Cardiol. 2010;49(1):106–12.

    Article  CAS  PubMed  Google Scholar 

  107. Khoo MS, et al. Death, cardiac dysfunction, and arrhythmias are increased by calmodulin kinase II in calcineurin cardiomyopathy. Circulation. 2006;114(13):1352–9.

    Article  CAS  PubMed  Google Scholar 

  108. Sag CM, et al. Calcium/Calmodulin-dependent protein kinase II contributes to cardiac Arrhythmogenesis in heart failure. Circ Heart Fail. 2009;2(6):664–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Wu Y, et al. Calmodulin kinase II and arrhythmias in a mouse model of cardiac hypertrophy. Circulation. 2002;106(10):1288–93.

    Article  CAS  PubMed  Google Scholar 

  110. Yeh YH, et al. Calcium-handling abnormalities underlying atrial arrhythmogenesis and contractile dysfunction in dogs with congestive heart failure. Circ Arrhythm Electrophysiol. 2008;1(2):93–102.

    Article  CAS  PubMed  Google Scholar 

  111. Anderson ME, et al. KN-93, an inhibitor of multifunctional Ca2+/calmodulin-dependent protein kinase, decreases early afterdepolarizations in rabbit heart. J Pharmacol Exp Ther. 1998;287(3):996–1006.

    CAS  PubMed  Google Scholar 

  112. Wu Y, Roden DM, Anderson ME. Calmodulin kinase inhibition prevents development of the arrhythmogenic transient inward current. Circ Res. 1999;84(8):906–12.

    Article  CAS  PubMed  Google Scholar 

  113. Xie LH, et al. Oxidative-stress-induced afterdepolarizations and calmodulin kinase II signaling. Circ Res. 2009;104(1):79–86.

    Article  CAS  PubMed  Google Scholar 

  114. Morita N, et al. Increased susceptibility of aged hearts to ventricular fibrillation during oxidative stress. Am J Physiol Heart Circ Physiol. 2009;297:H1594–605.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Howard T, et al. CaMKII-dependent late Na+ current increases electrical dispersion and arrhythmia in ischemia-reperfusion. Am J Physiol Heart Circ Physiol. 2018;315(4):H794–801.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Qi X, et al. The calcium/calmodulin/kinase system and arrhythmogenic afterdepolarizations in bradycardia-related acquired long-QT syndrome. Circ Arrhythm Electrophysiol. 2009;2(3):295–304.

    Article  CAS  PubMed  Google Scholar 

  117. Thiel WH, et al. Proarrhythmic defects in Timothy syndrome require calmodulin kinase II. Circulation. 2008;118(22):2225–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. DeGrande S, et al. CaMKII inhibition rescues proarrhythmic phenotypes in the model of human ankyrin-B syndrome. Heart Rhythm. 2012;9(12):2034–41.

    Article  PubMed  PubMed Central  Google Scholar 

  119. Liu N, et al. Calmodulin kinase II inhibition prevents arrhythmias in RyR2(R4496C+/−) mice with catecholaminergic polymorphic ventricular tachycardia. J Mol Cell Cardiol. 2011;50(1):214–22.

    Article  CAS  PubMed  Google Scholar 

  120. Tanskanen AJ, et al. The role of stochastic and modal gating of cardiac L-type Ca2+ channels on early after-depolarizations. Biophys J. 2005;88(1):85–95.

    Article  CAS  PubMed  Google Scholar 

  121. Wang W, et al. Sustained beta1-adrenergic stimulation modulates cardiac contractility by Ca2+/calmodulin kinase signaling pathway. Circ Res. 2004;95(8):798–806.

    Article  CAS  PubMed  Google Scholar 

  122. Zhu WZ, et al. Linkage of β1-adrenergic stimulation to apoptotic heart cell death through protein kinase A-independent activation of Ca2+/calmodulin kinase II. J Clin Invest. 2003;111(5):617–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Little GH, et al. Critical role of nuclear calcium/calmodulin-dependent protein kinase IIdeltaB in cardiomyocyte survival in cardiomyopathy. J Biol Chem. 2009;284(37):24857–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Yang Y, et al. Calmodulin kinase II inhibition protects against myocardial cell apoptosis in vivo. Am J Physiol Heart Circ Physiol. 2006;291(6):H3065–75.

    Article  CAS  PubMed  Google Scholar 

  125. Zhu W, et al. Activation of CaMKII-delta C is a common intermediate of diverse death stimuli-induced heart muscle cell apoptosis. J Biol Chem. 2007;282(14):10833–9.

    Article  CAS  PubMed  Google Scholar 

  126. Howe CJ, et al. Redox regulation of the calcium/calmodulin-dependent protein kinases. J Biol Chem. 2004;279(43):44573–81.

    Article  CAS  PubMed  Google Scholar 

  127. Luo M, et al. Diabetes increases mortality after myocardial infarction by oxidizing CaMKII. J Clin Invest. 2013;123(3):1262–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Chiba H, et al. A simulation study on the activation of cardiac CaMKII delta-isoform and its regulation by phosphatases. Biophys J. 2008;95(5):2139–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Saucerman JJ, Bers DM. Calmodulin mediates differential sensitivity of CaMKII and calcineurin to local Ca2+ in cardiac myocytes. Biophys J. 2008;95(10):4597–612.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Terentyev D, et al. miR-1 overexpression enhances Ca2+ release and promotes cardiac arrhythmogenesis by targeting PP2A regulatory subunit B56alpha and causing CaMKII-dependent hyperphosphorylation of RyR2. Circ Res. 2009;104(4):514–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Little SC, et al. Protein phosphatase 2A regulatory subunit B56alpha limits phosphatase activity in the heart. Sci Signal. 2015;8(386):ra72.

    Article  PubMed  PubMed Central  Google Scholar 

  132. Nassal D, Gratz D, Hund TJ. Challenges and opportunities for therapeutic targeting of calmodulin kinase II in heart. Front Pharmacol. 2020;11:35.

    Article  PubMed  PubMed Central  Google Scholar 

  133. Sumi M, et al. The newly synthesized selective Ca2+/calmodulin dependent protein kinase II inhibitor KN-93 reduces dopamine contents in PC12h cells. Biochem Biophys Res Commun. 1991;181(3):968–75.

    Article  CAS  PubMed  Google Scholar 

  134. Vest RS, et al. Effective post-insult neuroprotection by a novel Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) inhibitor. J Biol Chem. 2010;285(27):20675–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Buard I, et al. CaMKII “autonomy” is required for initiating but not for maintaining neuronal long-term information storage. J Neurosci. 2010;30(24):8214–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Ledoux J, Chartier D, Leblanc N. Inhibitors of calmodulin-dependent protein kinase are nonspecific blockers of voltage-dependent K+ channels in vascular myocytes. J Pharmacol Exp Ther. 1999;290(3):1165–74.

    CAS  PubMed  Google Scholar 

  137. Rezazadeh S, Claydon TW, Fedida D, KN-93 (2-[N-(2-Hydroxyethyl)]-N-(4-methoxybenzenesulfonyl)]amino-N-(4-chlorocinnamyl)-N-methylbenzylamine), a Calcium/Calmodulin-dependent protein Kinase II inhibitor, is a direct extracellular blocker of voltage-gated potassium channels. J Pharmacol Exp Ther 2006;317(1):292–299.

    Google Scholar 

  138. Hegyi B, et al. KN-93 inhibits IKr in mammalian cardiomyocytes. J Mol Cell Cardiol. 2015;89(Pt B):173–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Smyth JT, et al. Inhibition of the inositol trisphosphate receptor of mouse eggs and A7r5 cells by KN-93 via a mechanism unrelated to Ca2+/calmodulin-dependent protein kinase II antagonism. J Biol Chem. 2002;277(38):35061–70.

    Article  CAS  PubMed  Google Scholar 

  140. Gao Y, et al. A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery. Biochem J. 2013;451(2):313–28.

    Article  CAS  PubMed  Google Scholar 

  141. Mochizuki H, Ito T, Hidaka H. Purification and characterization of Ca2+/calmodulin-dependent protein kinase V from rat cerebrum. J Biol Chem. 1993;268(12):9143–7.

    Article  CAS  PubMed  Google Scholar 

  142. Enslen H, et al. Characterization of Ca2+/calmodulin-dependent protein kinase IV. Role in transcriptional regulation. J Biol Chem. 1994;269(22):15520–7.

    Article  CAS  PubMed  Google Scholar 

  143. Ishida A, et al. A novel highly specific and potent inhibitor of calmodulin-dependent protein kinase II. Biochem Biophys Res Commun. 1995;212(3):806–12.

    Article  CAS  PubMed  Google Scholar 

  144. Braun AP, Schulman H. A non-selective cation current activated via the multifunctional Ca(2+)-calmodulin-dependent protein kinase in human epithelial cells. J Physiol. 1995;488(Pt 1):37–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Chang BH, Mukherji S, Soderling TR. Characterization of a calmodulin kinase II inhibitor protein in brain. Proc Natl Acad Sci U S A. 1998;95(18):10890–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Coultrap SJ, Bayer KU. Improving a natural CaMKII inhibitor by random and rational design. PLoS One. 2011;6(10):e25245.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Joiner ML, et al. CaMKII determines mitochondrial stress responses in heart. Nature. 2012;491(7423):269–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Koval OM, et al. CaV1.2 beta-subunit coordinates CaMKII-triggered cardiomyocyte death and afterdepolarizations. Proc Natl Acad Sci U S A. 2010;107(11):4996–5000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Otvos L Jr, Wade JD. Current challenges in peptide-based drug discovery. Front Chem. 2014;2:62.

    Article  PubMed  PubMed Central  Google Scholar 

  150. Penny WF, Hammond HK. Randomized clinical trials of gene transfer for heart failure with reduced ejection fraction. Hum Gene Ther. 2017;28(5):378–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Mavunkel B, et al. Pyrimidine-based inhibitors of CaMKIIdelta. Bioorg Med Chem Lett. 2008;18(7):2404–8.

    Article  CAS  PubMed  Google Scholar 

  152. Neef S, et al. Improvement of cardiomyocyte function by a novel pyrimidine-based CaMKII-inhibitor. J Mol Cell Cardiol. 2018;115:73–81.

    Article  CAS  PubMed  Google Scholar 

  153. Lebek S, et al. The novel CaMKII inhibitor GS-680 reduces diastolic SR Ca leak and prevents CaMKII-dependent pro-arrhythmic activity. J Mol Cell Cardiol. 2018;118:159–68.

    Article  CAS  PubMed  Google Scholar 

  154. Beauverger P, et al. Reversion of cardiac dysfunction by a novel orally available calcium/calmodulin-dependent protein kinase II inhibitor, RA306, in a genetic model of dilated cardiomyopathy. Cardiovasc Res. 2020;116(2):329–38.

    CAS  PubMed  Google Scholar 

  155. Rayner-Hartley E, Sedlak T. Ranolazine: A Contemporary Review. J Am Heart Assoc. 2016;5(3):e003196.

    Article  PubMed  PubMed Central  Google Scholar 

  156. Rastogi S, et al. Ranolazine combined with enalapril or metoprolol prevents progressive LV dysfunction and remodeling in dogs with moderate heart failure. Am J Physiol Heart Circ Physiol. 2008;295(5):H2149–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Figueredo VM, et al. Improvement in left ventricular systolic and diastolic performance during ranolazine treatment in patients with stable angina. J Cardiovasc Pharmacol Ther. 2011;16(2):168–72.

    Article  CAS  PubMed  Google Scholar 

  158. Liang F, et al. Inhibitions of late INa and CaMKII act synergistically to prevent ATX-II-induced atrial fibrillation in isolated rat right atria. J Mol Cell Cardiol. 2016;94:122–30.

    Article  CAS  PubMed  Google Scholar 

  159. Ellermann C, et al. Ranolazine prevents Levosimendan-induced atrial fibrillation. Pharmacology. 2018;102(3–4):138–41.

    Article  CAS  PubMed  Google Scholar 

  160. Nie J, et al. Ranolazine prevents pressure overload-induced cardiac hypertrophy and heart failure by restoring aberrant Na(+) and Ca(2+) handling. J Cell Physiol. 2019;234(7):11587–601.

    Article  CAS  PubMed  Google Scholar 

  161. De Ferrari GM, et al. Ranolazine in the treatment of atrial fibrillation: results of the dose-ranging RAFFAELLO (Ranolazine in atrial fibrillation following an ELectricaL CardiOversion) study. Heart Rhythm. 2015;12(5):872–8.

    Article  PubMed  Google Scholar 

  162. Bengel P, Ahmad S, Sossalla S. Inhibition of late sodium current as an innovative antiarrhythmic strategy. Curr Heart Fail Rep. 2017;14(3):179–86.

    Article  CAS  PubMed  Google Scholar 

  163. Olivotto I, et al. Efficacy of Ranolazine in patients with symptomatic hypertrophic cardiomyopathy: the RESTYLE-HCM randomized, double-blind, placebo-controlled study. Circ Heart Fail. 2018;11(1):e004124.

    Article  CAS  PubMed  Google Scholar 

  164. Zareba W, et al. Ranolazine in high-risk patients with implanted cardioverter-defibrillators: the RAID trial. J Am Coll Cardiol. 2018;72(6):636–45.

    Article  CAS  PubMed  Google Scholar 

  165. Yano M, et al. FKBP12.6-mediated stabilization of calcium-release channel (ryanodine receptor) as a novel therapeutic strategy against heart failure. Circulation. 2003;107(3):477–84.

    Article  CAS  PubMed  Google Scholar 

  166. Bellinger AM, et al. Remodeling of ryanodine receptor complex causes "leaky" channels: a molecular mechanism for decreased exercise capacity. Proc Natl Acad Sci U S A. 2008;105(6):2198–202.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Institutes of Health (HL096805, HL135096, and HL134824 to TJH).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas J. Hund .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nassal, D.M., Hund, T.J. (2023). Calmodulin Kinase II Regulation of Heart Rhythm and Disease. In: Tripathi, O.N., Quinn, T.A., Ravens, U. (eds) Heart Rate and Rhythm. Springer, Cham. https://doi.org/10.1007/978-3-031-33588-4_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-33588-4_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-33587-7

  • Online ISBN: 978-3-031-33588-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics